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Study: The complexity of the class of countable models of a theory
T in a countable language.
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T in a countable language.

One basic question: How many isomorphism classes of countable
models of T are there? i.e., What is I (T ,ℵ0)?
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T in a countable language.

One basic question: How many isomorphism classes of countable
models of T are there? i.e., What is I (T ,ℵ0)?

Sadly: “99% of all theories T have I (T ,ℵ0) = 2ℵ0 .”
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Study: The complexity of the class of countable models of a theory
T in a countable language.

One basic question: How many isomorphism classes of countable
models of T are there? i.e., What is I (T ,ℵ0)?

Sadly: “99% of all theories T have I (T ,ℵ0) = 2ℵ0 .”

Would like finer invariants.
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Borel complexity of classes of countable models

Fix L a countable language. Let

StrL = {L-structures M with universe ω}
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Borel complexity of classes of countable models

Fix L a countable language. Let

StrL = {L-structures M with universe ω}

Topologize: Basic open sets

Uφ(n1,...,nk ) = {M ∈ StrL : M |= φ(n1, . . . , nk)}

StrL is a standard Borel space (separable, completely metrizable of
size continuum).
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Fix L a countable language. Let

StrL = {L-structures M with universe ω}

Topologize: Basic open sets

Uφ(n1,...,nk ) = {M ∈ StrL : M |= φ(n1, . . . , nk)}

StrL is a standard Borel space (separable, completely metrizable of
size continuum).

Only interested in Borel subsets So whether we take {Uφ : all φ} or
{Uφ : φ q.f} give the same collection of Borel subsets.
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Borel complexity of classes of countable models

Fix L a countable language. Let

StrL = {L-structures M with universe ω}

Topologize: Basic open sets

Uφ(n1,...,nk ) = {M ∈ StrL : M |= φ(n1, . . . , nk)}

StrL is a standard Borel space (separable, completely metrizable of
size continuum).

Only interested in Borel subsets So whether we take {Uφ : all φ} or
{Uφ : φ q.f} give the same collection of Borel subsets.

For T any L-theory, Mod(T ) = {M ∈ StrL : M |= T} is a Borel
subset.
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How complicated is (Mod(T ),∼=)?

Friedman-Stanley Given two theories T ,S (possibly in different
countable languages L, L′) we say (Mod(T ),∼=) is Borel reducible
to (Mod(S),∼=), T ≤B S , if there is a Borel f : StrL → StrL′ such
that for all M,N ∈ Mod(T ), f (M), f (N) ∈ Mod(S) and

M ∼= N ⇐⇒ f (M) ∼= f (N)

T and S are Borel equivalent if T ≤B S and S ≤B T .
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How complicated is (Mod(T ),∼=)?

Friedman-Stanley Given two theories T ,S (possibly in different
countable languages L, L′) we say (Mod(T ),∼=) is Borel reducible
to (Mod(S),∼=), T ≤B S , if there is a Borel f : StrL → StrL′ such
that for all M,N ∈ Mod(T ), f (M), f (N) ∈ Mod(S) and

M ∼= N ⇐⇒ f (M) ∼= f (N)

T and S are Borel equivalent if T ≤B S and S ≤B T .

Clearly, T ≤B S implies I (T ,ℵ0) ≤ I (S ,ℵ0), but Borel complexity
can separate some theories with I (T ,ℵ0) = 2ℵ0 .
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Some examples

Th(Z,+), REF (bin), RCF have I (T ,ℵ0) = 2ℵ0 .

• Th(Z,+), REF (bin) are ≤B -incomparable, but both <B RCF.
• Isomorphism is Borel on Mod(Th(Z,+)), but not on
Mod(REF (bin)).

Chris Laskowski University of Maryland Joint work with D. Ulrich

On the Borel complexity of modules



Some examples

Th(Z,+), REF (bin), RCF have I (T ,ℵ0) = 2ℵ0 .

• Th(Z,+), REF (bin) are ≤B -incomparable, but both <B RCF.
• Isomorphism is Borel on Mod(Th(Z,+)), but not on
Mod(REF (bin)).

