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Generic case complexity

• Complexity results in computable structure theory often depend on the

behavior of the hardest instances of the problem.

• For problems on groups, Kapovich, Myasnikov, Schupp, and Shpilrain

(2003) proposed using the notion of asymptotic density to see whether

a partial computable function could solve “almost all” instances of a

problem.

• They showed that for a large class of finitely generated groups the

classical decision problems, such as the word problem or the conjugacy

problem, have linear time generic case complexity.



• Kapovich, Myasnikov, Schupp, and Shpilrain established that a finitely

presented group with undecidable word problem, given by W. Boone,

has a generically computable copy.

• Jockusch and Schupp (2012) introduced this topic to computability

theory. They defined and investigated generically computable and

coarsely computable sets of natural numbers.

• For A ⊆ ω and n ≥ 1, the density of a set A up to n, denoted by

ρn(A), is

|A ∩ {0, 1, 2, . . . , n− 1}|
n

.

• The (asymptotic) density of A is ρ(A) = lim
n→∞ ρn(A).



• For example, A = {2n : n ∈ ω} has density 0.

• A is (asymptotically) dense if ρ(A) = 1.

• The upper density of A is lim sup
n→∞

|A∩{0,1,2,...,n−1}|
n .

• As usual, computably enumerable is abbreviated by c.e.

• If A is a c.e. set with upper density 1, then A has a computable

subset with upper density 1.



Generically and coarsely computable sets (Jockusch and Schupp)

• For S ⊆ ω, let cS denote the characteristic function of S.

• S is generically computable if there is a partial computable function

ϕ : ω → {0, 1} such that: dom(ϕ) has asymptotic density 1, and

cS � dom(ϕ) = ϕ.

• S is coarsely computable if there is a total computable function

τ : ω → {0, 1} such that {x : cS(x) = τ(x)} has asymptotic

density 1.

Equivalently, S is coarsely computable if there is a computable set T

such that S4T has asymptotic density 0.



• (Jockusch and Schupp)

There is a coarsely computable c.e. set that is not generically

computable.

There is a generically computable c.e. set that is not coarsely

computable.

• A structure C for a finite language is computable if its domain C is

computable and each relation of C is computable and each function of

C is computable.

• A structure D for a finite language is c.e. if its domain D is c.e. and

each relation of D is c.e. and each function of D is the restriction of

a partial computable function to D.



Asymptotic density in ω × ω

• Let A ⊆ ω. Then A has asymptotic density δ in ω if and only if A×A
has asymptotic density δ2 in ω × ω.

Hence: A is (asymptotically) dense in ω iff A×A is (asymptotically)

dense in ω × ω.

• There is a computable dense set R ⊆ ω× ω such that for any infinite

c.e. set X ⊆ ω, the product X ×X is not a subset of R.



Generically computable structures

• Consider a structure A for finite language with universe ω,

with functions {fi : i ∈ I}, each fi of arity pi, and

relations {Rj : j ∈ J}, each Rj of arity rj.

• We call A generically computable if A has a substructure D with

a dense c.e. domain D, and there are partial computable functions

{φi : i ∈ I} and {ψj : j ∈ J} such that

each φi agrees with fi on Dpi and

each ψj agrees with cRj on the set Drj .



Example

• Let M = (ω,A), where A is a unary relation.

• Assume that A is a generically computable set. Let a partial

computable function ϕ be such that: dom(ϕ) has density 1, and for

every x ∈ dom(ϕ), we have cA(x) = ϕ(x).

Let D = dom(ϕ). D is a c.e. set.

Consider the substructure D = (D, A ∩ D). Since D is c.e. and ϕ

agrees with cA on D, the structure M is generically computable.

• Conversely, if M is a generically computable structure, then A is a

generically computable set.



Σn generically c.e. structures

• A substructure B is a Σn elementary substructure of A if for any

infinitary Σn formula θ(x1, . . . , xn) and b1, . . . , bn ∈ B :

A � θ(b1, . . . , bn) iff B � θ(b1, . . . , bn)

• A structure A is Σn generically c.e. if A has a c.e. substructure D
with a dense (c.e.) domain D, such that D is also a Σn elementary

substructure of A.

• Clearly, a Σn+1 generically c.e. structure is Σn generically c.e.

• Any c.e. structure is Σn generically c.e. for any n.



Generically computable and Σ1 generically c.e. injection structures

• An injection structure A = (A, f) has a single unary function f that

is 1− 1.

• Any c.e. injection structure is isomorphic to a computable injection

structure.

• For a ∈ A, the orbit of a is

Of(a) = {b ∈ A : (∃n ∈ ω)[fn(a) = b ∨ fn(b) = a]}

• Finite orbits are cycles, and infinite orbits can be of type ω or Z.



• The character of A is defined as:

χ(A) = {〈k, n〉 : n, k > 0 & there are ≥ n orbits of size k}

• A c.e. injection structure A has a c.e. character χ(A).

• K ⊆ 〈(ω − {0})× (ω − {0})〉 is a character if for all n > 0 and k:

〈k, n+ 1〉 ∈ K ⇒ 〈k, n〉 ∈ K

• For any c.e. character K, there is a computable injection structure

(A, f) with character K and any specified number of orbits of type ω

and Z.



• An injection structure A = (ω, f) has a generically computable copy

iff at least one of the following two conditions hold:

1. A has an infinite orbit;

2. χ(A) has an infinite c.e. subset.

