Densely Computable Structures and Isomorphisms, Part II: Math is About Functions

Wesley Calvert

MSRI July 20, 2022

Wesley Calvert (SIU)

Densely Computable Structures II

• Let K be a computable field. There is a computable field \overline{K} and a computable embedding $K \hookrightarrow \overline{K}$ such that \overline{K} is an algebraic closure of K.

- Let K be a computable field. There is a computable field K and a computable embedding K → K such that K is an algebraic closure of K.
- There is a computable algebraic field K such that there exist two algebraic closures J₁, J₂ of K such that there is no computable isomorphism J₁ → J₂.

A computable structure \mathcal{A} is said to be <u>computably categorical</u> if and only if any two copies $\mathcal{A}_0 \cong \mathcal{A}_1 \cong \mathcal{A}$ are isomorphic via a computable isomorphism.

Question

Does "almost computably isomorphic" mean

"isomorphic, almost computably,"

Question

Does "almost computably isomorphic" mean

- "isomorphic, almost computably,"
- 2 "almost isomorphic, computably," or

Question

Does "almost computably isomorphic" mean

- (1) "isomorphic, almost computably,"
- (2) "almost isomorphic, computably," or
- In almost isomorphic, almost computably,"

Composition does not always play nicely with exceptions.

Still two ways to trivialize:

Still two ways to trivialize:

Maybe the only "densely" computable isomorphisms are the ones where there's actually a computable isomorphism.

Still two ways to trivialize:

- Maybe the only "densely" computable isomorphisms are the ones where there's actually a computable isomorphism.
- Ø Maybe there are "densely" computable isomorphisms everywhere.

Let $F : \mathbb{N} \to \mathbb{N}$ be a total function. We say that F is generically computable if there is a partial computable function θ such that $\theta = F$ on the domain of θ , and such that the domain of θ has asymptotic density 1.

We say that an isomorphism F : A → B from a structure A to a structure B is a generically computable isomorphism if there are a c.e. set C of asymptotic density one and a partial computable function θ with C ⊆ Dom(θ), which satisfy the following:

- We say that an isomorphism F : A → B from a structure A to a structure B is a generically computable isomorphism if there are a c.e. set C of asymptotic density one and a partial computable function θ with C ⊆ Dom(θ), which satisfy the following:
 - C is the domain of a substructure C of A;

- We say that an isomorphism F : A → B from a structure A to a structure B is a generically computable isomorphism if there are a c.e. set C of asymptotic density one and a partial computable function θ with C ⊆ Dom(θ), which satisfy the following:
 - C is the domain of a substructure C of A;

•
$$F(x) = \theta(x)$$
 for all $x \in C$;

- We say that an isomorphism F : A → B from a structure A to a structure B is a generically computable isomorphism if there are a c.e. set C of asymptotic density one and a partial computable function θ with C ⊆ Dom(θ), which satisfy the following:
 - C is the domain of a substructure C of A;

•
$$F(x) = \theta(x)$$
 for all $x \in C$;

The image F[C] has asymptotic density one and is the domain of a substructure of B.

- We say that an isomorphism F : A → B from a structure A to a structure B is a generically computable isomorphism if there are a c.e. set C of asymptotic density one and a partial computable function θ with C ⊆ Dom(θ), which satisfy the following:
 - C is the domain of a substructure C of A;
 - $F(x) = \theta(x)$ for all $x \in C$;
 - The image F[C] has asymptotic density one and is the domain of a substructure of B.
- A structure A is generically computably isomorphic to a structure B if there is a generically computable isomorphism F mapping A to B.

Let A, B be dense coinfinite c.e. sets. Then the structures (\mathbb{N}, A) and (\mathbb{N}, B) are generically computably isomorphic.

Let A, B be dense coinfinite c.e. sets. Then the structures (\mathbb{N}, A) and (\mathbb{N}, B) are generically computably isomorphic.

