# Forcing in Algebraic Field Extensions of the Rationals

### **Russell Miller**

Queens College & CUNY Graduate Center

#### DDC-2 program 4 August 2022 Mathematical Sciences Research Institute

(Joint work with Kirsten Eisenträger, Caleb Springer, and Linda Westrick.)

### Intuition for "general tendency"

The equation  $X^5 + Y^5 = 1$  has no nonzero solutions in  $\mathbb{Q}$ . However, it has plenty of solutions in  $\overline{\mathbb{Q}}$ , and if we choose a subfield *F* of  $\overline{\mathbb{Q}}$  "at random," it seems near-certain that *F* will contain such a solution.

### Intuition for "general tendency"

The equation  $X^5 + Y^5 = 1$  has no nonzero solutions in  $\mathbb{Q}$ . However, it has plenty of solutions in  $\overline{\mathbb{Q}}$ , and if we choose a subfield *F* of  $\overline{\mathbb{Q}}$  "at random," it seems near-certain that *F* will contain such a solution.

More rigorously: no matter which (finitely many) elements have already been included in *F* or excluded from *F*, there will still remain infinitely many solutions in  $\overline{\mathbb{Q}}$  that could yet appear in *F*.

(Indeed, for infinitely many  $q \in \mathbb{Q}$ ,  $\sqrt[5]{1-q^5}$  could yet appear, and each of these has degree 5 over  $\mathbb{Q}$ .)

### **Another example**

The equation  $X^2 - 2Y^2 = 0$  has no nonzero solutions in  $\mathbb{Q}$ . However, it has plenty of solutions in  $\overline{\mathbb{Q}}$ ....

### **Another example**

The equation  $X^2 - 2Y^2 = 0$  has no nonzero solutions in  $\mathbb{Q}$ . However, it has plenty of solutions in  $\overline{\mathbb{Q}}$ ....

... but this situation is different! Suppose that, in dividing up the elements of  $\overline{\mathbb{Q}}$ , we decide that  $\sqrt{2} \notin F$ . Then *F* cannot contain any nonzero solution, because if  $x^2 - 2y^2 = 0 \neq xy$  and  $x, y \in F$ , then  $\frac{x}{y} \in F$ , yet  $(\frac{x}{y})^2 = 2$ .

Thus the choice of excluding  $\sqrt{2}$  from *F* ruled out all nonzero solutions (whereas including  $\sqrt{2}$  in *F* would immediately yield a solution). In this example, both the existential sentence and its negation

$$(\exists x, y) x^2 - 2y^2 = 0 \neq xy$$
  $(\forall x, y) \neg (x^2 - 2y^2 = 0 \neq xy)$ 

seem reasonably (equally?) likely to hold.

# Topology on the subfields of $\overline{\mathbb{Q}}$

Fix one computable presentation  $\overline{\mathbb{Q}}$  of the algebraic closure of  $\mathbb{Q}$ . Each choice of finitely many elements constitutes a *condition* on subfields. We write  $(\overline{a}; \overline{b})$  to denote the condition saying that all of  $\overline{a}$  is included and all of  $\overline{b}$  is excluded. Then the set

$$\mathcal{U}_{\overline{a};\overline{b}} = \{F \subseteq \overline{\mathbb{Q}} : \mathbb{Q}(\overline{a}) \subseteq F \And F \cap \{\overline{b}\} = \emptyset\}$$

is a basic open set in our topology on the space  $\mathbf{Sub}(\overline{\mathbb{Q}})$  of all subfields of  $\overline{\mathbb{Q}}$ , and the topology is generated by these basic open sets, as  $\overline{a}$  and  $\overline{b}$  range over all finite tuples from  $\overline{\mathbb{Q}}$ .

The relations  $\mathcal{U}_{\overline{a};\overline{b}} \subseteq \mathcal{U}_{\overline{c};\overline{d}}$ ,  $\mathcal{U}_{\overline{a};\overline{b}} = \mathbf{Sub}(\overline{\mathbb{Q}})$ , and  $\mathcal{U}_{\overline{a};\overline{b}} = \emptyset$  are decidable, by theorems of Kronecker.



