Densely Computable Structures and Isomorphisms, Part I

MSRI DDC2 Seminar

July 20, 2022

Generically and coarsely computable structures

Valentina Harizanov

Joint work with Wesley Calvert and Douglas Cenzer.

Generic case complexity

- Complexity results in computable structure theory often depend on the behavior of the hardest instances of the problem.
- For problems on groups, Kapovich, Myasnikov, Schupp, and Shpilrain (2003) proposed using the notion of asymptotic density to see whether a partial computable function could solve "almost all" instances of a problem.
- They showed that for a large class of finitely generated groups the classical decision problems, such as the word problem or the conjugacy problem, have linear time generic case complexity.

- Kapovich, Myasnikov, Schupp, and Shpilrain established that a finitely presented group with undecidable word problem, given by W. Boone, has a generically computable copy.
- Jockusch and Schupp (2012) introduced this topic to computability theory. They defined and investigated generically computable and coarsely computable sets of natural numbers.
- For $A \subseteq \omega$ and $n \ge 1$, the density of a set A up to n, denoted by $\rho_n(A)$, is

$$rac{|A\cap \{\mathsf{0},\mathsf{1},\mathsf{2},\ldots,n-1\}|}{n}.$$

• The (asymptotic) density of A is $\rho(A) = \lim_{n \to \infty} \rho_n(A)$.

- For example, $A = \{2^n : n \in \omega\}$ has density 0.
- A is (asymptotically) dense if $\rho(A) = 1$.

• The upper density of A is
$$\limsup_{n \to \infty} \frac{|A \cap \{0, 1, 2, \dots, n-1\}|}{n}$$
.

- As usual, computably enumerable is abbreviated by c.e.
- If A is a c.e. set with upper density 1, then A has a computable subset with upper density 1.

Generically and coarsely computable sets (Jockusch and Schupp)

- For $S \subseteq \omega$, let c_S denote the characteristic function of S.
- S is generically computable if there is a partial computable function
 φ : ω → {0,1} such that: dom(φ) has asymptotic density 1, and
 c_S ↾ dom(φ) = φ.
- S is coarsely computable if there is a total computable function
 τ : ω → {0,1} such that {x : c_S(x) = τ(x)} has asymptotic
 density 1.

Equivalently, S is coarsely computable if there is a computable set T such that $S \triangle T$ has asymptotic density 0.

• (Jockusch and Schupp)

There is a coarsely computable c.e. set that is not generically computable.

There is a generically computable c.e. set that is not coarsely computable.

- A structure C for a finite language is *computable* if its domain C is computable and each relation of C is computable and each function of C is computable.
- A structure \mathcal{D} for a finite language is *c.e.* if its domain D is c.e. and each relation of \mathcal{D} is c.e. and each function of \mathcal{D} is the restriction of a partial computable function to D.

Asymptotic density in $\omega \times \omega$

Let A ⊆ ω. Then A has asymptotic density δ in ω if and only if A × A has asymptotic density δ² in ω × ω.

Hence: A is (asymptotically) dense in ω iff $A \times A$ is (asymptotically) dense in $\omega \times \omega$.

There is a computable dense set R ⊆ ω × ω such that for any infinite c.e. set X ⊆ ω, the product X × X is not a subset of R.

Generically computable structures

- Consider a structure A for finite language with universe ω, with functions {f_i : i ∈ I}, each f_i of arity p_i, and relations {R_i : j ∈ J}, each R_i of arity r_j.
- We call \mathcal{A} generically computable if \mathcal{A} has a substructure \mathcal{D} with a dense c.e. domain D, and there are partial computable functions $\{\phi_i : i \in I\}$ and $\{\psi_j : j \in J\}$ such that

each ϕ_i agrees with f_i on D^{p_i} and

each ψ_j agrees with c_{R_j} on the set D^{r_j} .

Example

- Let $\mathcal{M} = (\omega, A)$, where A is a unary relation.
- Assume that A is a generically computable set. Let a partial computable function φ be such that: dom(φ) has density 1, and for every x ∈ dom(φ), we have c_A(x) = φ(x).

Let $D = dom(\varphi)$. D is a c.e. set.

Consider the substructure $\mathcal{D} = (D, A \cap D)$. Since D is c.e. and φ agrees with c_A on D, the structure \mathcal{M} is generically computable.

• Conversely, if \mathcal{M} is a generically computable structure, then A is a generically computable set.

