Tensor Ranks and Matrix Multiplication Complexity

Hang (Amy) Huang

Texas A&M University

March 29, 2022

Hang (Amy) Huang (Texas A&M University Tensor Ranks and Matrix Multiplication Complettion March 29, 2022 1/35

Matrix Multiplication Complexity

- Optimal arithmetric operations multiplying two $\mathbf{n} \times \mathbf{n}$ matrices together?
- Naively: need $O(n^3)$ operations.
- Strassen's algorithm uses $O(\mathsf{n}^{2.81})$ operations.
- Matrix Multiplication Map:

$$
M_{\langle I,m,n\rangle}: \mathbb{C}^{lm} \times \mathbb{C}^{mn} \to \mathbb{C}^{ln}
$$

$$
(A, B) \mapsto AB.
$$

 $M_{\langle n \rangle} = M_{\langle n,n,n \rangle}.$

Multi-linear Maps ↔ Tensors Complexity of Matrix Multiplication \leftrightarrow Tensor Rank of $M_{(n)}$

• Astounding conjecture: Exponent of matrix multiplication $= 2$. Tensor rank of $M_{\langle n \rangle}$ is $O(n^{2+\epsilon})$ for any $\epsilon > 0.$

From Linear Algebra to Multilinear Algebra

One Mode Tensor: $(T_i) \in V$. Two Mode Tensor: $(T_{ij}) \in V_1 \otimes V_2$. Tensor Rank = Matrix Rank: Minimal r s.t. $T = A_1 B_1^T + \ldots + A_r B_r^T$.

Three Mode Tensor: $(T_{ijk}) \in V_1 \otimes V_2 \otimes V_3$. Rank 1 tensor: $a \otimes b \otimes c$. Tensor Rank: Minimal r s.t. $\mathcal{T}=a_1\otimes b_1\otimes c_1+\ldots+a_r\otimes b_r\otimes c_r.$

N Mode Tensor: $(T_{i_1i_2...i_N}) \in V_1 \otimes V_2 \otimes ... V_N$. Rank 1 tensor: $a_1 \otimes a_2 \otimes \ldots \otimes a_N$.

Hang (Amy) Huang (Texas A&M University Tensor Ranks and Matrix Multiplication Complettion March 29, 2022 3/35

An ill-posed question:

A rank 3 tensor with no best rank 2 approximation:

$$
a_1 \otimes b_1 \otimes c_2 + a_1 \otimes b_2 \otimes c_1 + a_2 \otimes b_1 \otimes c_1
$$

=
$$
\lim_{t \to 0} \frac{1}{t} [(a_1 + ta_2) \otimes (b_1 + tb_2) \otimes (c_1 + tc_2) - a_1 \otimes b_1 \otimes c_1].
$$

Reason: Set of tensors of rank $\leq r$ is not closed.

Border Ranks and Secant Varieties

r-th secant variety of X :

$$
\sigma_r(X)=\bigcup\{\langle R\rangle: R=\{x_1,\ldots,x_r\}, x_i\in X\}.
$$

Definition: Border Rank

$$
\underline{\mathbf{r}}_X(F)=\min_r\{F\in\sigma_r(X)\}=\min_r\{F\in\lim_{t\to 0}\langle x_1(t),\ldots,x_r(t)\rangle\}.
$$

 a_i, b_j, c_k : standard basis for A, B, C . $\alpha_i, \beta_j, \gamma_k$: dual basis. Equations for Secant varieties:

Two mode tensor:

$$
\begin{array}{rcl}\n\mathcal{T} \in A \otimes B & \leftrightarrow & \mathcal{L}_{\mathcal{T}}: A^* \to B \\
(T_{ij}) & \leftrightarrow & \alpha_i \mapsto \sum_i T_{ij} b_j\n\end{array}
$$

 $GL(A) \times GL(B) \cap (T_{ii})$. $\rightsquigarrow GL(A) \times GL(B) \cap \sigma_r(Seg(\mathbb{P}A \times \mathbb{P}B))$: space of border rank $\leq r$ tensors. \rightsquigarrow $GL(A) \times GL(B) \curvearrowright$ $\mathcal{I}_{\sigma_r(Seg(\mathbb{P} A \times \mathbb{P} B))}$: space of polys vanishing on space of border rank $\leq r$ tensors.