There is a maximal ≡B -class, containing graphs, linear orders,
RCF, DCF0. A theory T is Borel complete if (Mod(T ),∼=) is in
this maximal class.
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Some examples

Th(Z,+), REF (bin), RCF have I (T ,ℵ0) = 2ℵ0 .

• Th(Z,+), REF (bin) are ≤B -incomparable, but both <B RCF.
• Isomorphism is Borel on Mod(Th(Z,+)), but not on
Mod(REF (bin)).

There is a maximal ≡B -class, containing graphs, linear orders,
RCF, DCF0. A theory T is Borel complete if (Mod(T ),∼=) is in
this maximal class.

Borel completeness does not play nicely with the usual dividing
lines: Some ω-stable, Morley rank 2 theories are Borel complete, as
are some weakly minimal, trivial theories; DLO (or any
ω-categorical theory) is ≤B -minimal; Th(Z,+) has a Borel
complete reduct.
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Modules

Fix a countable ring R (with unit). Let LR = {+, 0, fr : r ∈ R}.
Study the class of countable left R-modules (typically an
incomplete LR theory).
(Ex: For n 6= m, (Zn,+, 0) is not elementarily equivalent to
(Zm,+, 0).)
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Modules

Fix a countable ring R (with unit). Let LR = {+, 0, fr : r ∈ R}.
Study the class of countable left R-modules (typically an
incomplete LR theory).
(Ex: For n 6= m, (Zn,+, 0) is not elementarily equivalent to
(Zm,+, 0).)

Will see: For many (countable) rings R, Th(left R-modules) is
Borel complete, but not always:

If R is a finite field, then any two countably infinite
R-modules (vector spaces) are isomorphic.

If R is a countably infinite field, there are countably many
non-isomorphic countable vector spaces.

If R is a finite product of fields, then again, countably many
countable R-modules.
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The main theorem

Theorem (L-Ulrich)

Let R be any countable, commutative ring (with 1). Then

either Th(R-modules) is Borel complete; or

There are only countably many isomorphism types of
countable R-modules.
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The main theorem

Theorem (L-Ulrich)

Let R be any countable, commutative ring (with 1). Then

either Th(R-modules) is Borel complete; or

There are only countably many isomorphism types of
countable R-modules.

The second condition holds iff R is an artinian principal ideal ring
iff R is a finite product of local rings, each with a principal
maximal ideal iff R has ‘finite representation type’ (see Prest).
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The main theorem

Theorem (L-Ulrich)

Let R be any countable, commutative ring (with 1). Then

either Th(R-modules) is Borel complete; or

There are only countably many isomorphism types of
countable R-modules.

The second condition holds iff R is an artinian principal ideal ring
iff R is a finite product of local rings, each with a principal
maximal ideal iff R has ‘finite representation type’ (see Prest).

Conclusion: Borel complexity says nothing interesting for
(incomplete) theories of commutative R-modules.
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Corollary

(to proof) The class of torsion free abelian groups is Borel
complete.
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An easy Borel reduction

Fact: For any countable ring R (with 1), and for any 2-sided ideal
I ⊆ R,

left R/I -modules ≤B left R-modules
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An easy Borel reduction

Fact: For any countable ring R (with 1), and for any 2-sided ideal
I ⊆ R,

left R/I -modules ≤B left R-modules

Why? Any R/I -module M is naturally expanded to an R-module
M ′ by ra := (r + I )a. Thus

M 7→ M ′

gives a Borel reduction.
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An easy Borel reduction

Fact: For any countable ring R (with 1), and for any 2-sided ideal
I ⊆ R,

left R/I -modules ≤B left R-modules

Why? Any R/I -module M is naturally expanded to an R-module
M ′ by ra := (r + I )a. Thus

M 7→ M ′

gives a Borel reduction.

