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Introduction

Yuri Matiyasevich, 1970
Th∃ (Z) is undecidable.

Question
What about Th∃ (Q)?

Given any field K and a natural number n, we say that a given set A ⊆ Kn

is diophantine over K , or first-order existentially defined over K (or simply
"existentially defined") if there exists m ∈ N and
P ∈ K [X1, · · · ,Xm,Y1, · · · ,Yn] such that, for any a = (a1, · · · , an) ∈ Kn,
we have a ∈ A if and only if there exist x1, · · · , xm ∈ K such that
P (x1, · · · , xm, a1, · · · , an) = 0.
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Yuri Matiyasevich, 1970
Th∃ (Z) is undecidable.

Question
What about Th∃ (Q)?

Given any field K and a natural number n, we say that a given set A ⊆ Kn

is diophantine over K , or first-order existentially defined over K (or simply
"existentially defined") if there exists m ∈ N and
P ∈ K [X1, · · · ,Xm,Y1, · · · ,Yn] such that, for any a = (a1, · · · , an) ∈ Kn,
we have a ∈ A if and only if there exist x1, · · · , xm ∈ K such that
P (x1, · · · , xm, a1, · · · , an) = 0.

If Z were diophantine over Q, Th∃ (Z) would be interpretable in Th∃ (Q),
yielding undecidability of Th∃ (Q).
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Introduction

Question
Is Z diophantine over Q?

A very elementary argument shows that if Z is diophantine, so is Q \ Z (i.e.,
Z is universally defined in Q).

Koenigsmann, 2010
There exist n ∈ N and g ∈ Z [t, x1, · · · , xn] such that, given t ∈ Q, we have
t ∈ Z if and only if

Q ⊨ ∀x1 · · · ∀xn (g (t, x1, · · · , xn) ̸= 0)
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Koenigsmann, 2010
Z is universal in Q.

Jennifer Park, 2012
Given a number field K , OK is universal in K .

K. Eisentraeger & T. Morrison, 2018
Given a global field K and a finite subset S of finite places of K , S-integers
of K are universal in K .

The two last results are clever generalizations of the same techniques and
methods developed by Koenigsmann in 2010.
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Koenigsmann, 2010
Z is universal in Q.

Jennifer Park, 2012
Given a number field K , OK is universal in K .

K. Eisentraeger & T. Morrison, 2018
Given a global field K and a finite subset S of finite places of K , S-integers
of K are universal in K .

Complexity was also measured.

Geng-Rui Zhang & Zhi-Wei Sun, 2021
The universal definition for Z in Q can be taken to involve a polynomial with
32 unknowns and degree at most 6 · 1011.
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Introduction

The first aim of this talk is to present some minor improvements on these
techniques which will allow us to find more elementary proofs for these
results. The second one will involve attacking our main question by finding a
convenient spectrum of sets between Z and Q.

Some examples of such intermediate sets:
Z
[1

2

]
.

Z
[ 1
S

]
, S an infinite set of primes.

Z
[
(P \ S)−1

]
, where P is the set of all positive prime numbers and S

is a finite subset of P.
Campana points.
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Introduction

Given n ∈ N, the set Rn of n-Campana points is the set of all rational
numbers r ∈ Q such that either r = 0 or r ̸= 0 and for all p ∈ P,
νp

(
r−1) ∈ {0} ∪ N≥n.
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Introduction

Given n ∈ N, the set Rn of n-Campana points is the set of all rational
numbers r ∈ Q such that either r = 0 or r ̸= 0 and for all p ∈ P,
νp

(
r−1) ∈ {0} ∪ N≥n.

We have R1 = Q, Rj+1 ⊆ Rj for all j ∈ N, and⋂
j∈N

Rj = Z.

Question
Can we find a good first-order definition for Campana points?
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Preliminary facts

Definition
Given a field k , the (quadratic) Hilbert Symbol is the function
(−,−) : k× × k× → {±1} defined as

(a, b) =

{
1, z2 − ax2 − by2 = 0 has a nontrivial solution,
−1, otherwise.
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Preliminary facts

Definition
Given a field k , the (quadratic) Hilbert Symbol is the function
(−,−) : k× × k× → {±1} defined as

(a, b) =

{
1, z2 − ax2 − by2 = 0 has a nontrivial solution,
−1, otherwise.