\n- \n
$$
\mathcal{I}_{\sigma_r(\text{Seg}(\mathbb{P}A\times\mathbb{P}B))} = \langle (r+1)\times (r+1)\text{minors of } L_T \rangle = \langle \wedge^{r+1}A^*\otimes \wedge^{r+1}B^*\rangle.
$$
\n
\n- \n
$$
\wedge^{r+1}A^*\otimes \wedge^{r+1}B^*\subset \text{Sym}^{r+1}(A^*\otimes B^*)\colon \text{irreducible repn.}
$$
\n
\n

 a_i, b_j, c_k : standard basis for A, B, C . $\alpha_i, \beta_j, \gamma_k$: dual basis. Equations for Secant varieties:

Three mode tensor:

 $T \in A \otimes B \otimes C \leftrightarrow T_A$: $A^* \to B \otimes C$ where $T_A(\alpha_i) = \sum_{j,k} T_{ijk} b_j \otimes c_k$.

- $\langle \wedge^{r+1}A^*\otimes\wedge^{r+1}(B\otimes C)^*\rangle\subsetneq\mathcal{I}(\sigma_r(\mathrm{Seg}(\mathbb{P} A\times \mathbb{P} B\times \mathbb{P} C))).$
- Strassen's Equation and Koszul Flattening: Idea: $X \subset \mathbb{P}(A \otimes B \otimes C)$, $f: A \otimes B \otimes C \hookrightarrow U \otimes W$ linear. If $\forall x \in \hat{X}$, rank $(f(x)) \leq t$. Then $\forall [m] \in \sigma_r(X)$, rank $(f(m)) \leq rt$, i.e. size $rt + 1$ minors of f spans a subspace of $\mathcal{I}(\sigma_r(X))$. Koszul flattening: $A \hookrightarrow \text{Hom}(\wedge^p A, \wedge^{p+1} A) = \wedge^p A^* \otimes \wedge^{p+1} A$. → $A \otimes B \otimes C \hookrightarrow \mathrm{Hom}(\wedge^pA \otimes B^*, \wedge^{p+1}A \otimes C).$ $p = 1$ Koszul flattening \implies Strassen's equations.

Secant Variety and Cactus Variety

 r -th secant variety of X :

$$
\sigma_r(X)=\bigcup\{\langle R\rangle: R=\{x_1,\ldots,x_r\}, x_i\in X\}.
$$

r-th cactus variety of X :

 $\mathfrak{R}_r(X) = \bigcup \{ \langle R \rangle : R \text{ is a (Gorenstein) subscheme of } X \text{ of length } \leq r \}.$

Three Mode Tensors:

 $\mathfrak{R}_r(\mathrm{Seg}({\mathbb P}^n\times {\mathbb P}^n\times {\mathbb P}^n))={\mathbb P}(({\mathbb C}^{n+1})^{\otimes 3}),\;r= \mathcal{O}(n).$

$$
\bullet \ \sigma_r(\mathrm{Seg}(\mathbb{P}^n\times\mathbb{P}^n\times\mathbb{P}^n))=\mathbb{P}((\mathbb{C}^{n+1})^{\otimes 3}),\ r=\mathcal{O}(n^2).
$$

All determinantal equations before are equations of the cactus variety. Some recent progress related to crossing cactus barrier:

- \bullet (Gałazka-Mańdziuk-Rupniewski,2020) An algorithm is found to distinguish 14-th cactus variety and secant variety for symmetric tensors.
- (H-Michałek-Ventura, 2020) A criterion is found to distinguish cactus rank, smoothable rank smoothable rank and border rank for symmetric tensors which are concise and of minimal border rank.

