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Generic case complexity

e Complexity results in computable structure theory often depend on the

behavior of the hardest instances of the problem.

e For problems on groups, Kapovich, Myasnikov, Schupp, and Shpilrain
(2003) proposed using the notion of asymptotic density to see whether
a partial computable function could solve “almost all” instances of a
problem.

e They showed that for a large class of finitely generated groups the
classical decision problems, such as the word problem or the conjugacy
problem, have linear time generic case complexity.



Kapovich, Myasnikov, Schupp, and Shpilrain established that a finitely
presented group with undecidable word problem, given by W. Boone,
has a generically computable copy.

Jockusch and Schupp (2012) introduced this topic to computability
theory. They defined and investigated generically computable and
coarsely computable sets of natural numbers.

For A C w and n > 1, the density of a set A up to n, denoted by
pn(A), is
|AN{0,1,2,...,n— 1}

n

The (asymptotic) density of Ais p(A) = lim p,(A).

n—oo



For example, A = {2" : n € w} has density 0.

A is (asymptotically) dense if p(A) = 1.

1AN{0,1,2,....n—1}|
— .

The upper density of A is limsup

n—oo

As usual, computably enumerable is abbreviated by c.e.

If A is a c.e. set with upper density 1, then A has a computable
subset with upper density 1.



Generically and coarsely computable sets (Jockusch and Schupp)

e For § C w, let cg denote the characteristic function of S.

e S is generically computable if there is a partial computable function
¢ : w — {0,1} such that: dom(p) has asymptotic density 1, and

cs | dom(p) = .

e S is coarsely computable if there is a total computable function
7 :w — {0,1} such that {z : cg(x) = 7(x)} has asymptotic
density 1.

Equivalently, S is coarsely computable if there is a computable set T
such that SAT has asymptotic density 0.



e (Jockusch and Schupp)

There is a coarsely computable c.e. set that is not generically
computable.

There is a generically computable c.e. set that is not coarsely
computable.

e A structure C for a finite language is computable if its domain C' is
computable and each relation of C is computable and each function of
C is computable.

e A structure D for a finite language is c.e. if its domain D is c.e. and
each relation of D is c.e. and each function of D is the restriction of
a partial computable function to D.



Asymptotic density in w X w

o Let A C w. Then A has asymptotic density 6 in w if and only if A x A
has asymptotic density 62 in w X w.

Hence: A is (asymptotically) dense in w iff A X A is (asymptotically)

dense In w X w.

e There is a computable dense set R C w X w such that for any infinite
c.e. set X C w, the product X x X is not a subset of R.



Generically computable structures

e Consider a structure A for finite language with universe w,
with functions {f; : ¢ € I}, each f; of arity p;, and

relations {R; : j € J}, each R; of arity r;.

e We call A generically computable if A has a substructure D with
a dense c.e. domain D, and there are partial computable functions

{¢;:i€ I} and {¢;:j € J} such that
each ¢, agrees with f; on DPi and

each 1; agrees with CR; ON the set D'7.



Example

o Let M = (w,A), where A is a unary relation.

e Assume that A is a generically computable set. Let a partial
computable function ¢ be such that: dom(y) has density 1, and for
every x € dom(y), we have cy(xz) = ¢(z).

Let D = dom(y). D is a c.e. set.

Consider the substructure D = (D, AN D). Since D is c.e. and ¢
agrees with c4 on D, the structure M is generically computable.

e Conversely, if M is a generically computable structure, then A is a
generically computable set.



>:n generically c.e. structures
A substructure B is a X, elementary substructure of A if for any
infinitary ¥, formula 6(x1,...,zp) and by1,...,bn € B :

AEO(by, ... by) iff BEO(by,...,bn)

A structure A is X, generically c.e. if A has a c.e. substructure D
with a dense (c.e.) domain D, such that D is also a ¥, elementary
substructure of A.

Clearly, a 2,11 generically c.e. structure is 2, generically c.e.

Any c.e. structure is 2, generically c.e. for any n.



Generically computable and 3J; generically c.e. injection structures

e An injection structure A = (A, f) has a single unary function f that
s 1— 1.

e Any c.e. injection structure is isomorphic to a computable injection
structure.

e For a € A, the orbit of a is

Os(a) ={be A: (3n € w)[f*(a)=bV f(b) = a]}

e Finite orbits are cycles, and infinite orbits can be of type w or Z.



The character of A is defined as:

X(A) = {{(k,n) : n,k > 0 & there are > n orbits of size k}

A c.e. injection structure A has a c.e. character x(.A).

K C ((w—1{0}) x (w—40})) is a character if for all n > 0 and k:

(k,n+1) e K= (k,n) € K

For any c.e. character K, there is a computable injection structure
(A, f) with character K and any specified number of orbits of type w
and Z.



e An injection structure A = (w, f) has a generically computable copy
iff at least one of the following two conditions hold:

1. A has an infinite orbit;

2. xX(AA) has an infinite c.e. subset.

o A= (w,f) has a X1 generically c.e. copy iff
(i) A has a computable copy iff
(ii) x(A) is a c.e. set iff

(iii) A has a X5 generically c.e. copy.



