Densely Computable Structures and Isomorphisms, Part II: Math is About Functions

Wesley Calvert

MSRI July 20, 2022

Wesley Calvert (SIU) [Densely Computable Structures II](#page-58-0) July 20, 2022 1 / 31

1 Let K be a computable field. There is a computable field \overline{K} and a computable embedding $K \hookrightarrow \overline{K}$ such that \overline{K} is an algebraic closure of K.

- \bullet Let K be a computable field. There is a computable field \overline{K} and a computable embedding $K \hookrightarrow \overline{K}$ such that \overline{K} is an algebraic closure of K.
- **2** There is a computable algebraic field K such that there exist two algebraic closures J_1 , J_2 of K such that there is no computable isomorphism $J_1 \rightarrow J_2$.

A computable structure $\mathcal A$ is said to be computably categorical if and only if any two copies $\mathcal{A}_0 \cong \mathcal{A}_1 \cong \mathcal{A}$ are isomorphic via a computable isomorphism.

Does "almost computably isomorphic" mean

1 "isomorphic, almost computably,"

Does "almost computably isomorphic" mean

- **1** "isomorphic, almost computably,"
- ² "almost isomorphic, computably," or

Does "almost computably isomorphic" mean

- **1** "isomorphic, almost computably,"
- ² "almost isomorphic, computably," or
- ³ "almost isomorphic, almost computably,"

Composition does not always play nicely with exceptions.

Still two ways to trivialize:

Still two ways to trivialize:

1 Maybe the only "densely" computable isomorphisms are the ones where there's actually a computable isomorphism.

Still two ways to trivialize:

- **1** Maybe the only "densely" computable isomorphisms are the ones where there's actually a computable isomorphism.
- ² Maybe there are "densely" computable isomorphisms everywhere.

Let $F : \mathbb{N} \to \mathbb{N}$ be a total function. We say that F is generically computable if there is a partial computable function θ such that $\theta = F$ on the domain of θ , and such that the domain of θ has asymptotic density 1.

 \bullet We say that an isomorphism $F : A \rightarrow B$ from a structure A to a structure β is a generically computable isomorphism if there are a c.e. set C of asymptotic density one and a partial computable function θ with $C \subseteq Dom(\theta)$, which satisfy the following:

- \bullet We say that an isomorphism $F : A \rightarrow B$ from a structure A to a structure β is a generically computable isomorphism if there are a c.e. set C of asymptotic density one and a partial computable function θ with $C \subseteq Dom(\theta)$, which satisfy the following:
	- \bullet C is the domain of a substructure C of A;

- \bullet We say that an isomorphism $F : A \rightarrow B$ from a structure A to a structure β is a generically computable isomorphism if there are a c.e. set C of asymptotic density one and a partial computable function θ with $C \subseteq Dom(\theta)$, which satisfy the following:
	- \bullet C is the domain of a substructure C of A;

•
$$
F(x) = \theta(x)
$$
 for all $x \in C$;

- \bullet We say that an isomorphism $F : A \rightarrow B$ from a structure A to a structure β is a generically computable isomorphism if there are a c.e. set C of asymptotic density one and a partial computable function θ with $C \subseteq Dom(\theta)$, which satisfy the following:
	- \bullet C is the domain of a substructure C of A;

•
$$
F(x) = \theta(x)
$$
 for all $x \in C$;

 \bullet The image $F[C]$ has asymptotic density one and is the domain of a substructure of B .

- \bullet We say that an isomorphism $F : A \rightarrow B$ from a structure A to a structure β is a generically computable isomorphism if there are a c.e. set C of asymptotic density one and a partial computable function θ with $C \subseteq Dom(\theta)$, which satisfy the following:
	- \bullet C is the domain of a substructure C of A;

•
$$
F(x) = \theta(x)
$$
 for all $x \in C$;

- \bullet The image $F[C]$ has asymptotic density one and is the domain of a substructure of B .
- A structure A is generically computably isomorphic to a structure β if there is a generically computable isomorphism F mapping A to B .

Let A, B be dense coinfinite c.e. sets. Then the structures (N, A) and (N, B) are generically computably isomorphic.

Let A, B be dense coinfinite c.e. sets. Then the structures (N, A) and (N, B) are generically computably isomorphic.