• A = (ω, f) has a Σ1 generically c.e. copy iff

(i) A has a computable copy iff

(ii) χ(A) is a c.e. set iff

(iii) A has a Σ2 generically c.e. copy.



Computable and c.e. equivalence structures

• Consider an equivalence structure A = (A,E).

• The character of A (or E) is defined as:

χ(A) = {〈k, n〉 : n, k > 0 & there are ≥ n equivalence classes

of size k}

• Bounded character: there is a finite bound on size k.

• If A and E are c.e., then the character χ(A) is a Σ0
2 set.



• (Calvert, Cenzer, Harizanov, Morozov)

For any Σ0
2 character K, there is a computable equivalence structure

A with character K and infinitely many infinite equivalence classes.

• (Cenzer, Harizanov, Remmel)

For any Σ0
2 character K, there is a c.e. equivalence structure, even with

a computable domain, with character K and with any finite number

r ≥ 1 of infinite equivalence classes.



Generically computable equivalence structures

A surprising result:

• Every equivalence structure A = (ω,E) has a generically computable

copy.



Σ1 and Σ2 generically c.e. equivalence structures

• A function h : ω2 → ω is a Khisamiev s1-function if for all i, t,

h(i, t) ≤ h(i, t+ 1),

mi = lim
t→∞

h(i, t) exists, and

m0 < m1 < · · · < mi < · · ·

• Let A = (A,E) be a c.e. equivalence structure with no infinite

equivalence classes and an unbounded character.

Then there is a computable s1-function h such that A contains an

equivalence class of size mi for each i ∈ ω.



• We say that a character K has an s1-function h if 〈mi, 1〉 ∈ K for

each i.

• For every Σ0
2 character K that is either bounded or has a computable

s1-function, there is a computable equivalence structure A with

character K and no infinite equivalence classes.

• If A is c.e. equivalence structure with no infinite equivalence classes,

then A is isomorphic to a computable structure.



• An equivalence structure A = (ω,E) has a Σ1 generically c.e. copy

iff at least one of the following conditions hold:

1. χ(A) is bounded;

2. χ(A) has a Σ0
2 subcharacter K with a computable s1-function;

3. χ(A) has a Σ0
2 subcharacter H, and A has an infinite class;

4. A has infinitely many infinite classes.

• A = (ω,E) has a Σ2 generically c.e. copy iff

(i) A has a c.e. copy iff

(ii) A has a Σ3 generically c.e. copy.



Coarsely computable structures

• A structure A is coarsely computable if there are a computable
structure E and a dense set D, which is the domain of a structure D
that is a substructure of both A and of E (all relations and functions
agree on D):

D ⊆ AE

• M = (ω,A) is a coarsely computable structure iff A is a coarsely
computable set.

There is a generically computable structure that is not coarsely
computable, and there is a coarsely computable structure that is
not generically computable.



Σn coarsely c.e. structures

• A structure A is Σn coarsely c.e. if there are a c.e. structure E and

a dense set D, which is the domain of a substructure D that is a Σn
elementary substructure of both A and E (all relations and functions

agree on D):

D �n
A
E

• Clearly, a Σn+1 coarsely c.e. structure is Σn coarsely c.e.

• A Σ0 coarsely c.e. structure is also called a coarsely c.e. structure.

Every coarsely computable structure is a coarsely c.e. structure.



Coarse computability for injection structures

Generic computability vs coarse computability:

• There is a generically computable injection structure that is

not coarsely computable.

• Every generically computable injection structure has a coarsely

computable copy.



• There is a coarsely computable injection structure with no generically

computable copy.

• Proof idea. Let S ⊆ ω−{0} be a dense immune set (does not contain

an infinite c.e. subset).

Build a coarsely computable injection structure A with character

{〈k, i〉 : k ∈ S ∧ i ∈ {1, 2}} and no infinite orbits such that

if B were a generically computable copy of A, then χ(B) = χ(A)

would contain an infinite c.e. subset C.

Then {k : 〈k, 1〉 ∈ C ∨ 〈k, 2〉 ∈ C} would be an infinite c.e. subset of

S, a contradiction.



• There is an injection structure that does not have a coarsely

computable copy.

• Proof idea. Build an infinite set S ⊆ ω such that an injection

structureA with character χ(A) ⊆ {〈k, 1〉 : k ∈ S} cannot be coarsely

computable.

• Question: Characterize injection structures that have coarsely

computable copies.

• An injection structure A = (ω, f) has a Σ1 coarsely c.e. copy iff

(i) A has a computable copy iff

(ii) χ(A) is a c.e. set.



Coarse computability for equivalence structures

• Recall: Every equivalence structure has a generically computable copy.

• There is a Σ1 coarsely c.e. equivalence structure with no Σ1 generically

c.e. copy.

• There is an equivalence structure with no Σ1 coarsely c.e. copy.

• Question: Characterize equivalence structures that have Σ1 coarsely

c.e. copies.



• Let A be an equivalence structure with an infinite class, or with a

bounded character, or with an unbounded character that has a

computable s1-function.

Then A has a Σ2 coarsely c.e. copy iff

(i) χ(A) is a Σ0
2 set iff

(ii) A has a c.e. copy.

• Let A be an equivalence structure with no infinite classes, with an

unbounded character with no computable s1-function.

Then A has a Σ2 coarsely c.e. copy iff

χ(A) is a Σ0
2 set, and for some finite k, A has infinitely many classes

of size k.



• For any equivalence structure A,

A has a Σ3 coarsely c.e. copy iff

A has a c.e. copy.



THANK YOU!