Symmetric Tensors

Two Mode: Matrix M is symmetric if $M = M^T$ ($M_{ii} = M_{ii}$). Three Mode: T is symmetric if its entries are the same under permuting indices:

$$
T_{ijk} = T_{jik} = T_{jki} = T_{ikj} = T_{kji} = T_{kij}.
$$

e.g.: partial derivatives of smooth functions Rank 1 Symmetric Tensor: $v \otimes v \otimes v$, i.e. $T_{ijk} = v_i v_j v_k$. Symmetric rank of T : minimal r s.t. T is a sum of rank 1 symmetric tensors.

symmetric tensors \leftrightarrow homogeneous polynomials \sum $i_1,i_2,...,i_d$ $T_{i_1,i_2,...,i_d} x_{i_1} x_{i_2} \ldots x_{i_d}$ $d = (v_1x_1 + \ldots + v_nx_n)^d$ [⊗]^d [↔] Waring rank decomposition ^X^r ℓ d i $i=1$

-
- size $n \times n \times ... \times n$ (d times) \leftrightarrow degree d in n variables

 $T \leftrightarrow$

symmetric rank 1 tensor $\mathsf{v}^{\otimes d} \quad \leftrightarrow \quad \quad \ell$

$$
\sum_{i=1}^r {\bf v_i}^{\otimes d} \quad \leftrightarrow \quad
$$

• Cactus Rank:

 $\operatorname{cr}_X(F) = \min_r \{ F \in \langle R \rangle: R \text{ is a subscheme of length } r \text{ in } X \}.$

• Smoothable Rank:

 $\operatorname{sr}_X(F) = \min_r \{F \in \langle R \rangle: R \text{ is a smoothable subscheme of length } \}$ r in X .

Rank:

$$
r_X(F) = \min_r \{ F \in \langle R \rangle : R \text{ is smooth subscheme of length } r \text{ in } X \}
$$

=
$$
\min_r \{ F \in \langle R \rangle : R = \{x_1, \dots, x_r\}, x_i \in X \}.
$$

 $\mathbf{c} \operatorname{cr}_X(F) \leq \operatorname{sr}_X(F) \leq \operatorname{r}_X(F).$

Other Notions of Ranks

A Cactus Rank:

 $\operatorname{cr}_X(F) = \min_r \{ F \in \langle R \rangle: R \text{ is a subscheme of length } r \text{ in } X \}.$

• Smoothable Rank:

$$
\operatorname{sr}_X(F) = \min_r \{ F \in \langle R \rangle : R \text{ is a smoothable subscheme of length } r \text{ in } X \}
$$

$$
= \min_r \{ F \in \langle \lim_{t \to 0} R(t) \rangle = \langle \lim_{t \to 0} x_1(t), \dots, x_r(t) \rangle \}.
$$

a Border Rank:

$$
\underline{\mathbf{r}}_X(F)=\min_{r}\{F\in\sigma_r(X)\}=\min_{r}\{F\in\lim_{t\to 0}\langle x_1(t),\ldots,x_r(t)\rangle\}.
$$

 \bullet cr_X(F) \leq sr_X(F) \leq r_X(F). cr_X(F) \leq sr_X(F) \leq r_X(F).

• $\mathbf{r}_X(F) \leq \mathrm{sr}_X(F) \leq \mathrm{r}_X(F)$. (lim_{t→0} $\langle R(t) \rangle \supset \langle \lim_{t \to 0} R(t) \rangle$) $r_X(F) \leq \text{sr}_X(F) \leq r_X(F)$. (lim_{t→0} $\langle R(t) \rangle \supset \langle \text{lim}_{t\to 0} R(t) \rangle$)

- $\mathbf{r}_{\mathbf{X}}(F) \leq \mathrm{sr}_{\mathbf{X}}(F) \leq \mathrm{r}_{\mathbf{X}}(F).$
- \bullet cr_X(F) \leq sr_X(F) \leq r_X(F).
- $\operatorname{cr}_X(F)$ and $\mathbf{r}_X(F)$ are not comparable :
	- $\blacktriangleright \ \mathrm{cr}_X(F) < \underline{\mathbf{r}}_X(F)$: $X \subset \mathbb{P}^N$ is a curve with a singularity $p \in X$ such that $T_p X = \mathbb{P}^N$.

