Boolean algebras and semi-retractions

Lynn Scow

California State University, San Bernardino

DDC2, 2022, MSRI

This is joint work with Dana Bartošová.

Outline

2 Semi-retractions

③ Categorical perspective

Ages

- Given an L-structure \mathcal{M} , $\operatorname{age}(\mathcal{M})$ is the class of all finitely generated substructures of \mathcal{M} closed under isomorphism.
- \mathcal{M} is **ultrahomogeneous** if any isomorphism between finitely generated substructures of \mathcal{M} extends to an automorphism of \mathcal{M} .
- Fraïssé's theorem: For any countable signature L and countable (up to \cong) nonempty class \mathcal{K} of finitely generated L-structures satisfying HP, JEP and AP, there is a unique (up to \cong) countable structure $\mathcal{F} = \operatorname{Flim}(\mathcal{K})$ such that \mathcal{F} is ultrahomogeneous and $\operatorname{age}(\mathcal{F}) = \mathcal{K}$.
- For any countable structure \mathcal{A} such that $age(\mathcal{A}) \subseteq \mathcal{K}$, there is an embedding of \mathcal{A} in \mathcal{F} .

Ramsey property (RP)

- For structures A and C, let $\binom{C}{A}$ denote all substructures $A' \subseteq C$ such that $A' \cong A$.
- A k-coloring c of $\binom{C}{A}$ is any function $c : \binom{C}{A} \to k$.
- By $C \to (B)_k^A$ we mean that for any k-coloring c of $\binom{C}{A}$, there is $B' \in \binom{C}{B}$ such that for any $A', A'' \in \binom{B'}{A}, c(A') = c(A'')$.

Definition

We say that a class \mathcal{K} of finitely-generated *L*-structures has the **Ramsey** property (**RP**) if for all $A, B \in \mathcal{K}$ and integers $k \geq 2$ there exists $C \in \mathcal{K}$ such that $C \to (B)_k^A$ We say that B' is a copy of *B* homogeneous for *c* (on copies of *A*).

- Given a structure \mathcal{A} , we say that \mathcal{A} has **RP** if $age(\mathcal{A})$ has **RP**.
- Working in \mathcal{A} allows us to sweep some compactness arguments under the rug, e.g. show that for all $A, B, k: \mathcal{A} \to (B)_k^{\mathcal{A}}$ (to show RP: \mathcal{A}).

Examples

- RP: All finite sets in L = ∅.
 RP: All finite linear orders in L = {<}. (order forgetful)
- \neg RP: All finite simple graphs with no loops in $L = \{E\}$ RP: All finite simple graphs with no loops with any ordering on the vertices in $L = \{E, <\}$. (not order forgetful)
- RP: Convexly ordered finite equivalence relations in L = {E, <}.

 ¬ RP: Finite equivalence relations with any ordering on points in L = {E, <}.

- RP: Finite Boolean algebras in L = {∨, ∧, ¬, 0, 1} (Graham-Rothschild, '71) RP: Finite Boolean algebras with natural orders in L = {∨, ∧, ¬, 0, 1, <} (Kechris-Pestov-Todorcevic, '05) (order forgetful)
- RP: $age(\langle \mathbb{Z}, p, s \rangle)$ \neg RP: $age(\langle \mathbb{Z}, s \rangle)$
- \bullet board #3 ...

• Rigidity can be accomplished with a definable linear order:

Definition

We say that a structure A is \mathbf{rigid} if the only automorphism of A is the identity map.

Proposition

If $age(\mathcal{B})$ consists of rigid elements, then for any $C, C' \in age(\mathcal{B})$, if $C \cong_{\mathcal{B}} C'$, then this is witnessed by a unique isomorphism $\tau : C \to C'$.