To do this, take one-to-one enumerations of the two sets, and let θ be the function matching corresponding elements. We define F_0 on A to be θ , and extend F_0 arbitrarily to a total bijection.

Let A, B be dense coinfinite c.e. sets. Then the structures (\mathbb{N}, A) and (\mathbb{N}, B) are generically computably isomorphic.

To do this, take one-to-one enumerations of the two sets, and let θ be the function matching corresponding elements. We define F_0 on A to be θ , and extend F_0 arbitrarily to a total bijection.

If (\mathbb{N}, A) and (\mathbb{N}, B) were computably isomorphic, then A and B would be 1-equivalent.

Let A be an equivalence structure. Then A is computably categorical if and only if one of the following holds:

Let A be an equivalence structure. Then A is computably categorical if and only if one of the following holds:

• A has only finitely many finite classes, or

Let A be an equivalence structure. Then A is computably categorical if and only if one of the following holds:

- A has only finitely many finite classes, or
- A has finitely many infinite classes, there is a bound on the size of the finite classes, and there is at most one k such that A has infinitely many classes of size k.

- A (1,2)-equivalence structure is an equivalence structure having
 - infinitely many classes of size 1,
 - infinitely many classes of size 2,
 - and nothing else.

We say that the equivalence structure $\mathcal{A} = (\mathbb{N}, E)$ has generic character K for a finite subset K of $\mathbb{N} - \{0\}$ if, for each $k \in K$, the set $\mathcal{A}(k)$ has positive asymptotic density and the union $\bigcup_{k \in K} \mathcal{A}(k)$ has asymptotic density one.

If A and B are computable (1,2)-equivalence structures, each having generic character {2}, then A and B are generically computably isomorphic.

- If A and B are computable (1,2)-equivalence structures, each having generic character {2}, then A and B are generically computably isomorphic.
- Any computable (1,2)-equivalence structure A with generic character {2} is generically computably isomorphic to a computable structure C in which the set of elements of size 2 is computable.

If A and B are generically c.e. (1,2)-equivalence structures, each having generic character $\{2\}$, then A and B are generically computably isomorphic.

If \mathcal{A} and \mathcal{B} are isomorphic computable equivalence structures with finitely many infinite classes such that the infinite classes constitute a set of asymptotic density 1 in each structure, then \mathcal{A} and \mathcal{B} are generically computably isomorphic.

If A and B are isomorphic computable equivalence structures with finitely many infinite classes such that the infinite classes constitute a set of asymptotic density 1 in each structure, then A and B are generically computably isomorphic.

It follows that any such structure A is generically computably isomorphic to a computable structure C in which the set of elements that belong to infinite classes is computable.

Let A and B be isomorphic generically c.e. equivalence structures, each with a single infinite class of asymptotic density 1. Then A and B are generically computably isomorphic.

We say that structures \mathcal{A} and \mathcal{B} are <u>weakly generically computably</u> <u>isomorphic</u> if there are a c.e. set C of asymptotic density one, a bijection $\overline{F} : \mathcal{A} \to \mathcal{B}$, and a partial computable function θ with $C \subseteq Dom(\theta)$, which satisfy the following:

(i) C is the domain of a substructure C of A;

- (i) C is the domain of a substructure C of A;
- (ii) $F(x) = \theta(x)$ for all $x \in C$;

- (i) C is the domain of a substructure C of A;
- (ii) $F(x) = \theta(x)$ for all $x \in C$;
- (iii) F[C] has asymptotic density one and is the domain of a substructure C_1 of \mathcal{B} .

- (i) C is the domain of a substructure C of A;
- (ii) $F(x) = \theta(x)$ for all $x \in C$;
- (iii) F[C] has asymptotic density one and is the domain of a substructure C_1 of \mathcal{B} .
- (iv) θ is an isomorphism from C to C_1 .

Theorem

For any k > 1 and any rational number p with 0 , there exist computable <math>(1, k)-equivalence structures A and B such that A(1) and B(1) each have asymptotic density p, which are not weakly generically computably isomorphic.