For a generic $F \in \mathbb{P}^N$, ${\rm cr}_X(F) = 2$ while $\underline{\mathbf{r}}_X(F) \leq {\rm sr}_X(F)$ could be arbitrarily large if $N \gg 0$.

- ► $\text{cr}_X(F) = \text{sr}_X(F) > \underline{\mathbf{r}}_X(F): X = \mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C \subset \mathbb{P}(A \otimes B \otimes C).$ $F = a_2 \otimes b_1 \otimes c_2 + a_2 \otimes b_2 \otimes c_1 + a_1 \otimes b_1 \otimes c_3 + a_1 \otimes b_3 \otimes c_1 + a_3 \otimes b_1 \otimes c_1.$ $\underline{\mathbf{r}}_X(F) = 3$ while $\operatorname{sr}_X(F) = \operatorname{cr}_X(F) = 4.$
- Higher border rank examples when $r_X(F) < \text{sr}_X(F)$?

•
$$
X = \nu_d(\mathbb{P}V) \subset \mathbb{P}^{N_d}
$$
, $V \cong \mathbb{C}^{n+1}$ and $F \in S^dV$.

Definition

F is wild if $\text{sr}_X(F) > r_X(F)$. Otherwise, we say F is tame.

- Classical: F is tame if $n = 1$.
- (Buczyńska, Buczyński) If $\underline{\mathbf{r}}(F) \leq \max\{4, d+1\}$, then F is tame.

Theorem (Buczyńska, Buczyński, 2014)

For cubic polynomials, F is tame if $n \leq 3$.

Example(Buczyńska, Buczyński, 2014)

$$
F = x_0 x_1^2 - x_2 (x_1 + x_4)^2 + x_3 x_4^2.
$$

F is a wild cubic with $r(F) = 5$ and $cr(F) = sr(F) = 6$.

$$
F = \lim_{t \to 0} \left(\frac{1}{3} (x_1 + tx_0)^3 - \frac{1}{3} ((x_1 + x_4) + tx_2)^3 + \frac{1}{12} (2x_4 - tx_2)^3 - \frac{1}{9} (x_1 - x_4)^3 + \frac{1}{9} (x_1 + 2x_4)^3 \right).
$$

Polynomials of Vanishing Hessian

Definition

 $F \in S^d V$ is a polynomial with vanishing Hessian if $\text{Hess}(F) = \det([\frac{\partial F}{\partial x_i \partial x_j}]) = 0.$

Easy Fact

F is a polynomial with vanishing Hessian if and only if $\{\frac{\partial F}{\partial x}$ $\frac{\partial F}{\partial x_0},\ldots,\frac{\partial F}{\partial x_l}$ $\frac{\partial \mathsf{F}}{\partial x_n} \}$ are algebraically dependent.

• Wild Example:
$$
F = x_0x_1^2 - x_2(x_1 + x_4)^2 + x_3x_4^2
$$
.

Question(Ottaviani)

 F is a concise polynomial with vanishing Hessian. Is there a relation between wild polynomials and polynomials with vanishing Hessian?

- *concise*: $F \in S^dV$ is *concise* if $F: V^* \to S^{d-1}V$ is of full rank.
- minimal border rank: F is of minimal border rank if $r(F) = #$ of variables $=$ dim of each mode.

Theorem (H-Michałek-Ventura, 2020)

Let $d \geq 3$ and $F \in S^d V$ be a concise polynomial of minimal border rank. Then:

$$
\mathrm{Hess}(\mathcal{F})=0\;\;\Longleftrightarrow \mathrm{cr}(\mathcal{F})>\underline{\mathbf{r}}(\mathcal{F})\;\;\Longleftrightarrow \mathrm{sr}(\mathcal{F})>\underline{\mathbf{r}}(\mathcal{F}).
$$

 \bullet First time explicit equations are found to distinguish sr, cr and r.