Σ_n generically c.e. structures

• A substructure \mathcal{B} is a Σ_n elementary substructure of \mathcal{A} if for any infinitary Σ_n formula $\theta(x_1, \ldots, x_n)$ and $b_1, \ldots, b_n \in \mathcal{B}$:

 $\mathcal{A} \vDash \theta(b_1, \ldots, b_n)$ iff $\mathcal{B} \vDash \theta(b_1, \ldots, b_n)$

- A structure A is Σ_n generically c.e. if A has a c.e. substructure D with a dense (c.e.) domain D, such that D is also a Σ_n elementary substructure of A.
- Clearly, a Σ_{n+1} generically c.e. structure is Σ_n generically c.e.
- Any c.e. structure is Σ_n generically c.e. for any n.

Generically computable and Σ_1 generically c.e. injection structures

- An *injection structure* A = (A, f) has a single unary function f that is 1 − 1.
- Any c.e. injection structure is isomorphic to a computable injection structure.
- For $a \in A$, the *orbit* of a is

$$\mathcal{O}_f(a) = \{ b \in A : (\exists n \in \omega) [f^n(a) = b \lor f^n(b) = a] \}$$

• Finite orbits are cycles, and infinite orbits can be of type ω or Z.

• The *character* of A is defined as:

 $\chi(\mathcal{A}) = \{ \langle k, n \rangle : n, k > 0 \& \text{ there are } \geq n \text{ orbits of size } k \}$

- A c.e. injection structure \mathcal{A} has a c.e. character $\chi(\mathcal{A})$.
- K ⊆ ⟨(ω − {0}) × (ω − {0})⟩ is a *character* if for all n > 0 and k:
 ⟨k, n + 1⟩ ∈ K ⇒ ⟨k, n⟩ ∈ K
- For any c.e. character K, there is a computable injection structure (A, f) with character K and any specified number of orbits of type ω and Z.

- An injection structure $\mathcal{A} = (\omega, f)$ has a generically computable copy iff at least one of the following two conditions hold:
 - 1. \mathcal{A} has an infinite orbit;
 - 2. $\chi(\mathcal{A})$ has an infinite c.e. subset.
- $\mathcal{A} = (\omega, f)$ has a Σ_1 generically c.e. copy iff

(i) \mathcal{A} has a computable copy iff

- (ii) $\chi(\mathcal{A})$ is a c.e. set iff
- (iii) \mathcal{A} has a Σ_2 generically c.e. copy.

Computable and c.e. equivalence structures

- Consider an equivalence structure $\mathcal{A} = (A, E)$.
- The *character* of \mathcal{A} (or E) is defined as:

 $\chi(\mathcal{A}) = \{ \langle k, n \rangle : n, k > 0 \& \text{ there are } \geq n \text{ equivalence classes of size } k \}$

- Bounded character: there is a finite bound on size k.
- If A and E are c.e., then the character $\chi(\mathcal{A})$ is a Σ_2^0 set.

• (Calvert, Cenzer, Harizanov, Morozov)

For any Σ_2^0 character K, there is a computable equivalence structure \mathcal{A} with character K and infinitely many infinite equivalence classes.

• (Cenzer, Harizanov, Remmel)

For any Σ_2^0 character K, there is a c.e. equivalence structure, even with a computable domain, with character K and with any finite number $r \ge 1$ of infinite equivalence classes.

Generically computable equivalence structures

A surprising result:

• Every equivalence structure $\mathcal{A} = (\omega, E)$ has a generically computable copy.

 Σ_1 and Σ_2 generically c.e. equivalence structures

• A function $h: \omega^2 \to \omega$ is a Khisamiev s_1 -function if for all i, t,

 $h(i,t) \leq h(i,t+1),$ $m_i = \lim_{t o \infty} h(i,t)$ exists, and

 $m_0 < m_1 < \cdots < m_i < \cdots$

• Let $\mathcal{A} = (A, E)$ be a c.e. equivalence structure with no infinite equivalence classes and an unbounded character.

Then there is a computable s_1 -function h such that \mathcal{A} contains an equivalence class of size m_i for each $i \in \omega$.

- We say that a character K has an s₁-function h if ⟨m_i, 1⟩ ∈ K for each i.
- For every Σ₂⁰ character K that is either bounded or has a computable s₁-function, there is a computable equivalence structure A with character K and no infinite equivalence classes.
- If \mathcal{A} is c.e. equivalence structure with no infinite equivalence classes, then \mathcal{A} is isomorphic to a computable structure.