To do this, take one-to-one enumerations of the two sets, and let θ be the function matching corresponding elements. We define F_0 on A to be θ . and extend F_0 arbitrarily to a total bijection.

Let A, B be dense coinfinite c.e. sets. Then the structures (N, A) and (N, B) are generically computably isomorphic.

To do this, take one-to-one enumerations of the two sets, and let θ be the function matching corresponding elements. We define F_0 on A to be θ . and extend F_0 arbitrarily to a total bijection.

If (N, A) and (N, B) were computably isomorphic, then A and B would be 1-equivalent.

Let A be an equivalence structure. Then A is computably categorical if and only if one of the following holds:

Let $\mathcal A$ be an equivalence structure. Then $\mathcal A$ is computably categorical if and only if one of the following holds:

• A has only finitely many finite classes, or

Let $\mathcal A$ be an equivalence structure. Then $\mathcal A$ is computably categorical if and only if one of the following holds:

- A has only finitely many finite classes, or
- A has finitely many infinite classes, there is a bound on the size of the finite classes, and there is at most one k such that A has infinitely many classes of size k.

- A (1, 2)-equivalence structure is an equivalence structure having
	- \bullet infinitely many classes of size 1,
	- infinitely many classes of size 2,
	- and nothing else.

We say that the equivalence structure $\mathcal{A} = (\mathbb{N}, E)$ has generic character K for a finite subset K of $\mathbb{N} - \{0\}$ if, for each $k \in K$, the set $\mathcal{A}(k)$ has positive asymptotic density and the union $\bigcup_{k\in\mathcal{K}}\mathcal{A}(k)$ has asymptotic density one.

 \bullet If A and B are computable (1, 2)-equivalence structures, each having generic character $\{2\}$, then A and B are generically computably isomorphic.

- \bullet If A and B are computable (1, 2)-equivalence structures, each having generic character $\{2\}$, then A and B are generically computably isomorphic.
- \bullet Any computable $(1, 2)$ -equivalence structure $\mathcal A$ with generic character $\{2\}$ is generically computably isomorphic to a computable structure C in which the set of elements of size 2 is computable.

If A and B are generically c.e. $(1, 2)$ -equivalence structures, each having generic character $\{2\}$, then A and B are generically computably isomorphic.

If $\mathcal A$ and $\mathcal B$ are isomorphic computable equivalence structures with finitely many infinite classes such that the infinite classes constitute a set of asymptotic density 1 in each structure, then $\mathcal A$ and $\mathcal B$ are generically computably isomorphic.

If $\mathcal A$ and $\mathcal B$ are isomorphic computable equivalence structures with finitely many infinite classes such that the infinite classes constitute a set of asymptotic density 1 in each structure, then $\mathcal A$ and $\mathcal B$ are generically computably isomorphic.

It follows that any such structure A is generically computably isomorphic to a computable structure C in which the set of elements that belong to infinite classes is computable.

Let A and B be isomorphic generically c.e. equivalence structures, each with a single infinite class of asymptotic density 1. Then A and B are generically computably isomorphic.

We say that structures A and B are weakly generically computably isomorphic if there are a c.e. set C of asymptotic density one, a bijection $F: A \rightarrow B$, and a partial computable function θ with $C \subseteq Dom(\theta)$, which satisfy the following:

We say that structures $\mathcal A$ and $\mathcal B$ are weakly generically computably isomorphic if there are a c.e. set C of asymptotic density one, a bijection $F: A \rightarrow B$, and a partial computable function θ with $C \subseteq Dom(\theta)$, which satisfy the following:

(i) C is the domain of a substructure C of \mathcal{A} ;

We say that structures $\mathcal A$ and $\mathcal B$ are weakly generically computably isomorphic if there are a c.e. set C of asymptotic density one, a bijection $F: \mathcal{A} \to \mathcal{B}$, and a partial computable function θ with $C \subseteq Dom(\theta)$, which satisfy the following:

- (i) C is the domain of a substructure C of A;
- (ii) $F(x) = \theta(x)$ for all $x \in C$;

We say that structures A and B are weakly generically computably isomorphic if there are a c.e. set C of asymptotic density one, a bijection $F: \mathcal{A} \to \mathcal{B}$, and a partial computable function θ with $C \subseteq Dom(\theta)$, which satisfy the following:

- (i) C is the domain of a substructure C of \mathcal{A} ;
- (ii) $F(x) = \theta(x)$ for all $x \in C$;
- (iii) $F[C]$ has asymptotic density one and is the domain of a substructure C_1 of B .

