On the Borel complexity of modules

Chris Laskowski University of Maryland

Joint work with D. Ulrich

MSRI – DDC2 28 July, 2022

Joint work with D. Ulrich

Chris Laskowski University of Maryland

Joint work with D. Ulrich

Chris Laskowski University of Maryland

One basic question: How many isomorphism classes of countable models of T are there? i.e., What is $I(T, \aleph_0)$?

One basic question: How many isomorphism classes of countable models of T are there? i.e., What is $I(T, \aleph_0)$?

Sadly: "99% of all theories T have $I(T, \aleph_0) = 2^{\aleph_0}$."

One basic question: How many isomorphism classes of countable models of T are there? i.e., What is $I(T, \aleph_0)$?

Sadly: "99% of all theories T have $I(T, \aleph_0) = 2^{\aleph_0}$."

Would like finer invariants.

Joint work with D. Ulrich

 $Str_L = \{L$ -structures M with universe $\omega\}$

$$Str_L = \{L$$
-structures M with universe $\omega\}$

Topologize: Basic open sets

$$U_{\phi(n_1,\ldots,n_k)} = \{ M \in Str_L : M \models \phi(n_1,\ldots,n_k) \}$$

Str_L is a standard Borel space (separable, completely metrizable of size continuum).

Joint work with D. Ulrich

Chris Laskowski University of Maryland

$$Str_L = \{L \text{-structures } M \text{ with universe } \omega\}$$

Topologize: Basic open sets

$$U_{\phi(n_1,\ldots,n_k)} = \{ M \in Str_L : M \models \phi(n_1,\ldots,n_k) \}$$

Str_L is a standard Borel space (separable, completely metrizable of size continuum).

Only interested in Borel subsets So whether we take $\{U_{\phi} : \text{all } \phi\}$ or $\{U_{\phi} : \phi \text{ q.f}\}$ give the same collection of Borel subsets.

Joint work with D. Ulrich

 $Str_L = \{L$ -structures M with universe $\omega\}$

Topologize: Basic open sets

$$U_{\phi(n_1,\ldots,n_k)} = \{ M \in Str_L : M \models \phi(n_1,\ldots,n_k) \}$$

Str_L is a standard Borel space (separable, completely metrizable of size continuum).

Only interested in Borel subsets So whether we take $\{U_{\phi} : \text{all } \phi\}$ or $\{U_{\phi} : \phi \text{ q.f}\}$ give the same collection of Borel subsets.

For T any L-theory, $Mod(T) = \{M \in Str_L : M \models T\}$ is a Borel subset.

Chris Laskowski University of Maryland

Friedman-Stanley Given two theories T, S (possibly in different countable languages L, L') we say $(Mod(T), \cong)$ is Borel reducible to $(Mod(S), \cong), T \leq_B S$, if there is a Borel $f : Str_L \rightarrow Str_{L'}$ such that for all $M, N \in Mod(T), f(M), f(N) \in Mod(S)$ and

$$M \cong N \iff f(M) \cong f(N)$$

Joint work with D. Ulrich

T and S are Borel equivalent if $T \leq_B S$ and $S \leq_B T$.

Friedman-Stanley Given two theories T, S (possibly in different countable languages L, L') we say $(Mod(T), \cong)$ is Borel reducible to $(Mod(S), \cong), T \leq_B S$, if there is a Borel $f : Str_L \to Str_{L'}$ such that for all $M, N \in Mod(T), f(M), f(N) \in Mod(S)$ and

$$M \cong N \iff f(M) \cong f(N)$$

T and S are Borel equivalent if $T \leq_B S$ and $S \leq_B T$.

Clearly, $T \leq_B S$ implies $I(T, \aleph_0) \leq I(S, \aleph_0)$, but Borel complexity can separate some theories with $I(T, \aleph_0) = 2^{\aleph_0}$.

 $Th(\mathbb{Z},+)$, REF(bin), RCF have $I(T,\aleph_0) = 2^{\aleph_0}$.

- $Th(\mathbb{Z}, +)$, REF(bin) are \leq_B -incomparable, but both \leq_B RCF.
- Isomorphism is Borel on $Mod(Th(\mathbb{Z}, +))$, but not on Mod(REF(bin)).

Chris Laskowski University of Maryland

Image: A math a math

 $Th(\mathbb{Z},+)$, REF(bin), RCF have $I(T,\aleph_0) = 2^{\aleph_0}$.

