Upper bounds for the moduli of polynomial-like maps

Alexander Blokh, Genadi Levin, Lex Oversteegen, Vladlen Timorin

https://arxiv.org/abs/2202.01282

https://arxiv.org/abs/2205.03157

1. Background

Renormalization and the PLY inequality

Polynomial-like maps (Douady-Hubbard)

- Let U, V be Jordan disks with $\overline{U} \subset V$, and $f: U \to V$ a degree d proper holomorphic map. Then f is called a polynomial-like (PL) map.
- d = 1 means a repelling fixed point.
- The fundamental annulus $A = V \setminus \overline{U}$ is isomorphic to a Euclidean cylinder of height μ and circumference 1. Set $mod(A) = \mu$. This is the modulus of the PL map f.

Straightening and renormalization

- Douady-Hubbard straightening theorem: if $f: U \rightarrow V$ is a PL map with PL set $K^* = \{z \in U | f^n(z) \in U \forall n \ge 0\}$, then f is topologically (in fact, hybrid) conjugate to a polynomial.
- **Renormalization**: a rational function $f : \mathbb{P}^1 \to \mathbb{P}^1$ is renormalizable of period p if $f^p : U \to V$ is PL with connected PL set K^* , and $K^* \neq K(f)$.
- A priori bounds: lower bounds on $mod(V \setminus U)$.
- Typical applications: local connectivity, triviality of fibers, zero measure, ...

Pommerenke-Levin-Yoccoz (PLY) inequality

- Theorem (PLY). Let α be a repelling fixed point of a degree d polynomial P with connected filled Julia set K(P). If $K(P) \setminus {\alpha}$ consists of q components, then $\log |f'(\alpha)| \leq \frac{2 \log d}{q}$.
- Here $\log |f'(\alpha)| / 2\pi$ is the modulus of a fundamental annulus around α , and q can also be defined as the number of wedges formed by pairs of adjacent external rays landing at α .

Modified figure from Alex Kapiamba's preprint <u>https://arxiv.org/abs/210</u> <u>3.03211</u>

2. Statements of results

Upper bounds on the moduli of renormalizations

Wedges and an upper bound on $mod(V \setminus \overline{U})$

- Let *R*, *L* be external rays for a degree *d* polynomial *P* landing at *a*. Then Γ = *R* ∪ *L* ∪ {*a*} is a cut. It is periodic if *f^m*(Γ) = Γ for some minimal *m* called the period of Γ.
- Suppose that all $\Gamma_i = P^i(\Gamma)$ (where i = 0, ..., m 1) bound wedges W_i that are pairwise disjoint.

Theorem. Let $P: U \to V$ be PL, and suppose that $P: W_i \cap U \to V$ are injective. Then $mod(V \setminus \overline{U}) \leq \frac{\log d}{\pi m}$.

Application to cubic polynomials

- Consider $f(z) = f_{\lambda,b}(z) = \lambda z + bz^2 + z^3$ with $|\lambda| \le 1$.
- Outside of a central part (cubic analog of the filled main cardioid) in the space of such maps, all f admit degree 2 PL restrictions $f: U \rightarrow V, U \ni 0$. Set $K^* = \{z \in U | f^n(z) \in U \ \forall n = 1, 2, ...\}$ (PL set).
- Theorem. Components of K(f) \ K^{*} are contained in (pre)periodic wedges whose vertices are eventually mapped to repelling periodic points − unless J(f) has positive measure and carries a measurable invariant line field.
- The theorem also implies a parameter space statement describing the central parts of $\mathcal{F}_{\lambda} = \{f_{\lambda,b} \mid \lambda \text{ fixed, } b \in \mathbb{C}\}.$

Some parameter slices \mathcal{F}_{λ} (plane of $a = b^2$)

Satellite renormalization for $f_c(z) = z^2 + c$

- Theorem A. Let α be a repelling fixed point of f_c with $p \gg 1$ external rays landing at α . Let $f_c^p: U \to V$ be PL with the corresponding PL set $K^* \ni \alpha$. Then $mod(U \setminus K^*) \leq \frac{4\pi}{\log p}$.
- **Problem**: what is asymptotically the best upper bound?
- The annulus $U \setminus K^*$ is called the root annulus of K^* .