We say that structures A and B are weakly generically computably isomorphic if there are a c.e. set C of asymptotic density one, a bijection $F: \mathcal{A} \to \mathcal{B}$, and a partial computable function θ with $C \subseteq Dom(\theta)$, which satisfy the following:

- (i) C is the domain of a substructure C of \mathcal{A} ;
- (ii) $F(x) = \theta(x)$ for all $x \in C$;
- (iii) $F[C]$ has asymptotic density one and is the domain of a substructure C_1 of B .
- (iv) θ is an isomorphism from C to C_1 .

For any $k > 1$ and any rational number p with $0 < p \le 1$, there exist computable $(1, k)$ -equivalence structures A and B such that $A(1)$ and $\mathcal{B}(1)$ each have asymptotic density p, which are not weakly generically computably isomorphic.

We'd like ∗-isomorphism to be an equivalence relation.

We'd like ∗-isomorphism to be an equivalence relation.

We can at least show that this is symmetric and reflexive.

A partial computable function ψ mapping a set C to a set D is density preserving if for any subset A of C with asymptotic density p , the image $\psi(A)$ also has asymptotic density p.

A partial computable function ψ mapping a set C to a set D is density preserving if for any subset A of C with asymptotic density p , the image $\psi(A)$ also has asymptotic density p.

Proposition

Density-preserving generically computable and weakly generically computable isomorphism are transitive.

We know that the composition of two generically computable isomorphisms need not be a generically computable isomorphism. Is it transitive anyway?

Proposition

Suppose that a structure A has a c.e. substructure D on a dense computable set, the domain of D. Then there are a c.e. structure β and a weakly generically computable density preserving isomorphism from A to \mathcal{B} .

Proposition

Suppose that a structure A has a c.e. substructure D on a dense computable set, the domain of \mathcal{D} . Then there are a c.e. structure $\mathcal B$ and a weakly generically computable density preserving isomorphism from A to \mathcal{B} .

Moreover, if there is a weakly generically computable density preserving isomorphism from A to a c.e. structure, then A is generically computable.

A function F is said to be coarsely computable if and only if there is a total computable function θ such that $\{n : F(n) = \theta(n)\}\$ has asymptotic density 1.

We say that an isomorphism $F : A \rightarrow B$ from a structure A to a structure β is a coarsely computable isomorphism if there are a set C of asymptotic density one and a (total) computable function θ such that:

We say that an isomorphism $F : A \rightarrow B$ from a structure A to a structure β is a coarsely computable isomorphism if there are a set C of asymptotic density one and a (total) computable function θ such that:

 \bullet C is the domain of a substructure C of A:

We say that an isomorphism $F : A \rightarrow B$ from a structure A to a structure β is a coarsely computable isomorphism if there are a set C of asymptotic density one and a (total) computable function θ such that:

 \bullet C is the domain of a substructure C of A:

•
$$
F(x) = \theta(x)
$$
 for all $x \in C$;

We say that an isomorphism $F : A \rightarrow B$ from a structure A to a structure β is a coarsely computable isomorphism if there are a set C of asymptotic density one and a (total) computable function θ such that:

 \bullet C is the domain of a substructure C of A:

•
$$
F(x) = \theta(x)
$$
 for all $x \in C$;

 \bullet The image $F[C]$ has asymptotic density one and is the domain of a substructure of B .

Let $A = (A, R)$ and $B = (B, S)$ be isomorphic equivalence structures with generic character $\{1\}$ (that is, both $\mathcal{A}(1)$ and $\mathcal{B}(1)$ have asymptotic density one). Then there is a density preserving coarsely computable isomorphism between A and B.

Let $A = (A, R)$ and $B = (B, S)$ be isomorphic equivalence structures with generic character $\{1\}$ (that is, both $\mathcal{A}(1)$ and $\mathcal{B}(1)$ have asymptotic density one). Then there is a density preserving coarsely computable isomorphism between A and B.