Remark

We'd like *-isomorphism to be an equivalence relation.

Remark

We'd like *-isomorphism to be an equivalence relation.

We can at least show that this is symmetric and reflexive.

A partial computable function ψ mapping a set *C* to a set *D* is <u>density</u> <u>preserving</u> if for any subset *A* of *C* with asymptotic density *p*, the image $\psi(A)$ also has asymptotic density *p*.

A partial computable function ψ mapping a set *C* to a set *D* is <u>density</u> <u>preserving</u> if for any subset *A* of *C* with asymptotic density *p*, the image $\psi(A)$ also has asymptotic density *p*.

Proposition

Density-preserving generically computable and weakly generically computable isomorphism are transitive.

Question

We know that the composition of two generically computable isomorphisms need not be a generically computable isomorphism. Is it transitive anyway?

Proposition

Suppose that a structure A has a c.e. substructure D on a dense <u>computable</u> set, the domain of D. Then there are a c.e. structure B and a weakly generically computable density preserving isomorphism from A to B.

Proposition

Suppose that a structure A has a c.e. substructure D on a dense <u>computable</u> set, the domain of D. Then there are a c.e. structure B and a weakly generically computable density preserving isomorphism from A to B.

Moreover, if there is a weakly generically computable density preserving isomorphism from A to a c.e. structure, then A is generically computable.

A function F is said to be <u>coarsely computable</u> if and only if there is a total computable function θ such that $\{n : F(n) = \theta(n)\}$ has asymptotic density 1.

We say that an isomorphism $F : A \to B$ from a structure A to a structure B is a coarsely computable isomorphism if there are a set C of asymptotic density one and a (total) computable function θ such that:

We say that an isomorphism $F : A \to B$ from a structure A to a structure B is a coarsely computable isomorphism if there are a set C of asymptotic density one and a (total) computable function θ such that:

• C is the domain of a substructure C of A;

We say that an isomorphism $F : A \to B$ from a structure A to a structure B is a coarsely computable isomorphism if there are a set C of asymptotic density one and a (total) computable function θ such that:

• C is the domain of a substructure C of A;

•
$$F(x) = \theta(x)$$
 for all $x \in C$;

We say that an isomorphism $F : A \to B$ from a structure A to a structure B is a coarsely computable isomorphism if there are a set C of asymptotic density one and a (total) computable function θ such that:

• C is the domain of a substructure C of A;

•
$$F(x) = \theta(x)$$
 for all $x \in C$;

The image F[C] has asymptotic density one and is the domain of a substructure of B.

Theorem

Let $\mathcal{A} = (A, R)$ and $\mathcal{B} = (B, S)$ be isomorphic equivalence structures with generic character $\{1\}$ (that is, both $\mathcal{A}(1)$ and $\mathcal{B}(1)$ have asymptotic density one). Then there is a density preserving coarsely computable isomorphism between \mathcal{A} and \mathcal{B} .

Theorem

Let $\mathcal{A} = (A, R)$ and $\mathcal{B} = (B, S)$ be isomorphic equivalence structures with generic character $\{1\}$ (that is, both $\mathcal{A}(1)$ and $\mathcal{B}(1)$ have asymptotic density one). Then there is a density preserving coarsely computable isomorphism between \mathcal{A} and \mathcal{B} .

Theorem

Let \mathcal{A} have generic character $\{1\}$, and let \mathcal{B} be an equivalence structure, with a coarsely computable isomorphism $F : \mathcal{A} \to \mathcal{B}$. Then $\mathcal{B}(1)$ has asymptotic density 1.