Thus, if Th(left R/I -modules) is Borel complete, then so is Th(left
R-modules).
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Tagged R-modules

Fix a countable ring R (with 1), but not necessarily commutative.
A tagged left R-module V = (V ,Vn)n∈ω is a left R-module V
with countably many named left R-submodules Vn. (R. Göbel)

Theorem 1

For any countable ring R, the class of tagged left R-modules is
Borel complete.
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Tagged R-modules

Fix a countable ring R (with 1), but not necessarily commutative.
A tagged left R-module V = (V ,Vn)n∈ω is a left R-module V
with countably many named left R-submodules Vn. (R. Göbel)

Theorem 1

For any countable ring R, the class of tagged left R-modules is
Borel complete.

Corollary

For any countable ring R, the class of left R-modules with 4
distinguished submodules is Borel complete.
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Tagged R-modules

Fix a countable ring R (with 1), but not necessarily commutative.
A tagged left R-module V = (V ,Vn)n∈ω is a left R-module V
with countably many named left R-submodules Vn. (R. Göbel)

Theorem 1

For any countable ring R, the class of tagged left R-modules is
Borel complete.

Corollary

For any countable ring R, (even if R is a finite field) the class of
left R-modules with 4 distinguished submodules is Borel complete.
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Model theoretic construction

Let K be a class of countable structures A such that:

K is closed under ∼=;

Every A ∈ K is finitely generated (there is some finite X ⊆ A
so that cl(X ) = A);

Some A ∈ K is ∅-generated and every A ∈ K has a proper
extension;

K has disjoint amalgamation.

Fact: For any such K, there is a K-limit M =
⋃

i Ai generated by
X and an equivalence relation E ⊆ X 2 such that X/E is infinite
and absolutely indiscernible

Every h ∈ Sym(X/E ) lifts to an automorphism σ of M, i.e.,
for all a ∈ X , h(a/E ) = σ(a)/E .
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Example: Let K be the class of all finite, tagged F2-vector spaces
(A,Vn)n∈ω satisfying:

X := A \
⋃
{Vn : n ∈ ω} is a basis for A;

Vn = {0} for all but finitely many n ∈ ω.

Here, K has only countably many isomorphism types, and M can
be taken as the Fräıssé limit of K.

The universe M and each VM
n are isomorphic to

⊕
ω F2.

X = M \
⋃
{VM

n : n ∈ ω}, X is a basis for M, but X is not
indiscernible.

There is an equivalence relation E ⊆ X 2 such that X/E is
infinite and absolutely indiscernible.
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Proof of Theorem 1

Using this: Given any countable R, construct a single countable
tagged left R-module N = (N,Vn)n∈ω with a highly controlled
automorphism group, and distinguished Aut(N)-invariant X ,E
with X/E absolutely indiscernible.

Chris Laskowski University of Maryland Joint work with D. Ulrich

On the Borel complexity of modules



Proof of Theorem 1

Using this: Given any countable R, construct a single countable
tagged left R-module N = (N,Vn)n∈ω with a highly controlled
automorphism group, and distinguished Aut(N)-invariant X ,E
with X/E absolutely indiscernible.

To prove that Th(left R-modules) is Borel complete:

Given a countable graph G = (X/E ,RG ), construct a left
R-submodule UG ≤ N so that

G 7→ NG := (N,UG )

is a Borel reduction.
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From tagged R-modules to R-modules

Warm-up: A tagged R-module V = (V ,Vn)n∈ω is free-like if
V =

⊕
ω R, every Vn

∼=
⊕

ω R, and V /Vn
∼=

⊕
ω R.

Lemma

(tagged left R-modules) ≤B (free-like tagged left R modules).

Thus, for any R, (free-like tagged left R modules) is Borel
complete.

Theorem

If a countable R has a ‘defect’ then there is a Borel reduction

free-like tagged left R-modules ≤B left R-modules
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Three ‘defects’

A. If there is a central, non-zero divisor, non-unit r ∈ R, then
Th(left R-modules) is Borel complete.

B. If there are central r , s ∈ R with (r) ∩ (s) = 0 and
I = Ann(r) + Ann(s) proper (1 6∈ I ) then Th(left R-modules) is
Borel complete.