If p ∈ P ∪ {∞} and a, b ∈ Q×
p , we let (a, b)p be the Hilbert symbol in Qp.

There are two very important results in Number Theory about Hilbert
symbols. First, there is an explicit formula, in terms of Legendre Symbols, to
compute Hilbert symbols. Second, a local-to-global principle.
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Preliminary facts

Computation of Hilbert symbols

If p ∈ P ∪ {∞} and a, b ∈ Q×
p , define uℓ :=

a
ℓνℓ(a)

∈ Z×
ℓ and

vℓ :=
b

ℓνℓ(b)
∈ Z×

ℓ for each ℓ ∈ P. Then we have:
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Preliminary facts

Computation of Hilbert symbols

If p ∈ P ∪ {∞} and a, b ∈ Q×
p , define uℓ :=

a
ℓνℓ(a)

∈ Z×
ℓ and

vℓ :=
b

ℓνℓ(b)
∈ Z×

ℓ for each ℓ ∈ P. Then we have:

If p = ∞, then (a, b)∞ = −1 if and only if a < 0 and b < 0. Otherwise,
(a, b)∞ = 1.
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Preliminary facts

Computation of Hilbert symbols

If p ∈ P ∪ {∞} and a, b ∈ Q×
p , define uℓ :=

a
ℓνℓ(a)

∈ Z×
ℓ and

vℓ :=
b

ℓνℓ(b)
∈ Z×

ℓ for each ℓ ∈ P. Then we have:

If p = 2, then

(a, b)2 = (−1)
u2 − 1

2
× v2 − 1

2
+ ν2 (a)

v2
2 − 1
8

+ ν2 (b)
u2
2 − 1
8

(here the exponents are replaced by an element of Z/2Z via reduction
modulo 2).
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Preliminary facts

Computation of Hilbert symbols

If p ∈ P ∪ {∞} and a, b ∈ Q×
p , define uℓ :=

a
ℓνℓ(a)

∈ Z×
ℓ and

vℓ :=
b

ℓνℓ(b)
∈ Z×

ℓ for each ℓ ∈ P. Then we have:

If p ∈ P \ {2},

(a, b)p =

(
up
p

)νp(b)(vp
p

)νp(a)

︸ ︷︷ ︸
Legendre symbols

(−1)νp(a)νp(b)
p−1
2 .
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Preliminary facts

Local-to-global principle
Let I be a finite set and fix {ai}i∈I ⊆ Q×. For each (i , v) ∈ I × (P ∪ {∞})
fix εi ,v ∈ {−1, 1}. The following are equivalent:

There exists x ∈ Q× such that (ai , x)v = εi ,v for all
(i , v) ∈ I × (P ∪ {∞}).
All these conditions hold:

1 εi,v = 1 for all but finitely many (i , v) ∈ I × (P ∪ {∞}).
2 For all i ∈ I we have

∏
v∈P∪{∞}

εi,v = 1.

3 For all v ∈ P ∪ {∞} there exists xv ∈ Q× such that (ai , xv )v = εi,v for
all i ∈ I .
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Several definitions

For each a, b, c ∈ Q× we define:
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Ha,b := Q⊕Qα⊕Qβ ⊕Qαβ, with multiplication defined as α2 := a,
β2 := b, αβ = −βα.
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β2 := b, αβ = −βα.
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Sa,b :=

{
2x1 : (x1, x2, x3, x4) ∈ Q4 ∧ x2

1 − ax2
2 − bx2

3 + abx2
4 = 1

}
.
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a,b := {u ∈ Ta,b : ∃v ∈ Ta,b (uv = 1)}.
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I ca,b := c ·Q2 · T×
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(
1 −Q2 · T×

a,b

)
.

Ja,b =
(
I aa,b + I aa,b

)
∩
(
I ba,b + I ba,b

)
.