 $\sqrt{3}$  $\sqrt{2}$ 

















The nodes  $\times$  are unsatisfiable conditions: if we have ruled out  $\sqrt{2}$ , then *F* cannot contain both  $\sqrt{3}$  and  $\sqrt{6}$ . But we still get a decidable subtree of  $2^{<\omega}$ , with no terminal nodes and no isolated paths. So the set of paths through it is homeomorphic to Cantor space  $2^{\omega}$ . This is the space **Sub**( $\overline{\mathbb{Q}}$ ), with each path naming a subfield.

# **Conditions and forcing**

#### Definition

A condition  $(\overline{a}; \overline{b})$  forces a sentence  $\varphi$ , written  $(\overline{a}; \overline{b}) \Vdash \varphi$ , if

```
\{F \in \mathcal{U}_{\overline{a}:\overline{b}} : \varphi \text{ is true in } F\}
```

is dense within  $\mathcal{U}_{\overline{a}\cdot\overline{b}}$  in our topology.

In our examples earlier:

• 
$$(\emptyset; \sqrt{2}) \Vdash (\forall x \forall y) \neg [x^2 - 2y^2 = 0 \neq xy].$$

• 
$$(\sqrt{2}; \emptyset) \Vdash (\exists x \exists y) x^2 - 2y^2 = 0 \neq xy.$$

• 
$$(\emptyset; \emptyset) \Vdash (\exists x \exists y) x^5 + y^5 - 1 = 0 \neq xy.$$

Notice that in the third item, not all fields in  $\mathcal{U}_{\emptyset;\emptyset}$  satisfy the sentence given – e.g.,  $\mathbb{Q}$  does not – but densely many of them satisfy it. Forcing does not quite guarantee the truth of the sentence being forced!

### Specifics of forcing ∃ and ∀ sentences

If  $(\overline{a}; \overline{b}) \Vdash \forall \vec{x} \neg \psi(\vec{x})$ , then in fact every field in  $\mathcal{U}_{\overline{a};\overline{b}}$  satisfies  $\forall \vec{x} \neg \psi(\vec{x})$ . If any  $F \in \mathcal{U}_{\overline{a};\overline{b}}$  contained a tuple  $\overline{c}$  with  $\psi(\overline{c})$ , then  $(\overline{a}, \overline{c}; \overline{b})$  would be consistent (since F exists!) and every field in  $\mathcal{U}_{\overline{a},\overline{c}; \overline{b}}$  would contain this witness  $\overline{c}$ . Since  $\mathcal{U}_{\overline{a},\overline{c}; \overline{b}} \subseteq \mathcal{U}_{\overline{a};\overline{b}}$ , this would contradict the density in  $\mathcal{U}_{\overline{a};\overline{b}}$  of the fields satisfying  $\forall \vec{x} \neg \psi(\vec{x})$ .

### Specifics of forcing ∃ and ∀ sentences

If  $(\overline{a}; \overline{b}) \Vdash \forall \vec{x} \neg \psi(\vec{x})$ , then in fact every field in  $\mathcal{U}_{\overline{a};\overline{b}}$  satisfies  $\forall \vec{x} \neg \psi(\vec{x})$ . If any  $F \in \mathcal{U}_{\overline{a};\overline{b}}$  contained a tuple  $\overline{c}$  with  $\psi(\overline{c})$ , then  $(\overline{a}, \overline{c}; \overline{b})$  would be consistent (since F exists!) and every field in  $\mathcal{U}_{\overline{a},\overline{c}; \overline{b}}$  would contain this witness  $\overline{c}$ . Since  $\mathcal{U}_{\overline{a},\overline{c}; \overline{b}} \subseteq \mathcal{U}_{\overline{a};\overline{b}}$ , this would contradict the density in  $\mathcal{U}_{\overline{a};\overline{b}}$  of the fields satisfying  $\forall \vec{x} \neg \psi(\vec{x})$ .

However, as seen with  $X^5 + Y^5 = 1$  above, a condition can force an existential sentence without the sentence being true in all fields realizing the condition.

### Key theorem

#### Theorem (Eisenträger, M, Springer, and Westrick)

It is decidable whether a condition  $(\overline{a}; \overline{b})$  forces an existential or universal sentence  $\varphi$  (with parameters from  $\mathbb{Q}(\overline{a})$ ). The decision procedure is uniform in  $\overline{a}, \overline{b}$ , and  $\varphi$ .