A general upper bound

- **Theorem**. Let $\mathcal{K} = \{K_0^*, ..., K_{q-1}^*\}$ be a cycle of PL sets for a rational function f such that at least t elements of \mathcal{K} have spherical diameter at least k and a root annulus of modulus at least m. Then $4tk^2 \leq e^{\frac{\pi}{m}}$ provided that t is sufficiently large.
- Cycles of PL sets are called PL cycles.
- A compactness argument + the Koebe ¼-theorem imply that there are many PL sets of big diameter in the satellite case.
- The upper bound for the quadratic satellite renormalization (Theorem A) can be generalized to rational maps of any degree.

Non-null sequences of renormalizations

Theorem B. Let $f_n \to f$ be degree $d \ge 2$ rational functions. Assume $f_n^{p_n}: U_n \to V_n$ are PL maps with connected PL sets K_n of period p_n , and $K_n \to K$ in the Hausdorff metric. If $\operatorname{diam}(K) > 0, p_n \to \infty, \operatorname{mod}(V_n \setminus K_n) \neq 0$, then K is contained in a periodic parabolic domain of f.

This can indeed happen (parabolic implosion).

Warning: the figure is fake.

Infinitely renormalizable sets

- Consider PL cycles \mathcal{K}_n of f such that elements of \mathcal{K}_{n+1} are proper subsets of those of \mathcal{K}_n .
- Let p_n be the period of \mathcal{K}_n . Then $p_{n+1}/p_n = q_n$, where $q_n \ge 2$ is the number of elements of \mathcal{K}_{n+1} in every element of \mathcal{K}_n .
- The set $S = \bigcap_n (\bigcup_{K \in \mathcal{K}_n} K)$ is called an infinitelyrenormalizable set for f.

Corollary 1. If S is not a Cantor set, then $mod(U_n \setminus K_n^*) \to 0$ for any sequence $K_n \in \mathcal{K}_n$ such that $f^{p_n}: U_n \to V_n$ are the corresponding PL maps.

No a priori bounds in the satellite case

Corollary 2. Suppose that, for arbitrarily large n, s_n elements of \mathcal{K}_{n+1} in a given $K_n \in \mathcal{K}_n$ have a unique common base point α_{K_n} .

- If the moduli of some fundamental annuli for \mathcal{K}_n are $\geq m > 0$ and $s_n \to \infty$, then the moduli of all root annuli for \mathcal{K}_{n+1} tend to zero.
- If every component of *S* containing a critical point is non-degenerate, then the moduli of all root annuli of \mathcal{K}_{n+1} are $O\left(\frac{1}{\ln s_n}\right)$.

3. Ideas of proofs

Extremal length, packing radius

Upper bound on $mod(V \setminus \overline{U})$

Theorem. Let $P: U \to V$ be PL, and suppose that $P: W_i \cap U \to V$ are injective. Then $mod(V \setminus \overline{U}) \leq \frac{\log d}{\pi m}$.

 \mathcal{L} = the set of curves in $A = V \setminus \overline{U}$ winding once. EL $(\mathcal{L}) = \text{mod}(A)^{-1}$

 \mathcal{L}_i = the set of curves in $A \cap W_i$ connecting the boundary rays of W_i . All \mathcal{L}_i can be transferred to the same wedge W_0 , where

$$\frac{\pi}{m \log d} \leq \operatorname{mod} \left(\frac{W_0}{P^m} \right) \leq \frac{1}{\operatorname{EL}(\mathcal{L}_0)} + \dots + \frac{1}{\operatorname{EL}(\mathcal{L}_{m-1})}.$$

An elementary inequality between the arithmetic mean and the harmonic mean now yields that

$$\operatorname{EL}(\mathcal{L}) \ge \operatorname{EL}(\mathcal{L}_0) + \dots + \operatorname{EL}(\mathcal{L}_{m-1}) \ge \frac{m\pi}{\log d}$$

A general upper bound

Theorem. If at least $t \gg 1$ elements of \mathcal{K} have spherical diameter at least k and a root annulus of modulus at least m, then $4tk^2 \leq e^{\frac{\pi}{m}}$.

Consider continua Z_i and Jordan domains $U_i \supset Z_i$, i = 1, ..., t such that $diam(Z_i) \ge k$, $mod(U_i \setminus Z_i) \ge m$ and $z_i \notin U_j$ for $j \ne i$. Then $4tk^2 \le e^{\frac{\pi}{m}}$ if t is sufficiently large.

This is based on the following lemma.

Lemma. Let $U \subset \mathbb{P}^1$ be a topological disk, and $Z \subset U$ a continuum of spherical diameter k. Then, for every point $z \in Z$, the round disk of spherical radius $\rho = 4ke^{-\frac{\pi}{2m}}$ is contained in U if m is sufficiently small.

The lemma follows from the solution of the Teichmüller extremal problem.