Some facts
Given a, b ∈ Q× and p ∈ P ∪ {∞}, we have p ∈ ∆a,b if and only if
(a, b)p = −1.
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Ha,b := Q⊕Qα⊕Qβ ⊕Qαβ, with multiplication defined as α2 := a,
β2 := b, αβ = −βα.
∆a,b := {p ∈ P ∪ {∞} : Ha,b ⊗Q Qp ̸∼= M2 (Qp)}.
Sa,b :=

{
2x1 : (x1, x2, x3, x4) ∈ Q4 ∧ x2

1 − ax2
2 − bx2

3 + abx2
4 = 1

}
.

Ta,b := Sa,b + Sa,b (a diophantine subset of Q).
T×
a,b := {u ∈ Ta,b : ∃v ∈ Ta,b (uv = 1)}.

I ca,b := c ·Q2 · T×
a,b ∩

(
1 −Q2 · T×

a,b

)
.

Ja,b =
(
I aa,b + I aa,b

)
∩
(
I ba,b + I ba,b

)
.

Some facts
Given a, b ∈ Q× and p ∈ P ∪ {∞}, we have p ∈ ∆a,b if and only if
(a, b)p = −1.

{(a, b, r) ∈ Q× ×Q× ×Q : r ∈ Ja,b} is diophantine over Q.
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A parametrization of the finite sets of primes

For each a, b ∈ Q× we define

∆a,b :=

{
∆a,b \ {2,∞} , 2 ∈ ∆a,b and ν2 (a) , ν2 (b) are even,
∆a,b \ {∞} , else.
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Lemma
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A parametrization of the finite sets of primes

Lemma

If a, b ∈ Q× then Ja,b =
⋂

p∈∆a,b

pZ(p).

Corollary

If a, b, c , d ∈ Q× then Ja,b + Jc,d =
⋂

p∈∆a,b∩∆c,d

pZ(p).

In particular, ∆a,b ∩∆c,d = ∅ if and only if 1 ∈ Ja,b + Jc,d .
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A parametrization of the finite sets of primes

Lemma

If a, b ∈ Q× then Ja,b =
⋂

p∈∆a,b

pZ(p).

Corollary

If a, b, c , d ∈ Q× then Ja,b + Jc,d =
⋂

p∈∆a,b∩∆c,d

pZ(p).

In particular, ∆a,b ∩∆c,d = ∅ if and only if 1 ∈ Ja,b + Jc,d . This is a
(uniformly on a, b, c , d) diophantine property.
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A parametrization of the finite sets of primes

Lemma

If a, b ∈ Q× then Ja,b =
⋂

p∈∆a,b

pZ(p).

Corollary

If a, b, c , d ∈ Q× then Ja,b + Jc,d =
⋂

p∈∆a,b∩∆c,d

pZ(p).

In particular, ∆a,b ∩∆c,d = ∅ if and only if 1 ∈ Ja,b + Jc,d . This is a
(uniformly on a, b, c , d) diophantine property. Hence:

Corollary{
(a, b, c, d) ∈ Q× ×Q× ×Q× ×Q× : ∆a,b ∩∆c,d = ∅

}
is a diophantine

subset of Q×Q×Q×Q.
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A parametrization of the finite sets of primes

∆a,b :=

{
∆a,b \ {2,∞} , 2 ∈ ∆a,b and ν2 (a) , ν2 (b) are even,
∆a,b \ {∞} , else.

Theorem
If S is any finite subset of P, there exist a, b ∈ Q× such that ∆a,b = S .
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A parametrization of the finite sets of primes

∆a,b :=

{
∆a,b \ {2,∞} , 2 ∈ ∆a,b and ν2 (a) , ν2 (b) are even,
∆a,b \ {∞} , else.

Theorem
If S is any finite subset of P, there exist a, b ∈ Q× such that ∆a,b = S .

Something slightly stronger is true.