2 [History of estimates of matrix multiplication complexity](#page-25-0)

3 Border rank of 3×3 permanent: Why we care and how to compute it

Border Apolarity(BB,2019): Tensor Case

- $\bullet T \in A \otimes B \otimes C$.
	- $\mathcal{S}=\mathrm{Sym}(A\oplus B\oplus C)^{*}=\bigoplus_{s,t,u}S^{s}A^{*}\otimes S^{t}B^{*}\otimes S^{u}C^{*}$ is \mathbb{Z}^{3} -graded coordinate ring of $\text{Seg}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C)$.
- $\text{Ann}(\mathcal{T}):=\{\Theta\in\mathcal{S}\mid\Theta\lrcorner\mathcal{T}=0\}$ is a $\mathbb{Z}^3\text{-}\text{graded ideal of }\mathcal{S}.$
- Apolarity: $r(T) \le r \Longleftrightarrow \exists$ multi-graded ideal $\mathcal{I} \subset \text{Ann}(T)$ such that *I* defines *r* distinct points in Seg($\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C$).
- Border apolarity: $r(T) \le r \Longleftrightarrow \exists$ multi-graded ideal $\mathcal{I} \subset \text{Ann}(T)$ with Hilbert function

 $h_{S/\mathcal{I}}(s,t,u)=\min\{r,\dim S^sA^*\otimes S^tB^*\otimes S^uC^*\}$ such that $\mathcal I$ is a limit of radical ideals of r distinct points in $Seg(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C)$.

Hilbert function: $h_{S/\mathcal{I}}(s,t,u)$: $=$ dim $(S^sA^*\otimes S^tB^*\otimes S^uC^*/\mathcal{I}_{s,t,u}).$

Idea: border rank decomposition of $\mathcal{T}=\lim_{t\to 0}\sum_{j=1}^r \mathcal{T}_j(t) \rightsquigarrow \mathcal{I}_t=$ ideal of $[T_1(t)] \sqcup ... \sqcup [T_r(t)]$ is a radical ideals of r distince points in $\operatorname{Seg}(\mathbb{P} A\times \mathbb{P} B\times \mathbb{P} C)$ when $t\neq 0$ \leadsto take $t\to 0$ get $\mathcal{I}_0=\lim_{t\to 0}\mathcal{I}_t$ is the desired ideal.

• Example:
$$
T \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2
$$
. \n $T = a_0 \otimes b_0 \otimes c_1 + a_0 \otimes b_1 \otimes c_0 + a_1 \otimes b_0 \otimes c_0 =$ \n $\lim_{t \to 0} \frac{1}{t} [(a_0 + ta_1) \otimes (b_0 + tb_1) \otimes (c_0 + tc_1) - a_0 \otimes b_0 \otimes c_0)].$ \n $\mathcal{I}_0 = \lim_{t \to 0} \mathcal{I}_t((a_0 + ta_1) \otimes (b_0 + tb_1) \otimes (c_0 + tc_1), a_0 \otimes b_0 \otimes c_0) =$ \n $\langle \alpha_1^2, \beta_1^2, \gamma_1^2, \alpha_1 \beta_1, \alpha_1 \gamma_1, \beta_1 \gamma_1, \alpha_1 \beta_0 - \alpha_0 \beta_1, \alpha_1 \gamma_0 - \alpha_0 \gamma_1, \beta_0 \gamma_1 - \beta_1 \gamma_0 \rangle.$