The proof is not simple. We show that whenever  $(\overline{a}; \overline{b}) \Vdash \forall \vec{X} \neg \psi$ , there is a "reason." For  $X^2 - 2Y^2 = 0 \neq XY$ , the reason was the rational function  $\frac{X}{Y}$ , which is a square root of 2 whenever  $X^2 - 2Y^2 = 0 \neq XY$ . Similarly, whenever  $(\overline{a}; \overline{b}) \Vdash \forall \vec{X} \neg \psi$ , there is some rational function  $\frac{p(\vec{X})}{q(\vec{X})}$ such that whenever  $\psi(\vec{x})$  holds,  $\mathbb{Q}\left(\overline{a}, \frac{p(\vec{x})}{q(\vec{x})}\right)$  contains an element of  $\overline{b}$ .

However, to follow through on the reason, we need an argument by transfinite induction along an ordinal ranking of existential senences.

### Why this helps

We now focus on the class of *generic* (specifically, 1-generic) fields. These fields form a comeager class in  $\mathbf{Sub}(\overline{\mathbb{Q}})$ . So, in the sense of Baire category, a property that holds of all generic fields may be considered to hold "almost everywhere."

A field *F* is 1-generic if *F* lies in every  $\emptyset'$ -decidable dense open subset of **Sub**( $\overline{\mathbb{Q}}$ ). We actually need only a consequence of genericity: that if *S* is a computably enumerable set of conditions, and every condition ( $\overline{a}, \overline{b}$ ) realized by *F* can be extended to a nontrivial condition ( $\overline{a}, \overline{c}$ ;  $\overline{b}, \overline{d}$ ) in *S*, then *F* itself must realize some condition in *S*.

### Why this helps

We now focus on the class of *generic* (specifically, 1-generic) fields. These fields form a comeager class in  $\mathbf{Sub}(\overline{\mathbb{Q}})$ . So, in the sense of Baire category, a property that holds of all generic fields may be considered to hold "almost everywhere."

A field *F* is 1-generic if *F* lies in every  $\emptyset'$ -decidable dense open subset of **Sub**( $\overline{\mathbb{Q}}$ ). We actually need only a consequence of genericity: that if *S* is a computably enumerable set of conditions, and every condition ( $\overline{a}, \overline{b}$ ) realized by *F* can be extended to a nontrivial condition ( $\overline{a}, \overline{c}; \overline{b}, \overline{d}$ ) in *S*, then *F* itself must realize some condition in *S*.

To make sense of this, consider the following set *S*:

{conditions  $(\overline{a}; \overline{b}) : \mathbb{Q}(\overline{a})$  contains a solution to  $X^5 + Y^5 - 1 = 0 \neq XY$ }.

This *S* is c.e., and we know it is dense above the empty condition  $(\emptyset; \emptyset)$ . Therefore, every generic field *F* must realize a condition in *S*, and thus must satisfy  $(\exists X, Y) X^5 + Y^5 - 1 = 0 \neq XY$ .

Russell Miller (CUNY)

# **Original result**

#### **Theorem (EMSW)**

Let *Z* be a subset of  $\mathbb{Q}$  that is neither cofinite nor thin there. Let  $F \subseteq \overline{\mathbb{Q}}$  be a 1-generic field. Then *Z* is not universally definable in *F*. Indeed, no set *S* that is universally definable in *F* can have  $S \cap \mathbb{Q} = Z$ .

Dually, if  $Y \subseteq \mathbb{Q}$  is neither finite nor co-thin in  $\mathbb{Q}$ , then no set *S* that is existentially definable in *F* can have  $S \cap \mathbb{Q} = Y$ .

Originally we wanted to show this for  $Z = \mathbb{Z}$ , which is neither thin nor co-thin in  $\mathbb{Q}$ . We concluded that in a generic field F, neither  $\mathbb{Z}$  nor  $\mathcal{O}_F$  can be existentially or universally definable.

Dittmann and Fehm subsequently extended this, showing that no proper subring of F can be defined in F by any first-order formula. The result above has no obvious extension to more complex definitions, but does hold even when Z is not a ring.

### **Newer results**

#### Proposition

Let  $\varphi$  be an existential or universal sentence, and let  $F \in \mathbf{Sub}(\overline{\mathbb{Q}})$  be a generic field. Then  $\varphi$  holds in F iff F realizes some condition that forces  $\varphi$ . (In brief:  $F \models \varphi$  iff F realizes an  $(\overline{a}; \overline{b})$  with  $(\overline{a}; \overline{b}) \Vdash \varphi$ .)