- An equivalence structure $\mathcal{A} = (\omega, E)$ has a Σ_1 generically c.e. copy iff at least one of the following conditions hold:
 - 1. $\chi(\mathcal{A})$ is bounded;
 - 2. $\chi(\mathcal{A})$ has a Σ_2^0 subcharacter K with a computable s_1 -function;
 - 3. $\chi(\mathcal{A})$ has a Σ_2^0 subcharacter H, and \mathcal{A} has an infinite class;
 - 4. \mathcal{A} has infinitely many infinite classes.
- $\mathcal{A} = (\omega, E)$ has a Σ_2 generically c.e. copy iff

(i) \mathcal{A} has a c.e. copy iff

(ii) \mathcal{A} has a Σ_3 generically c.e. copy.

Coarsely computable structures

A structure A is coarsely computable if there are a computable structure E and a dense set D, which is the domain of a structure D that is a substructure of both A and of E (all relations and functions agree on D):

$$\mathcal{D}\subseteq egin{array}{c} \mathcal{A} \ \mathcal{E} \end{array}$$

• $\mathcal{M} = (\omega, A)$ is a coarsely computable structure iff A is a coarsely computable set.

There is a generically computable structure that is not coarsely computable, and there is a coarsely computable structure that is not generically computable.

Σ_n coarsely c.e. structures

 A structure A is Σ_n coarsely c.e. if there are a c.e. structure E and a dense set D, which is the domain of a substructure D that is a Σ_n elementary substructure of both A and E (all relations and functions agree on D):

$$\mathcal{D} \preceq_n rac{\mathcal{A}}{\mathcal{E}}$$

- Clearly, a Σ_{n+1} coarsely c.e. structure is Σ_n coarsely c.e.
- A Σ_0 coarsely c.e. structure is also called a *coarsely c.e.* structure. Every coarsely computable structure is a coarsely c.e. structure.

Coarse computability for injection structures

Generic computability vs coarse computability:

- There is a generically computable injection structure that is not coarsely computable.
- Every generically computable injection structure has a coarsely computable copy.

- There is a coarsely computable injection structure with no generically computable copy.
- Proof idea. Let S ⊆ ω − {0} be a dense immune set (does not contain an infinite c.e. subset).

Build a coarsely computable injection structure \mathcal{A} with character

 $\{\langle k,i\rangle:k\in S\wedge i\in\{1,2\}\}$ and no infinite orbits such that

if \mathcal{B} were a generically computable copy of \mathcal{A} , then $\chi(\mathcal{B}) = \chi(\mathcal{A})$ would contain an infinite c.e. subset C.

Then $\{k : \langle k, 1 \rangle \in C \lor \langle k, 2 \rangle \in C\}$ would be an infinite c.e. subset of S, a contradiction.

- There is an injection structure that does not have a coarsely computable copy.
- Proof idea. Build an infinite set S ⊆ ω such that an injection structure A with character χ(A) ⊆ {⟨k,1⟩ : k ∈ S} cannot be coarsely computable.
- *Question*: Characterize injection structures that have coarsely computable copies.
- An injection structure $\mathcal{A} = (\omega, f)$ has a Σ_1 coarsely c.e. copy iff

(i) ${\cal A}$ has a computable copy iff

(ii)
$$\chi(\mathcal{A})$$
 is a c.e. set.

Coarse computability for equivalence structures

- Recall: Every equivalence structure has a generically computable copy.
- There is a Σ_1 coarsely c.e. equivalence structure with no Σ_1 generically c.e. copy.
- There is an equivalence structure with no Σ_1 coarsely c.e. copy.
- Question: Characterize equivalence structures that have Σ₁ coarsely c.e. copies.

 Let A be an equivalence structure with an infinite class, or with a bounded character, or with an unbounded character that has a computable s₁-function.

```
Then \mathcal{A} has a \Sigma_2 coarsely c.e. copy iff
(i) \chi(\mathcal{A}) is a \Sigma_2^0 set iff
(ii) \mathcal{A} has a c.e. copy.
```

• Let \mathcal{A} be an equivalence structure with no infinite classes, with an unbounded character with no computable s_1 -function.

Then \mathcal{A} has a Σ_2 coarsely c.e. copy iff

 $\chi(\mathcal{A})$ is a Σ_2^0 set, and for some finite k, \mathcal{A} has infinitely many classes of size k.

• For any equivalence structure \mathcal{A} ,

 ${\mathcal A}$ has a Σ_3 coarsely c.e. copy iff

 ${\mathcal A}$ has a c.e. copy.

THANK YOU!