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Baer invariant

Consider the class TFab1 of torsion-free abelian groups of rank 1, i.e.,
groups isomorphic to a subgroups of Q.

Throughout the talk, we will
also write a class to mean the isomorphism problem of the class.
Suppose G ∈ TFab1 and p a prime. We define ηp : G → N ∪ {∞} by
ηp(g) = sup{n | ∃x ∈ G, pnx = g}.

Theorem (Baer, 37’)
G,H ∈ TFab1 are isomorphic iff there are g ∈ G and h ∈ H such that∑

p

|ηp(g)− ηp(h)| < ∞,

i.e., ηp(g) ̸= ηp(h) for at most finitely many primes, and for each prime
the difference is finite.

Example

Z ∼= Z[1/2].
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Torsion-free abelian groups

Let TFabr be the class of torsion-free abelian groups of rank r ,
with the usual abelian group language {0,+,−}.

Independently, Kurosh (‘37), Malcev (‘38), and Derry (‘37) found
invariants for TFabr .
However, Fuchs (‘73) remarked that “the theory is of minor
practical value: it fails to furnish us with a useful way of deciding
the isomorphy of two countable torsion-free groups”.
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Borel reducibility

Definition
Let E and F be two Borel equivalence relations on Polish spaces X
and Y . We say E is Borel reducible to F and write E ≤B F if there is a
Borel function f : X → Y such that for every x1, x2 ∈ X , x1Ex2 if and
only if f (x1)Ff (x2).

We say E and F are Borel bireducible, denoted E ∼B F , if E ≤B F and
F ≤B E .

Example
Define fr : TFabr → TFabr+1 by fr (A) = A ⊕ Z, we have

E0 ∼B TFab1 ≤B TFab2 ≤B TFab3 ≤B · · · .
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Isomorphisms on TFabr

Theorem (Hjorth ‘99, Thomas ‘03)

TFab1 <B TFab2 <B TFab3 <B · · ·

Theorem (Paolini–Shelah ‘22, Laskowski–Ulrich ‘22)
The space of torsion-free abelian groups with domain ω is Borel
complete, i.e., the isomorphism problem is as complicated as possible.
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Turing computable embedding

We are interested in studying the reducibility in a computable setting
and the relationship between the category of torsion-free abelian
groups of finite rank and fields of finite transcendence degree.

Definition
Let C and D be two classes of countable structures. A Turing
computable embedding from C to D is a computable operator Φ such
that:

1 For every A ∈ C, ΦA is (the atomic diagram of) a structure in D.
2 For A,B ∈ C, ΦA ∼= ΦB if and only if A ∼= B.

We say C is Turing reducible to D and write C ≤tc D if there is a Turing
computable embedding from C to D.
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Groups and fields

Let TDr be the class of fields with transcendence degree r over Q, i.e.,
fields isomorphic to a subfield of Q(t1, t2, · · · , tr )alg, the algebraic
closure of the degree r purely transcendental extension of Q.
We work in the usual field language {0,1,+,−, ·}.

Theorem (H., Knight, and Miller)

TFabr ≤tc TDr .
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Theorem (HKM)

TFabr ≤tc TDr .

Proof.
Let G ∈ TFab2 and g,h ∈ G be a basis. Consider Q(x , y)alg. We
build ΦG to be the subfield generated by
M = {qxayb | q ∈ Qrcl ,a,b ∈ Q,ag + bh ∈ G} where Qrcl is the
real closure of Q. Elements in M are called monomials.

However, we do not have (uniform) access to a pair of basis. We
approximate a basis by going through all pairs of elements.
Whenever we see the current pair is dependent, we collapse the
atomic diagram built so far into Qrcl by letting x = N and y = M for
sufficiently large N,M ∈ Q.
An isomorphism G ∼= H induces an isomorphism ΦG ∼= ΦH .
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Theorem (HKM)

TFabr ≤tc TDr .

Proof.
Suppose now that ΦG ∼= ΦH , we need to find an isomorphism
G ∼= H.

We would like to show that monomials are sent to monomials.
However, this is not always true as witnessed by automorphisms
of the form x 7→ ax+b

cx+d , y 7→ y with ad − bc = 1 in Q(x , y).
If a monomial is sent to a non-monomial, then it exhibits “discrete
behavior”, i.e., it corresponds to a Z summand in G.
Decomposing G = Z k ⊕ G′, every monomial corresponding to
elements in G′ are sent to monomials, and we can use this to
build an isomorphism G ∼= H.
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Computable functor

Definition
Let C and D be two categories of countable structures. A computable
functor from C to D is a pair of computable operators Φ and Φ∗ such
that

1 There is a functor F from C and D.
2 For every A ∈ C, ΦA = F (A).
3 For every A,B ∈ C and a morphism f : A → B,

Φ
D(A)⊕f⊕D(B)
∗ = F (f ).

Theorem (HKM)
There is a computable functor from TFabr to TDr that extends the
Turing computable embedding above.
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Fields of degree r

Question
Does TDr ≤tr TDr+1? If yes, is it strict?

Question
Does TDr ≤tr TFabr ?

Thomas’ result says we either have TDr ̸≤tr TFabr or TDr+1 ̸≤tr TDr .
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TDr ≤tr TDr+1?

Proposition
TD0 <tr TD1.

The reduction is via ΦF = F (t).
However, there are two fields F ,E ∈ TD3 such that F ̸∼= E but
F (t1, t2, t3) ∼= E(t1, t2, t3). Thus, ΦF = F (t) does not preserve
non-isomorphism for every r !
For strictness, we observe that the isomorphism problem on TDr
is Σ3 when r ≥ 1, and Π2 when r = 0.

Question
Is there a (Borel/computable) function Φ : TDr → TDr+1 such that
E ∼= F if and only if Φ(E) ∼= Φ(F )?
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Fields into groups

Question
Does TDr ≤tr TFabr ?

Definition
Let C and D be two categories of countable structures. A computable
µ-ary reduction is a computable functional Φ : Cµ → Dµ such that for
every Ā ∈ Cµ, Aα

∼= Aβ iff Φα(Ā) ∼= Φβ(Ā).

In the sense of countable embedding, all TDr and TFabr collapse!

Theorem (HKM)
There is a computable countable reduction from TDr to TFab1.
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Theorem (HKM)
There is a computable countable reduction from TDr to TFab1.

Proof.
Given F1,F2, · · · ∈ TDr , we need to construct G1,G2, · · · ∈ TFab1.

For each Fi , we will guess a basis xi ∈ Fi , and (partially) reset the
construction whenever the guess is wrong.
Enumerate the primes pijk . At every stage, we will make every
1 ∈ Gn divisible by pijk the same number of times, except 1 ∈ Gi is
divisible by it one more time.
At each stage, if mapping xi to one of the first k tuples in Fj is a
(partial) isomorphism on a larger domain, we make every Gm
divisible by pijk one more time.
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