### **Newer results**

#### Proposition

Let  $\varphi$  be an existential or universal sentence, and let  $F \in \mathbf{Sub}(\overline{\mathbb{Q}})$  be a generic field. Then  $\varphi$  holds in *F* iff *F* realizes some condition that forces  $\varphi$ . (In brief:  $F \models \varphi$  iff *F* realizes an  $(\overline{a}; \overline{b})$  with  $(\overline{a}; \overline{b}) \Vdash \varphi$ .)

So, for a generic field F, we can decide the entire existential theory of F just by knowing which conditions F realizes.

### **Newer results**

#### Proposition

Let  $\varphi$  be an existential or universal sentence, and let  $F \in \mathbf{Sub}(\overline{\mathbb{Q}})$  be a generic field. Then  $\varphi$  holds in F iff F realizes some condition that forces  $\varphi$ . (In brief:  $F \models \varphi$  iff F realizes an  $(\overline{a}; \overline{b})$  with  $(\overline{a}; \overline{b}) \Vdash \varphi$ .)

So, for a generic field F, we can decide the entire existential theory of F just by knowing which conditions F realizes.

In turn, the conditions realized by *F* can be determined if we know *F* as a subfield of  $\overline{\mathbb{Q}}$ , or equivalently, if we know the atomic diagram of *F* and the single-variable version of HTP(F):

$$HTP_1(F) = R_F = \{g \in F[X] : (\exists x \in F) \ g(x) = 0\}.$$

# What about $HTP_1(F)$ ?

Previous results determined the situation for generic *F*:

Theorem (M, 2020)

Let *F* be a generic algebraic extension of  $\mathbb{Q}$ . Then  $HTP_1(F)$  must be *low* relative to the atomic diagram D(F):

 $(HTP_1(F) \oplus D(F))' \equiv_T (D(F))'.$ 

Also, there must exist copies  $K, L \cong F$  such that  $HTP_1(K) \not\leq_T D(K)$  while  $HTP_1(L) \leq_T D(L)$ .

One can argue that  $HTP_1(K) \not\leq_T D(K)$  is the "common" situation for copies of *F*, with  $HTP_1(L) \leq_T D(L)$  being exceptional.

# General tendency of HTP(F) for $F \subseteq \overline{\mathbb{Q}}$

#### **Theorem (EMSW)**

For all generic algebraic extensions *F* of  $\mathbb{Q}$ , the following sets are Turing-equivalent relative to D(F):

- The root set  $R_F = HTP_1(F)$ .
- *HTP*(*F*).
- The image of *F* in  $\overline{\mathbb{Q}}$  under a (*D*(*F*)-computable) field embedding.

Moreover, all of these are of low Turing degree relative to D(F), and in general they are not computable relative to D(F) (although exceptional copies of *F* do exist).

Notice that therefore many sets that are D(F)-computably enumerable (including the Halting Problem itself) fail to be diophantine in F.

Since the generic extensions of  $\mathbb{Q}$  form a comeager class in the space of all algebraic extensions, each of these properties may be considered to hold of "almost all" algebraic extensions of  $\mathbb{Q}$ , in the sense of Baire category.

Russell Miller (CUNY)

# $HTP^{\infty}(F)$

Let  $HTP^{\infty}(F) = \{f \in F[\vec{X}] : f = 0 \text{ has infinitely many solutions in } F\}.$ 

#### **Theorem (EMSW)**

It is decidable, uniformly in  $\overline{a}$ ,  $\overline{b}$ , and f, whether  $(\overline{a}, \overline{b}) \Vdash f \in HTP^{\infty}(F)$ .

#### Corollary

For all 2-generic extensions F of  $\mathbb{Q}$ ,  $HTP^{\infty}(F) \equiv_{T} HTP_{1}(F)$  is again low (but in general noncomputable) relative to D(F).

#### **Corollary (of the proof)**

For every condition  $(\overline{a}; \overline{b})$ , there exists a computable field  $F \in \mathcal{U}_{\overline{a};\overline{b}}$  such that HTP(F) and  $HTP^{\infty}(F)$  are decidable.