Why Constant Hilbert Function

- How to ensure $h_{S/\mathcal{I}}(s,t,u) = \min\{r,\dim S^s A^* \otimes S^r B^* \otimes S^u C^*\}$?
- Border rank decomposition can be flexible:

$$
a_1 \otimes b_1 \otimes c_2 + a_1 \otimes b_2 \otimes c_1 + a_2 \otimes b_1 \otimes c_1
$$
\n
$$
= \lim_{t \to 0} \frac{1}{t} [(a_1 + ta_2) \otimes (b_1 + tb_2) \otimes (c_1 + tc_2) - a_1 \otimes b_1 \otimes c_1]
$$
\n
$$
= \lim_{t \to 0} \frac{1}{t} [(a_1 + ta_2 + t^2 a_3 + \ldots) \otimes (b_1 + tb_2 + t^2 b_3 + \ldots)
$$
\n
$$
\otimes (c_1 + tc_2 + t^2 c_3 + \ldots) - a_1 \otimes b_1 \otimes c_1]
$$

• WLOG, can assume points are in general position when $t > 0 \rightsquigarrow$ Hilbert function of S/\mathcal{I}_t is almost constant.

Summary: If $\underline{\mathbf{r}}(\mathcal{T}) \leq r$, we can find ideals satisfying (1) $\mathcal{I} \subset \text{Ann}(T)$ (2) $h_{S/\mathcal{I}}(s, t, u) = \min\{r, \dim S^s A^* \otimes S^r B^* \otimes S^u C^*\}.$ Bonus: If T has symmetry, can ask for a Borel fixed T . \rightarrow all programmable polynomial conditions. \rightarrow candidate ideals satisfying (1) and (2). (3) I is a limit of radical ideals of r distinct points : Need finer

information about multi-graded Hilbert scheme.

Back to Matrix Multiplication Complexity

Previously, only known <u>r</u> for nontrivial $M_{\langle I,m,n\rangle}$ is

 $\underline{\mathbf{r}}(M_{\langle 2 \rangle}) = 7.$

Using border apolarity (Conner-Harper-Landsberg,2019):

$$
\underline{\mathbf{r}}(M_{\langle 2,2,3\rangle}) = 10
$$

$$
\underline{\mathbf{r}}(M_{\langle 2,3,3\rangle}) = 14.
$$

- Previously known: $\underline{\mathbf{r}}(M_{\langle 2,n,n\rangle})\geq n^2+1$ (Lickteig). Using border apolarity: $\underline{\mathbf{r}}(M_{\langle 2,n,n\rangle})\geq n^2+1.32n+1$ for $n>25.$
- Previously known: $\underline{\mathbf{r}}(M_{\langle 3,n,n\rangle})\geq n^2+2$ (Lickteig). Using border apolarity: $\underline{\mathbf{r}}(M_{\langle 3,n,n\rangle}) \geq n^2 + 2n$ for $n > 14$.
- Exponent of matrix multiplication: $\omega := \mathsf{inf}_\tau \{ \mathsf{n} \times \mathsf{n} \text{ matrices can be multiplied using } O(\mathsf{n}^\tau) \text{ arithmetic}$ operations }.

 $= \inf_{\tau} {\{\underline{\mathbf{R}}(M_{\langle n \rangle}) = O(n^{\tau})\}}$ (Strassen, Bini). Astounding conjecture: $\omega = 2$.

History of Estimates of ω

History of Estimates of ω

Schönhage's Asymptotic Sum Inequality

ldea: If $\underline{\mathbf{r}}(M_{\langle n\rangle}^{\oplus s}) < s\times \underline{\mathbf{r}}(M_{\langle n\rangle})$ with $s\leq n^3.$ To compute $M_{\langle n^2\rangle}=M_{\langle n\rangle}^{\oplus n^3}$ $\frac{\partial \mathcal{L}^{\mu\nu}}{\partial \rho}$, can group each s copies to obtain savings. • Schöchage: sometimes

$$
\underline{\mathbf{r}}(M_{\langle I,m,n\rangle}\oplus M_{\langle I',m',n'\rangle})\ll\underline{\mathbf{r}}(M_{\langle I,m,n\rangle})+\underline{\mathbf{r}}(M_{\langle I',m',n'\rangle})
$$