Th(Z, +), REF(bin) are ≤_B-incomparable, but both <_B RCF.
Isomorphism is Borel on Mod(Th(Z, +)), but not on Mod(REF(bin)).

There is a maximal \equiv_B -class, containing graphs, linear orders, RCF, DCF_0 . A theory T is Borel complete if $(Mod(T), \cong)$ is in this maximal class.

 $Th(\mathbb{Z},+)$, REF(bin), RCF have $I(T,\aleph_0) = 2^{\aleph_0}$.

Th(Z, +), REF(bin) are ≤_B-incomparable, but both <_B RCF.
Isomorphism is Borel on Mod(Th(Z, +)), but not on Mod(REF(bin)).

There is a maximal \equiv_B -class, containing graphs, linear orders, RCF, DCF_0 . A theory T is Borel complete if $(Mod(T),\cong)$ is in this maximal class.

Borel completeness does not play nicely with the usual dividing lines: Some ω -stable, Morley rank 2 theories are Borel complete, as are some weakly minimal, trivial theories; DLO (or any ω -categorical theory) is \leq_B -minimal; $Th(\mathbb{Z}, +)$ has a Borel complete reduct.

A B > A B >

Fix a countable ring R (with unit). Let $L_R = \{+, 0, f_r : r \in R\}$. Study the class of countable left R-modules (typically an incomplete L_R theory). (Ex: For $n \neq m$, $(\mathbb{Z}^n, +, 0)$ is not elementarily equivalent to $(\mathbb{Z}^m, +, 0)$.)

Modules

Fix a countable ring R (with unit). Let $L_R = \{+, 0, f_r : r \in R\}$. Study the class of countable left R-modules (typically an incomplete L_R theory). (Ex: For $n \neq m$, $(\mathbb{Z}^n, +, 0)$ is not elementarily equivalent to $(\mathbb{Z}^m, +, 0)$.)

Will see: For many (countable) rings R, Th(left R-modules) is Borel complete, but not always:

- If *R* is a finite field, then any two countably infinite *R*-modules (vector spaces) are isomorphic.
- If *R* is a countably infinite field, there are countably many non-isomorphic countable vector spaces.
- If *R* is a finite product of fields, then again, countably many countable *R*-modules.

Image: A mathematical states and a mathem

Theorem (L-Ulrich)

Let R be any countable, commutative ring (with 1). Then

- either Th(R-modules) is Borel complete; or
- There are only countably many isomorphism types of countable R-modules.

Theorem (L-Ulrich)

Let R be any countable, commutative ring (with 1). Then

- either Th(R-modules) is Borel complete; or
- There are only countably many isomorphism types of countable R-modules.

The second condition holds iff R is an artinian principal ideal ring iff R is a finite product of local rings, each with a principal maximal ideal iff R has 'finite representation type' (see Prest).

Theorem (L-Ulrich)

Let R be any countable, commutative ring (with 1). Then

- either Th(R-modules) is Borel complete; or
- There are only countably many isomorphism types of countable *R*-modules.

The second condition holds iff R is an artinian principal ideal ring iff R is a finite product of local rings, each with a principal maximal ideal iff R has 'finite representation type' (see Prest).

Conclusion: Borel complexity says nothing interesting for (incomplete) theories of commutative *R*-modules.

Corollary

(to proof) The class of torsion free abelian groups is Borel complete.

メロト メロト メヨト メ

Joint work with D. Ulrich

Chris Laskowski University of Maryland

Fact: For any countable ring R (with 1), and for any 2-sided ideal $I \subseteq R$, left R/I-modules \leq_B left R-modules

Image: Image:

Joint work with D. Ulrich

Chris Laskowski University of Maryland

Fact: For any countable ring R (with 1), and for any 2-sided ideal $I \subseteq R$,

left R/I-modules \leq_B left R-modules

Why? Any R/I-module M is naturally expanded to an R-module M' by ra := (r + I)a. Thus

$$M \mapsto M'$$

gives a Borel reduction.

Fact: For any countable ring R (with 1), and for any 2-sided ideal $I \subseteq R$, left R/I-modules \leq_B left R-modules Why? Any R/I-module M is naturally expanded to an R-module M' by ra := (r + I)a. Thus

$$M\mapsto M'$$

gives a Borel reduction.

Thus, if Th(left R/I-modules) is Borel complete, then so is Th(left R-modules).

Fix a countable ring R (with 1), but not necessarily commutative. A tagged left R-module $\overline{V} = (V, V_n)_{n \in \omega}$ is a left R-module V with countably many named left R-submodules V_n . (R. Göbel)

Theorem 1

For any countable ring R, the class of tagged left R-modules is Borel complete.