We say that structures \mathcal{A} and \mathcal{B} are weakly coarsely computably isomorphic if there is a set C of asymptotic density one, a bijection $F : \mathcal{A} \to \mathcal{B}$ and a total computable function θ , which satisfy the following:

We say that structures \mathcal{A} and \mathcal{B} are weakly coarsely computably isomorphic if there is a set C of asymptotic density one, a bijection $F : \mathcal{A} \to \mathcal{B}$ and a total computable function θ , which satisfy the following:

•
$$\theta(x) = F(x)$$
 for all $x \in C$;

We say that structures \mathcal{A} and \mathcal{B} are weakly coarsely computably isomorphic if there is a set C of asymptotic density one, a bijection $F : \mathcal{A} \to \mathcal{B}$ and a total computable function θ , which satisfy the following:

•
$$\theta(x) = F(x)$$
 for all $x \in C$;

2 *C* is the domain of a substructure C of A;

We say that structures A and B are weakly coarsely computably isomorphic if there is a set C of asymptotic density one, a bijection $F : A \to B$ and a total computable function θ , which satisfy the following:

•
$$\theta(x) = F(x)$$
 for all $x \in C$;

- **2** *C* is the domain of a substructure C of A;
- The image F[C] also has asymptotic density one and is the universe of a substructure of B.

We say that structures A and B are weakly coarsely computably isomorphic if there is a set C of asymptotic density one, a bijection $F : A \to B$ and a total computable function θ , which satisfy the following:

•
$$\theta(x) = F(x)$$
 for all $x \in C$;

- **2** *C* is the domain of a substructure C of A;
- The image F[C] also has asymptotic density one and is the universe of a substructure of B.
- θ is an isomorphism from C to its image.

Proposition

If a structure A is coarsely computable, then there is a density preserving weakly coarsely computable isomorphism from A to a computable structure.

Proposition

If a structure A is coarsely computable, then there is a density preserving weakly coarsely computable isomorphism from A to a computable structure.

Moreover, if there is a weakly coarsely computable isomorphism from A to a computable structure, then A is coarsely computable.

Proof: Let \mathcal{E} be a computable structure, and let D be a dense set such that the structure \mathcal{D} with domain D is a substructure of both \mathcal{A} and \mathcal{E} , and all relations and functions agree on D.

Proof: Let \mathcal{E} be a computable structure, and let D be a dense set such that the structure \mathcal{D} with domain D is a substructure of both \mathcal{A} and \mathcal{E} , and all relations and functions agree on D.

Then the identity function serves as the desired isomorphism.

Proof: Let \mathcal{E} be a computable structure, and let D be a dense set such that the structure \mathcal{D} with domain D is a substructure of both \mathcal{A} and \mathcal{E} , and all relations and functions agree on D.

Then the identity function serves as the desired isomorphism.

The converse is immediate from the definitions. \Box

Theorem

Suppose that $\mathcal{A} = (\mathbb{N}, R)$ is a computable (1,2)-structure such that $\mathcal{A}(1)$ has asymptotic density q, where 0 < q < 1. Then there are a computable structure \mathcal{B} , such that $\mathcal{B}(1)$ is a computable set with computable asymptotic density q, and a density preserving weakly coarsely computable isomorphism from \mathcal{A} to \mathcal{B} .

Theorem

Suppose that \mathcal{A} and \mathcal{B} are computable (1,2)-equivalence structures with domain \mathbb{N} such that the asymptotic density of $\mathcal{A}(1)$ and $\mathcal{B}(1)$ both equal the same computable real q. Then \mathcal{A} and \mathcal{B} are weakly coarsely computably isomorphic.

Conjecture

Let $K = \{k_1, \ldots, k_n\} \subseteq \mathbb{N} - \{0\}$ be a finite set and let q_1, \ldots, q_n be positive reals such that $q_1 + \cdots + q_n = 1$. Let \mathcal{A} and \mathcal{B} be computable equivalence structures such that $\mathcal{A}(k_i)$ and $\mathcal{B}(k_i)$ have asymptotic density q_i for each i. Then \mathcal{A} and \mathcal{B} are weakly coarsely computably isomorphic.

Densely Computable Structures and Isomorphisms, Part II: Math is About Functions

Wesley Calvert

MSRI July 20, 2022

Wesley Calvert (SIU)

Densely Computable Structures II