Theorem
If S is any finite subset of P, there exist a, b ∈ Q× such that
∆a,b \ {∞} = S , and such that ∞ ∈ ∆a,b if and only if |S | is odd.
Moreover, if 2 ∈ S , we can further have ν2 (a) = 1.
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A parametrization of the finite sets of primes

Theorem
If S is any finite subset of P, there exist a, b ∈ Q× such that
∆a,b \ {∞} = S , and such that ∞ ∈ ∆a,b if and only if |S | is odd.
Moreover, if 2 ∈ S , we can further have ν2 (a) = 1.

Idea of the proof: For S = ∅ take a = b = 1.
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A parametrization of the finite sets of primes

Theorem
If S is any finite subset of P, there exist a, b ∈ Q× such that
∆a,b \ {∞} = S , and such that ∞ ∈ ∆a,b if and only if |S | is odd.
Moreover, if 2 ∈ S , we can further have ν2 (a) = 1.

Idea of the proof: For S = ∅ take a = b = 1. Otherwise, define
a := (−1)|S |

∏
p∈S yp.

Juan Pablo De Rasis (OSU) MSRI July 28th, 2022



A parametrization of the finite sets of primes

Theorem
If S is any finite subset of P, there exist a, b ∈ Q× such that
∆a,b \ {∞} = S , and such that ∞ ∈ ∆a,b if and only if |S | is odd.
Moreover, if 2 ∈ S , we can further have ν2 (a) = 1.

Idea of the proof: For S = ∅ take a = b = 1. Otherwise, define
a := (−1)|S |

∏
p∈S yp. We want to find b ∈ Q× such that (a, b)p = −1 if

and only if p ∈ S .
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A parametrization of the finite sets of primes

Theorem
If S is any finite subset of P, there exist a, b ∈ Q× such that
∆a,b \ {∞} = S , and such that ∞ ∈ ∆a,b if and only if |S | is odd.
Moreover, if 2 ∈ S , we can further have ν2 (a) = 1.

Idea of the proof: For S = ∅ take a = b = 1. Otherwise, define
a := (−1)|S |

∏
p∈S yp. We want to find b ∈ Q× such that (a, b)p = −1 if

and only if p ∈ S . By the local-to-global principle, it suffices to find, for
each v ∈ P ∪ {∞}, some bv with (a, bv ) = −1 if v ∈ S and (a, bv ) = 1 if
v ∈ P \ S .
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A parametrization of the finite sets of primes

Theorem
If S is any finite subset of P, there exist a, b ∈ Q× such that
∆a,b \ {∞} = S , and such that ∞ ∈ ∆a,b if and only if |S | is odd.
Moreover, if 2 ∈ S , we can further have ν2 (a) = 1.

Idea of the proof: For S = ∅ take a = b = 1. Otherwise, define
a := (−1)|S |

∏
p∈S yp. We want to find b ∈ Q× such that (a, b)p = −1 if

and only if p ∈ S . By the local-to-global principle, it suffices to find, for
each v ∈ P ∪ {∞}, some bv with (a, bv ) = −1 if v ∈ S and (a, bv ) = 1 if
v ∈ P \ S .
By the formula for (−,−)p, this reduces to a clever Chinese Remainder
Theorem construction.
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A parametrization of the finite sets of primes

Theorem
If S is any finite subset of P, there exist a, b ∈ Q× such that
∆a,b \ {∞} = S , and such that ∞ ∈ ∆a,b if and only if |S | is odd.
Moreover, if 2 ∈ S , we can further have ν2 (a) = 1.

Idea of the proof: For S = ∅ take a = b = 1. Otherwise, define
a := (−1)|S |

∏
p∈S yp. We want to find b ∈ Q× such that (a, b)p = −1 if

and only if p ∈ S . By the local-to-global principle, it suffices to find, for
each v ∈ P ∪ {∞}, some bv with (a, bv ) = −1 if v ∈ S and (a, bv ) = 1 if
v ∈ P \ S .
By the formula for (−,−)p, this reduces to a clever Chinese Remainder
Theorem construction (use the archimedean place to fix signs and get the
technical conditions in the local-to-global principle).
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Some additional observations

Remember: {(a, b, r) ∈ Q× ×Q× ×Q : r ∈ Ja,b} is diophantine over Q.
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Some additional observations

Remember: {(a, b, r) ∈ Q× ×Q× ×Q : r ∈ Ja,b} is diophantine over Q.