Computable and c.e. equivalence structures

Consider an equivalence structure A = (A, F).
The character of A (or E) is defined as:

X(A) = {{k,n) : n,k > 0 & there are > n equivalence classes
of size k}

Bounded character: there is a finite bound on size k.

If A and E are c.e., then the character x(.A) is a ¥ set.



e (Calvert, Cenzer, Harizanov, Morozov)

For any Zg character K, there is a computable equivalence structure
A with character K and infinitely many infinite equivalence classes.

e (Cenzer, Harizanov, Remmel)

For any Zg character K, there is a c.e. equivalence structure, even with
a computable domain, with character K and with any finite number

r > 1 of infinite equivalence classes.



Generically computable equivalence structures

A surprising result:

e Every equivalence structure A = (w, F) has a generically computable
copy.



3.1 and X5 generically c.e. equivalence structures

2

e A function h : w® — w is a Khisamiev si-function if for all 2, ¢,

h(i, t) < h(i, t+ 1),
m; = lim h(i,t) exists, and
t—o0

mo < myp < - <my < -

o Let A= (A, FE) be a c.e. equivalence structure with no infinite
equivalence classes and an unbounded character.

Then there is a computable si-function A such that A contains an
equivalence class of size m; for each 7 € w.



e We say that a character K has an si-function h if (m;,1) € K for
each 1.

e For every Zg character K that is either bounded or has a computable
s1-function, there is a computable equivalence structure A with
character K and no infinite equivalence classes.

o If A is c.e. equivalence structure with no infinite equivalence classes,
then A is isomorphic to a computable structure.



e An equivalence structure A = (w, F) has a X1 generically c.e. copy
iff at least one of the following conditions hold:

1. x(A) is bounded;
2. x(A) has a Zg subcharacter K with a computable si-function;
3. x(A) has a ZS subcharacter H, and A has an infinite class;

4. A has infinitely many infinite classes.

e A= (w,F) has a Xy generically c.e. copy iff
(i) A has a c.e. copy iff

(ii)) A has a X3 generically c.e. copy.



Coarsely computable structures

e A structure A is coarsely computable if there are a computable
structure £ and a dense set D, which is the domain of a structure D
that is a substructure of both A and of £ (all relations and functions
agree on D):

D C

A

= &

e M = (w, A) is a coarsely computable structure iff A is a coarsely
computable set.

There is a generically computable structure that is not coarsely
computable, and there is a coarsely computable structure that is
not generically computable.



>.n coarsely c.e. structures

e A structure A is X, coarsely c.e. if there are a c.e. structure £ and
a dense set D, which is the domain of a substructure D that is a 2,

elementary substructure of both A and £ (all relations and functions
agree on D):

A
D <
—_n g
e Clearly, a >, 1 coarsely c.e. structure is Xy, coarsely c.e.

e A X coarsely c.e. structure is also called a coarsely c.e. structure.

Every coarsely computable structure is a coarsely c.e. structure.



Coarse computability for injection structures

Generic computability vs coarse computability:

e There is a generically computable injection structure that is
not coarsely computable.

e Every generically computable injection structure has a coarsely
computable copy.



e There is a coarsely computable injection structure with no generically
computable copy.

e Proofidea. Let S C w—{0} be a dense immune set (does not contain
an infinite c.e. subset).

Build a coarsely computable injection structure A with character
{{k,i) : k € SAi € {1,2}} and no infinite orbits such that

if B were a generically computable copy of A, then x(B) = x(A)
would contain an infinite c.e. subset C.

Then {k: (k,1) € C V (k,2) € C} would be an infinite c.e. subset of
S, a contradiction.



There is an injection structure that does not have a coarsely
computable copy.

Proof idea. Build an infinite set S C w such that an injection
structure A with character x(A) C {(k,1) : K € S} cannot be coarsely
computable.

Question: Characterize injection structures that have coarsely
computable copies.

An injection structure A = (w, f) has a ¥ coarsely c.e. copy iff
(i) A has a computable copy iff

(i) x(A) is a c.e. set.



Coarse computability for equivalence structures

Recall: Every equivalence structure has a generically computable copy.

There is a 21 coarsely c.e. equivalence structure with no 21 generically

c.e. copy.

There is an equivalence structure with no 2 coarsely c.e. copy.

Question: Characterize equivalence structures that have X coarsely

c.e. copies.



e Let A be an equivalence structure with an infinite class, or with a
bounded character, or with an unbounded character that has a
computable si-function.

Then A has a X5 coarsely c.e. copy iff
(i) x(A) is a £ set iff

(ii)) A has a c.e. copy.

e Let A be an equivalence structure with no infinite classes, with an
unbounded character with no computable si-function.

Then A has a X5 coarsely c.e. copy iff

x(A) is a Zg set, and for some finite k, A has infinitely many classes
of size k.



e For any equivalence structure A,
A has a X3 coarsely c.e. copy iff

A has a c.e. copy.



THANK YOU!