C. If R is a commutative ring with a strictly descending chain of
annihilator ideals {Ann(Xn) : n ∈ ω} with

⋂
n∈ω Ann(Xn) = 0, then

Th(R-modules) is Borel complete.
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Fact: If R is a countable, commutative ring such that no R/I
satisfies A,B or C, then R is an artinian principal ideal ring.

1 If any R/I is an integral domain that is not a field, then A.
2 Thus, we may assume every prime ideal is maximal.
3 If there are infinitely many prime (maximal) ideals, then by a

Ramsey argument, get C. holding in some quotient.
4 Thus, there are only finitely many prime ideals, and the

Jacobson radical=Nil-radical.
5 It follows that R is a finite product of local rings of the form

Re for some idempotent e.
6 Fix one of the factors with maximal ideal m. If the ideals ⊆ m

are not linearly ordered, then get B. in some quotient.
7 If a factor is not Noetherian, then get a descending sequence

of annihilator ideals, giving C.
8 Thus, in each factor there are only finitely many ideals, each

principal.
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Sketch of A.

Fix r ∈ R central, non-zero divisor, non-unit. Think about r -adics

〈(rm) : m ≥ 1〉 is strictly decreasing. If I =
⋂

m(rm) 6= 0, then
work in R/I . So we may assume

⋂
m(rm) = 0.

Let R̂ = lim←−R/(rm). For each s ⊆ ω finite, let σs =
∑

i∈s r
i and

let
Γ = lim←−{σs : s ⊆ ω finite}

Find {γn : n ∈ ω} ⊆ Γ algebraically independent, i.e.,
p(γ0, . . . , γn) 6= 0 for all non-constant p ∈ R[x0, . . . , xn]. (Baire
category)

Chris Laskowski University of Maryland Joint work with D. Ulrich

On the Borel complexity of modules



Sketch of A. (continued)

Code: Given a free-like tagged left R-module V = (
⊕

ω R,Vn)n∈ω,
let f (V ) be the smallest r -pure R-submodule of

⊕
ω R̂ generated

by ⊕
ω

R ∪
⋃
n

{γnVn : n ∈ ω}

Need: If h : f (V ) ∼= f (V
′
) as left R-modules, then V ∼= V

′
as

tagged left R-modules.

Two properties:

Then map h : f (V ) ∼= f (V
′
) is actually an R̂-isomorphism

(uses r -purity and density of
⊕

ω R in
⊕

ω R̂)

For any g ∈ f (V ), g ∈ f (Vn) if and only if γng ∈ f (V ) (uses
algebraic independence and r -purity).
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Some corollaries to A.

A. If there is a central, non-zero divisor, non-unit r ∈ R, then
Th(left R-modules) is Borel complete.

Corollary

If R is an integral domain that is not a field, then Th(R-modules)
is Borel complete. Furthermore, if R is torsion-free, every free-like
R-module is torsion free, hence TFAB is Borel complete.

Corollary

For any countable R, Th(left R[x]-modules) is Borel complete
(take r = x). Hence Th(left R-modules (V ,T ) with a named
T : V → V ) is Borel complete.

Proof: (left R-endomorphisms (V ,T )) ≡B (left R[x ]-modules)
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Corollary

For any countable R, Th(left R-modules with 4 named
submodules) is Borel complete.

Proof: Fix R and let (V ,T ) be a left R-module with a left
endomorphism T : V → V .

Let f (V ,T ) have be the left R-module with universe V × V , let

V0 := V × {0};
V1 := {0} × V ;

V2 := {(v , v) : v ∈ V }; and

V3 := {(v ,T (v)) : v ∈ V }.
Then (V ,T ) 7→ (V × V ,V0,V1,V2,V3) is a Borel reduction.
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Thanks for listening!

Michael C. Laskowski and D. Ulrich, A proof of the Borel
completeness of torsion free abelian groups, arXiv:2202.07452.
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