Definition
For each n ∈ N define

Ja,b,n :=
n∏

i=1

Ja,b (set-theoretically)
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Some additional observations

Remember: {(a, b, r) ∈ Q× ×Q× ×Q : r ∈ Ja,b} is diophantine over Q.

Definition
For each n ∈ N define

Ja,b,n :=
n∏

i=1

Ja,b =
⋂

p∈∆a,b

pnZ(p).
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Some additional observations

Remember: {(a, b, r) ∈ Q× ×Q× ×Q : r ∈ Ja,b} is diophantine over Q.

Definition
For each n ∈ N define

Ja,b,n :=
n∏

i=1

Ja,b =
⋂

p∈∆a,b

pnZ(p).

So we have

(Ja,b,n \ {0})−1 =
⋂

p∈∆a,b

(
pnZ(p) \ {0}

)−1
.
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Some additional observations

Remember: {(a, b, r) ∈ Q× ×Q× ×Q : r ∈ Ja,b} is diophantine over Q.

Definition
For each n ∈ N define

Ja,b,n :=
n∏

i=1

Ja,b =
⋂

p∈∆a,b

pnZ(p).

So we have (Ja,b,n \ {0})−1 =
⋂

p∈∆a,b

(
pnZ(p) \ {0}

)−1 and

Proposition
{(a, b, r) ∈ Q× ×Q× ×Q : r ∈ Ja,b,n \ {0}} and{
(a, b, r) ∈ Q× ×Q× ×Q : r ∈ (Ja,b,n \ {0})−1

}
are diophantine over Q.
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Completing our first aim

Theorem
The set

{
(a, b, r) ∈ Q× ×Q× ×Q : r is integral outside ∆a,b

}
∪

({0} ×Q×Q) ∪ (Q× {0} ×Q) is universal in Q×Q×Q.
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Completing our first aim

Theorem
The set

{
(a, b, r) ∈ Q× ×Q× ×Q : r is integral outside ∆a,b

}
∪

({0} ×Q×Q) ∪ (Q× {0} ×Q) is universal in Q×Q×Q.

Proof. A defining formula for this set is

∀c∀d
([

abcd ̸= 0 ∧∆a,b ∩∆c,d = ∅
]
⇒ r ̸∈ (Jc,d \ {0})−1

)
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⇒ r ̸∈ (Jc,d \ {0})−1︸ ︷︷ ︸
Universal
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Completing our first aim

Theorem
The set

{
(a, b, r) ∈ Q× ×Q× ×Q : r is integral outside ∆a,b

}
∪

({0} ×Q×Q) ∪ (Q× {0} ×Q) is universal in Q×Q×Q.

Proof. A defining formula for this set is

∀c∀d

[
abcd ̸= 0 ∧∆a,b ∩∆c,d = ∅

]
︸ ︷︷ ︸

Existential

⇒ r ̸∈ (Jc,d \ {0})−1︸ ︷︷ ︸
Universal


︸ ︷︷ ︸

Universal ∨ Universal
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Completing our first aim

Theorem
The set

{
(a, b, r) ∈ Q× ×Q× ×Q : r is integral outside ∆a,b

}
∪

({0} ×Q×Q) ∪ (Q× {0} ×Q) is universal in Q×Q×Q.

Proof. A defining formula for this set is

∀c∀d

[
abcd ̸= 0 ∧∆a,b ∩∆c,d = ∅

]
︸ ︷︷ ︸

Existential

⇒ r ̸∈ (Jc,d \ {0})−1︸ ︷︷ ︸
Universal


︸ ︷︷ ︸

Universal ∨ Universal = Universal
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Completing our first aim

Theorem
The set

{
(a, b, r) ∈ Q× ×Q× ×Q : r is integral outside ∆a,b

}
∪

({0} ×Q×Q) ∪ (Q× {0} ×Q) is universal in Q×Q×Q.