Joint work with D. Ulrich

Chris Laskowski University of Maryland

Fix a countable ring R (with 1), but not necessarily commutative. A tagged left R-module $\overline{V} = (V, V_n)_{n \in \omega}$ is a left R-module V with countably many named left R-submodules V_n . (R. Göbel)

Theorem 1

For any countable ring R, the class of tagged left R-modules is Borel complete.

Corollary

For any countable ring R, the class of left R-modules with 4 distinguished submodules is Borel complete.

Joint work with D. Ulrich

Chris Laskowski University of Maryland

Fix a countable ring R (with 1), but not necessarily commutative. A tagged left R-module $\overline{V} = (V, V_n)_{n \in \omega}$ is a left R-module V with countably many named left R-submodules V_n . (R. Göbel)

Theorem 1

For any countable ring R, the class of tagged left R-modules is Borel complete.

Corollary

For any countable ring R, (even if R is a finite field) the class of left R-modules with 4 distinguished submodules is Borel complete.

Joint work with D. Ulrich

Chris Laskowski University of Maryland

Let **K** be a class of countable structures A such that:

- **K** is closed under \cong ;
- Every A ∈ K is finitely generated (there is some finite X ⊆ A so that cl(X) = A);
- Some A ∈ K is Ø-generated and every A ∈ K has a proper extension;
- K has disjoint amalgamation.

Fact: For any such **K**, there is a **K**-limit $M = \bigcup_i A_i$ generated by X and an equivalence relation $E \subseteq X^2$ such that X/E is infinite and absolutely indiscernible

Every h ∈ Sym(X/E) lifts to an automorphism σ of M, i.e., for all a ∈ X, h(a/E) = σ(a)/E.

Example: Let **K** be the class of all finite, tagged \mathbb{F}_2 -vector spaces $(A, V_n)_{n \in \omega}$ satisfying:

- $X := A \setminus \bigcup \{ V_n : n \in \omega \}$ is a basis for A;
- $V_n = \{0\}$ for all but finitely many $n \in \omega$.

Here, **K** has only countably many isomorphism types, and M can be taken as the Fraïssé limit of **K**.

- The universe *M* and each V_n^M are isomorphic to $\bigoplus_{\omega} \mathbb{F}_2$.
- $X = M \setminus \bigcup \{V_n^M : n \in \omega\}$, X is a basis for M, but X is not indiscernible.
- There is an equivalence relation E ⊆ X² such that X/E is infinite and absolutely indiscernible.

Using this: Given any countable R, construct a single countable tagged left R-module $\overline{N} = (N, V_n)_{n \in \omega}$ with a highly controlled automorphism group, and distinguished $Aut(\overline{N})$ -invariant X, E with X/E absolutely indiscernible.

Joint work with D. Ulrich

Chris Laskowski University of Maryland

Using this: Given any countable R, construct a single countable tagged left R-module $\overline{N} = (N, V_n)_{n \in \omega}$ with a highly controlled automorphism group, and distinguished $Aut(\overline{N})$ -invariant X, E with X/E absolutely indiscernible.

To prove that Th(left R-modules) is Borel complete:

Given a countable graph $G = (X/E, R^G)$, construct a left R-submodule $U_G \leq N$ so that

$$G \mapsto N_G := (\overline{N}, U_G)$$

is a Borel reduction.

Warm-up: A tagged *R*-module $\overline{V} = (V, V_n)_{n \in \omega}$ is free-like if $V = \bigoplus_{\omega} R$, every $V_n \cong \bigoplus_{\omega} R$, and $V/V_n \cong \bigoplus_{\omega} R$.

Lemma

(tagged left R-modules) \leq_B (free-like tagged left R modules).

Thus, for any R, (free-like tagged left R modules) is Borel complete.

Theorem

If a countable R has a 'defect' then there is a Borel reduction

free-like tagged left R-modules \leq_B left R-modules

Chris Laskowski University of Maryland

On the Borel complexity of modules

・ロト ・ 日 ・ ・ ヨ ・ ・

A. If there is a central, non-zero divisor, non-unit $r \in R$, then Th(left *R*-modules) is Borel complete.

B. If there are central $r, s \in R$ with $(r) \cap (s) = 0$ and I = Ann(r) + Ann(s) proper $(1 \notin I)$ then Th(left *R*-modules) is Borel complete.