• Given length-*n* sequences $\bar{\imath}, \bar{\jmath}$ from some structure \mathcal{M} , by

$$\overline{\imath} \sim_{\mathcal{M}} \overline{\jmath}$$

we mean that $qftp^{\mathcal{M}}(\bar{\imath}) = qftp^{\mathcal{M}}(\bar{\jmath}).$

 Given any structures A, B, we say that an injection h : A → B is *qftp-respecting* if for all finite, same-length tuples *i*, *j* from A,

$$\overline{\imath} \sim_{\mathcal{A}} \overline{\jmath} \Rightarrow h(\overline{\imath}) \sim_{\mathcal{B}} h(\overline{\jmath}).$$

• Not to be mysterious, $h(\overline{i}) := (h(i_0), \dots, h(i_{n-1}))$.

Definition

Let \mathcal{A}, \mathcal{B} be any structures. We say that \mathcal{A} is a semi-retract of \mathcal{B} (via (g, f)) if

- $\textbf{0} there exist qftp-respecting injections: \mathcal{A} \xrightarrow{g} \mathcal{B} \xrightarrow{f} \mathcal{A}$
- **2** such that: $\mathcal{A} \xrightarrow{fg} \mathcal{A}$ is an embedding

Say (g, f) is a semi-retraction between \mathcal{A} and \mathcal{B} .

 \bullet board #1...

Terminology history

• From [Ahlbrandt and Ziegler(1986)]:

Definition

Given countable, \aleph_0 -categorical structures \mathcal{A} and \mathcal{B} , \mathcal{A} is a **retraction** of \mathcal{B} if there exist interpretations $f : \mathcal{A} \rightsquigarrow \mathcal{B} g : \mathcal{B} \rightsquigarrow \mathcal{A}$ such that $g \circ f$ is homotopic to the identity interpretation on \mathcal{A} .

Theorem (T. Coquand)

Given countable \aleph_0 -categorical structures \mathcal{A} and \mathcal{B} , \mathcal{A} is a retraction of \mathcal{B} iff there are continuous homomorphisms

$$Aut(\mathcal{A}) \xrightarrow{\varphi} Aut(\mathcal{B}) \xrightarrow{\psi} Aut(\mathcal{A})$$

such that $\psi \circ \varphi = 1$.

• In contrast, semi-retraction maps are pointwise on the underlying sets:

$$\mathcal{A} \xrightarrow{g} \mathcal{B} \xrightarrow{f} \mathcal{A}$$

such that fg is an embedding.

 \bullet board #2...

Reducts

- $\bullet\,$ Reducts of structures with RP do not necessarily have RP (could lose AP, rigidity, ...)
- We will use this definition:

Definition

We say that \mathcal{A} is a **quantifier-free reduct** of \mathcal{B} if $|\mathcal{A}| = |\mathcal{B}| = M$ and $\sim_{\mathcal{B}}$ refines $\sim_{\mathcal{A}}$ on M, i.e. for all finite same-length tuples $\bar{\imath}, \bar{\jmath}$ from $|\mathcal{A}|, \bar{\imath} \sim_{\mathcal{B}} \bar{\jmath} \Rightarrow \bar{\imath} \sim_{\mathcal{A}} \bar{\jmath}$.

- Note: \mathcal{A} is a quantifier-free reduct of \mathcal{B} if and only if $|\mathcal{A}| = |\mathcal{B}|$ and the identity map $id : \mathcal{B} \to \mathcal{A}$ is qftp-respecting.
- We say that \mathcal{A}, \mathcal{B} are **quantifier-free interdefinable** if $|\mathcal{A}| = |\mathcal{B}|$ and each of \mathcal{A}, \mathcal{B} is a quantifier-free reduct of the other.
- Note: If \mathcal{A}, \mathcal{B} are quantifier-free interdefinable, then the identity maps between \mathcal{A}, \mathcal{B} give a semi-retraction (in either order).

Results

• Previous results

Theorem ([Scow(2021)])

Let \mathcal{A} and \mathcal{B} be any structures. Suppose that \mathcal{A} is a semi-retract of \mathcal{B} . Furthermore, suppose that \mathcal{B} -indexed indiscernible sets have the modeling property. Then \mathcal{A} -indexed indiscernible sets have the modeling property.