Proof. A defining formula for this set is

∀c∀d

[
abcd ̸= 0 ∧∆a,b ∩∆c,d = ∅

]
︸ ︷︷ ︸

Existential

⇒ r ̸∈ (Jc,d \ {0})−1︸ ︷︷ ︸
Universal


︸ ︷︷ ︸

Universal ∨ Universal = Universal

.

This proves what we want. ■

If you want to get the original result for a specific S , just use the above
formula, but instead of letting a and b be unknowns, let them be some fixed
elements of Q× such that ∆a,b = S .
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Completing our first aim

I repeated the above proof trying to be as explicit as I can to find the number
of unknowns and a bound for the degree of the polynomial in the formula.
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Completing our first aim

I repeated the above proof trying to be as explicit as I can to find the
number of unknowns and a bound for the degree of the polynomial in the
formula. By doing so, I attained this more specific statement:

Theorem
There exists P ∈ Z [A,B,R,X1, · · · ,X250] of degree at most 128 such that,
for any a, b, r ∈ Q, the following are equivalent:

ab = 0 or ab ̸= 0 and r is integral outside ∆a,b.
For all x1, · · · , x250 ∈ Q we have P (a, b, r , x1, · · · , x250) ̸= 0.
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What about Campana points?

As for Campana points, we can also give a nice formula.
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What about Campana points?

As for Campana points, we can also give a nice formula. If n ∈ N, Rn is
defined by the Q-formula

∀a∀b
(
r ∈ (Ja,b \ {0})−1 ⇒ r ∈ (Ja,b,n \ {0})−1

)
.
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What about Campana points?

As for Campana points, we can also give a nice formula. If n ∈ N, Rn is
defined by the Q-formula

∀a∀b

r ∈ (Ja,b \ {0})−1︸ ︷︷ ︸
Existential

⇒ r ∈ (Ja,b,n \ {0})−1︸ ︷︷ ︸
Existential︸ ︷︷ ︸

Universal ∨ Existential

 .
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What about Campana points?

As for Campana points, we can also give a nice formula. If n ∈ N, Rn is
defined by the Q-formula

∀a∀b


r ∈ (Ja,b \ {0})−1︸ ︷︷ ︸

Existential

⇒ r ∈ (Ja,b,n \ {0})−1︸ ︷︷ ︸
Existential︸ ︷︷ ︸

Universal ∨ Existential


.

We can turn this into a ∀∃-definition by taking our boxed universal and
turning it into a ∀∃; because x ̸= 0 is the same as ∃y (xy = 1).
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Upcoming research

My next objective will be generalizing this to arbitrary number fields.
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Upcoming research

My next objective will be generalizing this to arbitrary number fields.

All the technical details have already been generalized by Dr. Jennifer Park
in her 2012 work, thus the above proof will also work for number fields
providing that the important result (namely, that ∆a,b runs through all finite
subsets of finite places) can also be shown to be true in this more general
setting.
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in her 2012 work, thus the above proof will also work for number fields
providing that the important result (namely, that ∆a,b runs through all finite
subsets of finite places) can also be shown to be true in this more general
setting.

This is not as easy as it seems.
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Upcoming research

My next objective will be generalizing this to arbitrary number fields.

All the technical details have already been generalized by Dr. Jennifer Park
in her 2012 work, thus the above proof will also work for number fields
providing that the important result (namely, that ∆a,b runs through all finite
subsets of finite places) can also be shown to be true in this more general
setting.

This is not as easy as it seems. The generalization is straightforward for
number fields with at least one real infinite place (remember that we needed
such a place to make a sign correction).
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Upcoming research

My next objective will be generalizing this to arbitrary number fields.

All the technical details have already been generalized by Dr. Jennifer Park
in her 2012 work, thus the above proof will also work for number fields
providing that the important result (namely, that ∆a,b runs through all finite
subsets of finite places) can also be shown to be true in this more general
setting.

This is not as easy as it seems. The generalization is straightforward for
number fields with at least one real infinite place (remember that we needed
such a place to make a sign correction). For number fields with no real
infinite places, it seems that a more clever use of the Chinese Remainder
Theorem will be needed.
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The end

THANK YOU
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