Spiraling Domains in Dimension 2

Jasmin Raissy

Institut de Mathématiques de Bordeaux

(Joint work in progress with Xavier Buff)

There exist $f: \mathbb{C}^2 \to \mathbb{C}^2$ polynomial maps tangent to the identity at the origin with infinitely many parabolic domains of spiraling type.

• $f:(\mathbb{C},0)\to(\mathbb{C},0)$ tangent to the identity and $f\neq \mathrm{id}$:

$$f(z) = z + az^{k+1} + \mathcal{O}(z^{k+2})$$
 with $a \in \mathbb{C} \setminus \{0\}$.

• $f:(\mathbb{C},0) \to (\mathbb{C},0)$ tangent to the identity and $f \neq id$:

$$f(z) = z + az^{k+1} + \mathcal{O}(z^{k+2})$$
 with $a \in \mathbb{C} \setminus \{0\}$.

f is topologically conjugate to the time-1 flow of $z^{k+1} \frac{\partial}{\partial z}$.

$$k = 3$$

Setting:

•
$$\mathbf{z} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^2$$

- $f(z) = z + v(z) + O(||z||^{k+2}), k \ge 1$
- $v : \mathbb{C}^2 \to \mathbb{C}^2$ homogeneous map of degree k + 1.

Setting:

•
$$\mathbf{z} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^2$$

- $f(z) = z + v(z) + O(||z||^{k+2}), k \ge 1$
- $v : \mathbb{C}^2 \to \mathbb{C}^2$ homogeneous map of degree k + 1.

Idea: Look at $\vec{v}(\mathbf{z})$

- search for preferred directions for the dynamics
- understand orbits of f using real time trajectories of $\vec{v}(\mathbf{z})$.

$$f(\mathbf{z}) = \mathbf{z} + v(\mathbf{z}) + \mathcal{O}\left(\|\mathbf{z}\|^{k+2}\right), \quad f^{\circ n}(\mathbf{z}) = \mathbf{z}_n$$

Fact: $\mathbf{z}_n \to \mathbf{0}$ tangentially to $[\mathbf{t}] \in \mathbb{P}^1(\mathbb{C}) \Longrightarrow \exists \lambda \in \mathbb{C} \text{ s.t. } \nu(\mathbf{t}) = \lambda \mathbf{t}$.

- [t] $\in \mathbb{P}^1(\mathbb{C})$ is a characteristic direction if $v(\mathbf{t}) = \lambda \mathbf{t}$. [t] is non-degenerate if $\lambda \neq 0$, degenerate if $\lambda = 0$.
- v is dicritical if all directions are characteristic, non-dicritical otherwise.

$$f(\mathbf{z}) = \mathbf{z} + v(\mathbf{z}) + \mathcal{O}\left(\|\mathbf{z}\|^{k+2}\right), \quad f^{\circ n}(\mathbf{z}) = \mathbf{z}_n$$

Fact: $\mathbf{z}_n \to \mathbf{0}$ tangentially to $[\mathbf{t}] \in \mathbb{P}^1(\mathbb{C}) \Longrightarrow \exists \lambda \in \mathbb{C} \text{ s.t. } \nu(\mathbf{t}) = \lambda \mathbf{t}.$

- [t] $\in \mathbb{P}^1(\mathbb{C})$ is a characteristic direction if $v(t) = \lambda t$. [t] is non-degenerate if $\lambda \neq 0$, degenerate if $\lambda = 0$.
- v is dicritical if all directions are characteristic, non-dicritical otherwise.

From now on: v non-dicritical

- Existence of parabolic curves tangent to characteristic directions. [Écalle, Hakim, Abate, ..., López-Rosas]
- Existence of finitely many parabolic domains tangent to characteristic directions. [Écalle, Hakim, Vivas, Rong, ...]
- Existence of a spiraling domain where orbits converge to the origin not being tangent to any direction. [Rivi, Rong]

There exist $f: \mathbb{C}^2 \to \mathbb{C}^2$ polynomial maps tangent to the identity at the origin with infinitely many parabolic domains of spiraling type.