Corollary

Let both \mathcal{A} and \mathcal{B} be locally finite ordered structures. Suppose that \mathcal{A} is a semi-retract of \mathcal{B} and \mathcal{B} has RP. Then \mathcal{A} has RP.

• Newer results

Theorem ([Bartošová and Scow()])

Let \mathcal{A}, \mathcal{B} be structures in any signatures and suppose that \mathcal{A} is a semi-retract of \mathcal{B} . Suppose that \mathcal{A} is locally finite and $age(\mathcal{B})$ consists of rigid elements. If \mathcal{B} has RP, then \mathcal{A} has RP.

• The rigidity and local finiteness assumptions can be dropped if both ${\cal A}$ and ${\cal B}$ are in relational signatures.

Background 0000 Semi-retractions

Categorical perspective 0000

Nonlocally finite example

- $\mathcal{A} = (\mathbb{Z}, s)$ (not locally finite) is a semi-retract of $\mathcal{B} = (\mathbb{Z}, s, p)$ (non-rigid age)
- The identity maps on the underlying sets give a semi-retraction (\mathcal{A}, \mathcal{B} are qf-interdefinable):

$$\mathcal{A} \xrightarrow{id} \mathcal{B} \xrightarrow{id} \mathcal{A}$$

The transfer theorem does not apply because both ${\cal A}$ and ${\cal B}$ fail to satisfy the conditions.

- **RP**: \mathcal{B} **RP**: \mathcal{B} , \neg **RP**: \mathcal{A} .
- \bullet board #4...
- A slight modification gives an example on \mathbb{N} :
- $\mathcal{A}' = (\mathbb{N}, p)$ define p(0) = 0 (locally finite + rigid age) is a semi-retract of $\mathcal{B}' = (\mathbb{N}, s, p)$ (rigid age)
- The identity maps on the underlying sets give a semi-retraction ($\mathcal{A}', \mathcal{B}'$ are qf-interdefinable):

$$\mathcal{A}' \xrightarrow{id} \mathcal{B}' \xrightarrow{id} \mathcal{A}'$$

- RP: $\mathcal{B}' \Rightarrow$ RP: \mathcal{A}' . RP: \mathcal{B}' (trivially) RP: \mathcal{A}' !!
- Fun question: what is the Fraïssé limit of $age(\mathcal{A}')$? It should have one.

Boolean algebras

- If A is a finite Boolean algebra, a linear order $<_A$ on A is **natural** if it is the antilexicographic order on A induced by some linear order on the atoms of A.
- The ordered Boolean algebra $(\mathcal{B}_{ba}, \prec)$ is the Fraïssé limit of the class of finite Boolean algebras with natural linear orders. We refer to \prec as a **normal** order on \mathcal{B}_{ba} .
- We say that B = {b_i : i < ω} is an antichain if the elements are pairwise disjoint, i.e. b_i ∧ b_j = 0 for every i ≠ j.

Ordered and unordered

Theorem

 $(\mathcal{R}, <)$ (locally finite) is a semi-retract of $(\mathcal{B}_{ba}, \prec)$ (rigid age).

- By the transfer theorem, RP should transfer from $(\mathcal{B}_{ba}, \prec)$ to $(\mathcal{R}, <)$.
- RP: $(\mathcal{B}_{ba}, \prec)$ RP: $(\mathcal{R}, <)$

Theorem

 $\mathcal{A} := \mathcal{R} \text{ (locally finite) is a semi-retract of } \mathcal{B} := \mathcal{B}_{ba} \text{ (non-rigid age)}.$

- $\bullet\,$ The transfer theorem does not apply because ${\mathcal B}$ fails to satisfy the rigidity condition.
- RP: \mathcal{B}_{ba}
 - $\neg \ \mathrm{RP} \colon \mathcal{R}$