C. If R is a commutative ring with a strictly descending chain of annihilator ideals $\{Ann(X_n) : n \in \omega\}$ with $\bigcap_{n \in \omega} Ann(X_n) = 0$, then Th(*R*-modules) is Borel complete.

Fact: If R is a countable, commutative ring such that no R/I satisfies A,B or C, then R is an artinian principal ideal ring.

- **(**) If any R/I is an integral domain that is not a field, then A.
- 2 Thus, we may assume every prime ideal is maximal.
- If there are infinitely many prime (maximal) ideals, then by a Ramsey argument, get C. holding in some quotient.
- Thus, there are only finitely many prime ideals, and the Jacobson radical=Nil-radical.
- It follows that R is a finite product of local rings of the form Re for some idempotent e.
- Fix one of the factors with maximal ideal m. If the ideals ⊆ m are not linearly ordered, then get B. in some quotient.
- If a factor is not Noetherian, then get a descending sequence of annihilator ideals, giving C.
- Thus, in each factor there are only finitely many ideals, each principal.

Fix $r \in R$ central, non-zero divisor, non-unit. Think about *r*-adics $\langle (r^m) : m \ge 1 \rangle$ is strictly decreasing. If $I = \bigcap_m (r^m) \ne 0$, then work in R/I. So we may assume $\bigcap_m (r^m) = 0$. Let $\hat{R} = \varprojlim_{i \in S} R/(r^m)$. For each $s \subseteq \omega$ finite, let $\sigma_s = \sum_{i \in S} r^i$ and let $\Gamma = \varprojlim_{i \in S} \{\sigma_s : s \subseteq \omega \text{ finite}\}$

Find $\{\gamma_n : n \in \omega\} \subseteq \Gamma$ algebraically independent, i.e., $p(\gamma_0, \ldots, \gamma_n) \neq 0$ for all non-constant $p \in R[x_0, \ldots, x_n]$. (Baire category)

イロン イヨン イヨン イヨ

Joint work with D. Ulrich

Code: Given a free-like tagged left *R*-module $\overline{V} = (\bigoplus_{\omega} R, V_n)_{n \in \omega}$, let $f(\overline{V})$ be the smallest *r*-pure *R*-submodule of $\bigoplus_{\omega} \hat{R}$ generated by

$$\bigoplus_{\omega} \mathsf{R} \cup \bigcup_{\mathsf{n}} \{ \gamma_{\mathsf{n}} \mathsf{V}_{\mathsf{n}} : \mathsf{n} \in \omega \}$$

Need: If $h : f(\overline{V}) \cong f(\overline{V}')$ as left *R*-modules, then $\overline{V} \cong \overline{V}'$ as tagged left *R*-modules.

Two properties:

- Then map $h: f(\overline{V}) \cong f(\overline{V}')$ is actually an \hat{R} -isomorphism (uses *r*-purity and density of $\bigoplus_{\omega} R$ in $\bigoplus_{\omega} \hat{R}$)
- For any g ∈ f(V), g ∈ f(V_n) if and only if γ_ng ∈ f(V) (uses algebraic independence and r-purity).

A. If there is a central, non-zero divisor, non-unit $r \in R$, then Th(left *R*-modules) is Borel complete.

Corollary

If R is an integral domain that is not a field, then Th(R-modules) is Borel complete. Furthermore, if R is torsion-free, every free-like R-module is torsion free, hence TFAB is Borel complete.

Corollary

For any countable R, Th(left R[x]-modules) is Borel complete (take r = x). Hence Th(left R-modules (V, T) with a named $T : V \rightarrow V$) is Borel complete.

Proof: (left *R*-endomorphisms (V, T)) \equiv_B (left *R*[*x*]-modules)

Corollary

For any countable R, Th(left R-modules with 4 named submodules) is Borel complete.

Proof: Fix R and let (V, T) be a left R-module with a left endomorphism $T: V \to V$.

Let f(V, T) have be the left *R*-module with universe $V \times V$, let

•
$$V_0 := V \times \{0\};$$

• $V_1 := \{0\} \times V;$
• $V_2 := \{(v, v) : v \in V\};$ and
• $V_3 := \{(v, T(v)) : v \in V\}.$

Then $(V, T) \mapsto (V \times V, V_0, V_1, V_2, V_3)$ is a Borel reduction.

Image: A match a ma

Thanks for listening!

Joint work with D. Ulrich

Michael C. Laskowski and D. Ulrich, A proof of the Borel completeness of torsion free abelian groups, arXiv:2202.07452.

Chris Laskowski University of Maryland