Idea: study real time trajectories of $\vec{v}(\mathbf{z})$ inside its complex time trajectories.

$$f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + a(x - y) \begin{pmatrix} x \\ y \end{pmatrix} \text{ with } a \in \mathbb{R} \setminus \{0\}$$

$$f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + \lambda xy \begin{pmatrix} x \\ y \end{pmatrix} \text{ with } \lambda \in (1, \infty)$$

have infinitely many parabolic domains of spiraling type.

$$f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + a(x - y) \begin{pmatrix} x \\ y \end{pmatrix} \text{ with } a \in \mathbb{R} \setminus \{0\}$$

$$f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + \lambda xy \begin{pmatrix} x \\ y \end{pmatrix} \text{ with } \lambda \in (1, \infty)$$

have infinitely many parabolic domains of spiraling type.

Orbits shadow real time trajectories of $\vec{v} = y^2 \frac{\partial}{\partial x} + x^2 \frac{\partial}{\partial y}$.

Trajectories for
$$\vec{v} = y^2 \frac{\partial}{\partial x} + x^2 \frac{\partial}{\partial y}$$

- \vec{v} is a Hamiltonian vector field
- Complex trajectories of \vec{v} :

$$\mathscr{S}_{\kappa} := \left\{ \mathbf{z} \in \mathbb{C}^2 \mid \Phi(\mathbf{z}) := x^3 - y^3 = \kappa \right\} \text{ with } \kappa \in \mathbb{C}.$$

- $\mathscr{S}_0 = \{y = x\} \cup \{y = jx\} \cup \{y = j^2x\} \text{ with } j = e^{\frac{2\pi i}{3}}$
- $\mathbf{0} \notin \overline{\mathscr{S}}_{\kappa}$ for $\kappa \neq 0$, and so real trajectories of \vec{v} in \mathscr{S}_{κ} do not converge to $\mathbf{0}$.
- For $\kappa \neq 0$, $\mathscr{S}_{\kappa} \simeq \text{Torus} \setminus \{3 \text{ points}\}$, on which \vec{v} is a translation vector field.
- If $\kappa = (p + jq)^3 r$, with $(p, q) \in \mathbb{Z}^2 \setminus \{\mathbf{0}\}$ and $r \in \mathbb{R} \setminus \{\mathbf{0}\}$, then the real trajectories of \vec{v} are periodic, that is closed.

Spiraling domains for $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + 2xy \begin{pmatrix} x \\ y \end{pmatrix}$

Spiraling domains for
$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + 2xy \begin{pmatrix} x \\ y \end{pmatrix}$$

orbit

Spiraling domains for
$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + \mathbf{2}xy\begin{pmatrix} x \\ y \end{pmatrix}$$

orbit

radial projection

Spiraling domains for
$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + 2xy \begin{pmatrix} x \\ y \end{pmatrix}$$

orbit

Spiraling domains for
$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + \mathbf{2}xy\begin{pmatrix} x \\ y \end{pmatrix}$$

orbit

radial projection

Spiraling domains for
$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + \mathbf{2}xy\begin{pmatrix} x \\ y \end{pmatrix}$$

orbit

Spiraling domains for
$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + 2xy \begin{pmatrix} x \\ y \end{pmatrix}$$

orbit zoom

Spiraling domains for
$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + \mathbf{2}xy\begin{pmatrix} x \\ y \end{pmatrix}$$

orbit

radial projection zoom

Spiraling domains for
$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + \frac{2}{2}xy\begin{pmatrix} x \\ y \end{pmatrix}$$

orbit radial projection

Spiraling domains for $f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + 0.1(x-y) \begin{pmatrix} x \\ y \end{pmatrix}$

Spiraling domains for
$$f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + 0.1(x-y) \begin{pmatrix} x \\ y \end{pmatrix}$$

orbit

Spiraling domains for
$$f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + 0.1(x-y) \begin{pmatrix} x \\ y \end{pmatrix}$$

orbit

radial projection

Spiraling domains for
$$f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + 0.1(x-y) \begin{pmatrix} x \\ y \end{pmatrix}$$

orbit

Spiraling domains for
$$f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + 0.1(x-y) \begin{pmatrix} x \\ y \end{pmatrix}$$

orbit

radial projection zoom

Spiraling domains for
$$f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} y^2 \\ x^2 \end{pmatrix} + 0.1(x-y) \begin{pmatrix} x \\ y \end{pmatrix}$$

orbit

radial projection

Thanks for your attention!