 $T_i \in A_i \otimes B_i \otimes C_i$, define Kronecker product $T_1 \boxtimes T_2 \in (A_1 \otimes A_2) \otimes (B_1 \otimes B_2) \otimes (C_1 \otimes C_2)$ and Kronecker powers $\mathcal{T}^{\boxtimes k} \in (\mathcal{A}^{\otimes k}) \otimes (\mathcal{B}^{\otimes k}) \otimes (\mathcal{C}^{\otimes k}).$ $(M_{\langle I,m,n\rangle} \oplus M_{\langle I',m',n'\rangle})^{\boxtimes 2}=M_{\langle I^2,m^2,n^2\rangle} \oplus M_{\langle II',mm',nn'\rangle}^{\oplus 2} \oplus M_{\langle I'^2,m'^2,n'^2\rangle}.$ Fact: $\hat{M}_{(l,m,n)} \boxtimes \hat{M}_{(l',m',n')} = \hat{M}_{(ll',mm',nn')} \stackrel{\text{(ii)},\text{(iii)}}{\leadsto} \hat{\omega} < 2.55.$

.

History of Estimates of ω

Strassen's Laser Method

- Laser Method: fix a "good" auxiliary tensor T and degenerate its high tensor powers $\, T^{\boxtimes N}$ to a disjoint union of large matrix multiplication tensors. Good bound on $\underline{\mathbf{r}}(\bar{T}^{\boxtimes N}) \quad \leadsto$ good bound of $\omega.$
- Current World

Record(Stouthers,William,LeGall,Alman-Williams,2020): show ω < 2.37286 using big Coppersmith-Winograd tensor:

$$
T_{CW,q} = a_0 \otimes b_0 \otimes c_{q+1} + a_0 \otimes b_{q+1} \otimes c_0 + a_{q+1} \otimes b_0 \otimes c_0
$$

+
$$
\sum_{j=1}^q (a_0 \otimes b_j \otimes c_j + a_j \otimes b_0 \otimes c_j + a_j \otimes b_j \otimes c_0)
$$

$$
\in (\mathbb{C}^{q+2})^{\otimes 3}.
$$

- Existing Barrier: can never use $T_{CW,q}$ to show $\omega < 2.37$.
- $r(T_{CW,q}) = q + 2$. No tensors of minimal border rank can be used in Laser method to show $\omega = 2$.

Small Coppersmith-Winograd Tensor

• Good tensors that do not subject to this barrier using Laser method. One of them: small Coppersmith-Winograd tensor:

$$
T_{cw,q} = \sum_{j=1}^q (a_0 \otimes b_j \otimes c_j + a_j \otimes b_0 \otimes c_j + a_j \otimes b_j \otimes c_0)
$$

$$
\in (\mathbb{C}^{q+1})^{\otimes 3}.
$$

for $2 \leq q \leq 10$.

 $q = 2$: only known tensor that could potentially prove $\omega = 2$.

• Upper bounds of ω using $T_{\text{cw},q}$:

$$
\omega \leq \log_q(\frac{4}{27}(\underline{\mathbf{r}}(\mathcal{T}_{cw,q}^{\boxtimes k}))^{\frac{3}{k}}).
$$

- Known: $r(T_{cw,q}) = q + 2$. $k = 1, q = 8$ gives $\omega < 2.41$.
- Get better bound if $\underline{\mathbf{r}}(\,T^{\boxtimes k}_{cw,q}) < (\underline{\mathbf{r}}(\,T_{cw,q}))^k.$

Small Coppersmith-Winograd Tensor: Knows and Unknowns

(Conner,Gesmundo,Landsberg,Ventura,2019):

 $\underline{\mathbf{r}}(\,T^{\boxtimes 2}_{\mathsf{cw},q}) = (q+2)^2$ for $q > 2$ and $15 \le \underline{\mathbf{r}}(\,T^{\boxtimes 2}_{\mathsf{cw},2}) \le 16.$

•
$$
\underline{\mathbf{r}}(T_{cw,q}^{\boxtimes 3}) = (q+2)^3
$$
 for $q > 4$.