Theorem

Let A have generic character $\{1\}$, and let B be an equivalence structure, with a coarsely computable isomorphism $F : A \rightarrow B$. Then $B(1)$ has asymptotic density 1.

We say that structures A and B are weakly coarsely computably isomorphic if there is a set C of asymptotic density one, a bijection $F: A \rightarrow B$ and a total computable function θ , which satisfy the following:

We say that structures A and B are weakly coarsely computably isomorphic if there is a set C of asymptotic density one, a bijection $F: A \rightarrow B$ and a total computable function θ , which satisfy the following:

$$
\bullet \ \theta(x) = F(x) \text{ for all } x \in C;
$$

We say that structures Aand β are weakly coarsely computably isomorphic if there is a set C of asymptotic density one, a bijection $F: A \rightarrow B$ and a total computable function θ , which satisfy the following:

$$
\bullet \ \theta(x) = F(x) \text{ for all } x \in C;
$$

 \bullet C is the domain of a substructure C of A;

We say that structures Aand β are weakly coarsely computably isomorphic if there is a set C of asymptotic density one, a bijection $F: A \rightarrow B$ and a total computable function θ , which satisfy the following:

$$
\bullet \ \theta(x) = F(x) \text{ for all } x \in C;
$$

- \bullet C is the domain of a substructure C of A:
- \bullet The image $F[C]$ also has asymptotic density one and is the universe of a substructure of B .

We say that structures Aand β are weakly coarsely computably isomorphic if there is a set C of asymptotic density one, a bijection $F : A \rightarrow B$ and a total computable function θ , which satisfy the following:

$$
\bullet \ \theta(x) = F(x) \text{ for all } x \in C;
$$

- \bullet C is the domain of a substructure C of A;
- \bullet The image $F[C]$ also has asymptotic density one and is the universe of a substructure of B .
- θ is an isomorphism from C to its image.

Proposition

If a structure A is coarsely computable, then there is a density preserving weakly coarsely computable isomorphism from A to a computable structure.

Proposition

If a structure $\mathcal A$ is coarsely computable, then there is a density preserving weakly coarsely computable isomorphism from A to a computable structure.

Moreover, if there is a weakly coarsely computable isomorphism from A to a computable structure, then A is coarsely computable.

Proof: Let \mathcal{E} be a computable structure, and let D be a dense set such that the structure D with domain D is a substructure of both A and E , and all relations and functions agree on D.

Proof: Let \mathcal{E} be a computable structure, and let D be a dense set such that the structure D with domain D is a substructure of both A and \mathcal{E} , and all relations and functions agree on D.

Then the identity function serves as the desired isomorphism.

Proof: Let $\mathcal E$ be a computable structure, and let D be a dense set such that the structure D with domain D is a substructure of both A and \mathcal{E} , and all relations and functions agree on D.

Then the identity function serves as the desired isomorphism.

The converse is immediate from the definitions. \square

Suppose that $A = (\mathbb{N}, R)$ is a computable (1,2)-structure such that $A(1)$ has asymptotic density q, where $0 < q < 1$. Then there are a computable structure \mathcal{B} , such that $\mathcal{B}(1)$ is a computable set with computable asymptotic density q, and a density preserving weakly coarsely computable isomorphism from A to B .

Suppose that A and B are computable $(1, 2)$ -equivalence structures with domain $\mathbb N$ such that the asymptotic density of $\mathcal A(1)$ and $\mathcal B(1)$ both equal the same computable real q . Then A and B are weakly coarsely computably isomorphic.

Conjecture

Let $K = \{k_1, \ldots, k_n\} \subseteq \mathbb{N} - \{0\}$ be a finite set and let q_1, \ldots, q_n be positive reals such that $q_1 + \cdots + q_n = 1$. Let A and B be computable equivalence structures such that $A(k_i)$ and $B(k_i)$ have asymptotic density q_i for each i. Then ${\mathcal A}$ and ${\mathcal B}$ are weakly coarsely computably isomorphic.

Densely Computable Structures and Isomorphisms, Part II: Math is About Functions

Wesley Calvert

MSRI July 20, 2022

Wesley Calvert (SIU) [Densely Computable Structures II](#page-0-0) July 20, 2022 32 / 31