Background 0000 Semi-retractions

Categorical perspective $\circ 000$

Categorical notions

• In [Mašulović and Scow(2017)] we determined that adjunctions transfer RP. Mašulović has found a more general notion that is sufficient to transfer RP:

Definition

Let **C** and **D** be categories and let $F : \operatorname{Ob}(\mathbf{D}) \rightleftharpoons \operatorname{Ob}(\mathbf{C}) : G$ be maps on objects. We say that (F, G) is a **pre-adjunction** if for every $A \in \operatorname{Ob}(\mathbf{D})$ and $C \in \operatorname{Ob}(\mathbf{C})$ we have a map

$$\Phi_{A,C}$$
: hom_C(F(A), C) \rightarrow hom_D(A, G(C)),

such that

$$\forall A, B \in \mathrm{Ob}(\mathbf{D}) \ \forall C \in \mathrm{Ob}(\mathbf{C}) \ \forall v \in \hom_{\mathbf{D}}(A, B) \ \forall \psi \in \hom_{\mathbf{C}}(F(B), C)$$

 $\exists w \in \hom_{\mathbf{C}}(F(A), F(B)) \text{ such that } \Phi_{A,C}(\psi \circ w) = \Phi_{B,C}(\psi) \circ v.$

Theorem ([Mašulović(2018)])

If **C** has the Ramsey property ("for morphisms") and $F : Ob(\mathbf{D}) \rightleftharpoons Ob(\mathbf{C}) : G$ is a **pre-adjunction**, then **D** has the Ramsey property ("for morphisms").

 If an age K consists of rigid elements and we consider Ob(C) := K and embeddings as morphisms then the above Ramsey property ("for morphisms") is equivalent to the RP as we defined it.

Pre-adjunctions

• semi-retractions \Rightarrow pre-adjunctions

Theorem

Any semi-retraction (g, f) between \mathcal{A} and \mathcal{B} defines a pre-adjunction between the categories of finite tupes of \mathcal{A} and \mathcal{B} , respectively, with qftp-preserving injections.

• More specifically, in the category in which we determine the RP:

Theorem

Let \mathcal{A} and \mathcal{B} be locally finite and let (g, f) be a semi-retraction between \mathcal{A} and \mathcal{B} . Then there is a pre-adjunction between $age(\mathcal{A})$ and $age(\mathcal{B})$ with embeddings as morphisms.

• Question: can any pre-adjunction be understood somehow as pointwise maps, as in the case of semi-retractions?

When are transfers witnessed by semi-retractions

• Among reducts of a structure with RP: semi-retractions characterize those with RP, under simplifying assumptions for \mathcal{B} :

Theorem

Fix locally finite ordered structures \mathcal{A} and \mathcal{B} and suppose that \mathcal{A} is a quantifier-free reduct of \mathcal{B} and \mathcal{B} is saturated.

Suppose that there are only finitely many quantifier-free n-types in \mathcal{B} for any $n \geq 1$.

Suppose that \mathcal{B} has RP. Then, \mathcal{A} is a semi-retract of \mathcal{B} if and only if \mathcal{A} has RP.

Backgro	

References

Gisela Ahlbrandt and Martin Ziegler. Quasi-finitely axiomatizable totally categorical theories. Ann. Pure Appl. Logic, 30(1):63–82, 1986.

Dana Bartošová and Lynn Scow.

A new perspective on semi-retractions and the Ramsey property. (preprint).

Dragan Mašulović.

Pre-adjunctions and the Ramsey property. European J. Combin., 70:268–283, 2018.

Dragan Mašulović and Lynn Scow.

Categorical equivalence and the Ramsey property for finite powers of a primal algebra.

Algebra Universalis, 78(2):159-179, 2017.

Lynn Scow.

Ramsey transfer to semi-retractions.

Ann. Pure Appl. Logic, 172(3):Paper No. 102891, 18, 2021.