For all $q>4$ and all k , $\underline{\mathbf{r}}(\mathcal{T}^{\boxtimes k}_{\mathsf{cw},q}) \geq (q+2)^3(q+1)^{k-3}$ and $r(T^{\boxtimes k}_{cw,4}) \geq 36(5)^{k-2}.$

Note: $\mathcal{T}^{\boxtimes 2}_{\mathsf{cw},2} = \textrm{perm}_3$, the 3 \times 3 permanent considered as a tensor.

Theorem (Conner-Landsberg-H,2020) $r(T^{\boxtimes 2}_{cw,2}) = 16 = (r(T_{cw,2}))^2$.

Border Apolarity and Flag Condition

Challenge to apply Border Apolarity when $T = \operatorname{perm}_3$: Borel subgroup in stablizer of $[\mathcal{T}]$ is \mathbb{T}^{6} : 6-dim'l torus. Need to introduce numerous parameters when searching candidate limiting ideals even in degree (110). \rightsquigarrow infeasible calculation.

Flag Condition

If I is a limiting ideal from a border rank r decomposition, then there exists a $\mathbb{B}_\mathcal{T}$ -fixed filtration of \mathcal{I}^\perp_{110} , $\mathcal{F}_1\subset\mathcal{F}_2\subset\ldots\subset\mathcal{F}_r=\mathcal{I}^\perp_{110}$, such that $F_i \subset \sigma_i(\text{Seg}(\mathbb{P} A \times \mathbb{P} B)).$

- This is a generalization of the known flag condition in the concise tensor of minimal border rank case.
- The flag condition guaranteed the presence of low rank element in \mathcal{I}^\perp_{110} which significantly reduced the search space (hand checkable).

Towards Future

- Skew Cousin of small Coppersmith-Winograd tensor $(q = 2p)$: $T_{skewcw,q} = \sum_{\xi=1}^{p} a_0 \otimes b_{\xi} \otimes c_{\xi+p} - a_0 \otimes b_{\xi+p} \otimes c_{\xi} - a_{\xi} \otimes b_0 \otimes c_{\xi+p} +$ $a_{\xi+p}\otimes b_0\otimes c_\xi +a_\xi\otimes b_{\xi+p}\otimes c_0 -a_{\xi+p}\otimes b_\xi\otimes c_0\in \mathbb{C}^{q+1}\otimes \mathbb{C}^{q+1}\otimes \mathbb{C}^{q+1}.$ $\omega \leq \log_q(\frac{4}{27}(\mathbf{r}(\tau_{skewcw,q})^{\boxtimes k})^{\frac{3}{k}}).$
- $\underline{\mathbf{r}}(\,T_{cw,q})=q+2$ and $\underline{\mathbf{r}}(\,T_{skewcw,q})=\frac{3}{2}q+2.$
- $\underline{\mathbf{r}}(\mathcal{T}^{\boxtimes 2}_{cw,q}) = (\underline{\mathbf{r}}(\mathcal{T}_{cw,q}))^2.$

Recent Progress using Border Apolarity

On set-theoretical defining equations of tensors of minimal border rank:

Definition

A tensor $T \in \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$ is of minimal border rank if $\underline{\mathbf{r}}(T) = m$.

Previously Known:

(Friedland, Gross, 2011) Set-theoretical version of a *Salmon conjecture*: Set-theoretical defining equations of tensors of minimal border rank when $m = 4$.

New progress:

(Jelisiejew-Landsberg-Pal) Set-theoretical defining equations of concise tensors of minimal border rank when $m = 5$ and 1_{*} -generic tensors of minimal border rank when $m = 6$.

Definition

A tensor $\mathcal{T}\in\mathbb{C}^m\otimes\mathbb{C}^m\otimes\mathbb{C}^m$ is 1_{*} -generic if $\mathcal{T}(\mathbb{C}^m)\subset\mathbb{C}^m\otimes\mathbb{C}^m$ contains an element of maximal rank.