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Abstract

The Hausdorff Dimension of a set of real numbers A is a numerical
indication of the geometric fullness of A. Sets of positive measure have

dimension 1, but there are null sets of every possible dimension between
0 and 1.

Effective Hausdorff Dimension is a variant which incorporates
computability-theoretic considerations. By work of Jack and Neil Lutz,
Elvira Mayordomo, and others, there is a direct connection between the
Hausdorff dimension of A and the effective Hausdorff dimensions of its
elements. We will describe how this point-to-set principle works and how
it allows for novel approaches to classical problems.
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Hausdorff Dimension

Define a family of outer measures, parameterized by d € [0, 1]. For
AC2v,

1 there is a cover of A by balls
d TIU . y
HEA) = r"ﬂb'”f{z 20o1d  B(o;) with 1/2191 < r }

Definition
The Hausdorff dimension of A is as follows.
dimy(A) =inf{d > 0: HY(A) = 0}
=sup ({d > 0: HI(A) = 0o} U{0})



Geometric Examples

Example

» The Cantor middle third set has dimension log 2/ log 3.
» A line segment within R? has dimension 1.

» Almost surely, the graph of a 2-dimensional Brownian motion has
dimension 2.
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Diophantine Examples

Definition

» The exponent of irrationality of a real number £ is the supremum of
the set of numbers z such that there are infinitely many p/q such
that 0 < | — p/q| < 1/q%.

» ¢ is a Liouville number iff its exponent of irrationality is infinite.



Diophantine Examples

Definition

» The exponent of irrationality of a real number £ is the supremum of
the set of numbers z such that there are infinitely many p/q such
that 0 < | — p/q| < 1/q%.

» ¢ is a Liouville number iff its exponent of irrationality is infinite.

Theorem (Jarnik 1929 and Besicovitch 1934)

For every real number a greater than or equal to 2, the set of numbers
with irrationality exponent equal to a has Hausdorff dimension 2/a.

Baker and Schmidt (1970) generalized to approximation by algebraic
numbers.
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Gauge Functions and General Hausdorff Dimension

Definition
A gauge function is a function h : (0,00) — (0, 00) which has the
following properties:

» continuous

» increasing

» lim; o+ h(t) =0

Example

For s > 0, t — t° is a gauge function.



Gauge Functions and General Hausdorff Dimension

Remark
» As above, we can associate a Hausdorff outer measure H" with any
gauge function h.
» Write h < g to indicate that lim;_, o+ % = 0. H"(A) > 0 indicates
a higher dimension than H&(A) > 0

» A set determines a family/cut of gauge functions for which it has
positive outer measure.



Example

Let L denote the set of Liouville numbers.
Theorem (Olsen and Renfro (2006))
Let h be an arbitrary gauge function.

» Ift5 < h, for some s > 0, then H"(LL) = 0.
» If h < t5, foralls >0, then L is not o-finite for H".

So, L has maximal gauge dimension among the sets of Hausdorff
dimension zero.



Questions/Exercises

As far as | know, the exact gauge dimensions are not known for the
following sets.

» The set of £ with exponent of irrationality a.

» The set of ¢ such that £ has exponent of irrationality a subject to
the constraint that the rationals used to approximate £ are
represented by fractions with prime denominator.



Questions/Exercises

As far as | know, the exact gauge dimensions are not known for the
following sets.

» The set of £ with exponent of irrationality a.

» The set of ¢ such that £ has exponent of irrationality a subject to
the constraint that the rationals used to approximate £ are
represented by fractions with prime denominator.

Conjecture

» Restricting to prime denominators does not change dimension with
respect to the exponent of irrationality.

» There is a gauge function f such that if we consider intervals of
diameter f(1/q) around p/q and evaluate the exact dimension of
the set of reals which are infinitely often f-approximable by rational
numbers then restricting to rational numbers with prime
denominators reduces exact dimension.
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Effective Hausdorff Dimension

formulated by measure

Introduced by Jack Lutz, this formulation due to Jan Reimann.
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Effective Hausdorff Dimension

formulated by measure

Introduced by Jack Lutz, this formulation due to Jan Reimann.

Definition
» For A C 2%, define A has effective s-dimension Hausdorff measure 0

iff there is a uniformly computably enumerable sequence of open sets
O; = Uj B(oij) such that for each i, A C O; and

Zj(1/2|ﬂf,j|)s <1/2.
» The effective Hausdorff dimension dimgl (A) of A is the infimum of
those s such that A has effective s-dimension Hausdorff measure 0.
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Effective Hausdorff Dimension

formulated by measure

Introduced by Jack Lutz, this formulation due to Jan Reimann.

Definition
» For A C 2¥, define A has effective s-dimension Hausdorff measure 0
iff there is a uniformly computably enumerable sequence of open sets
O; = Uj B(oij) such that for each i, A C O; and
Zj(1/2|0i,j|)5 <1/2.
» The effective Hausdorff dimension dimgl (A) of A is the infimum of
those s such that A has effective s-dimension Hausdorff measure 0.

Remark

One can view effective Hausdorff dimension as a lightface theory for
dimension just as hyperarithmetic definability is a lightface theory for
Borel sets.
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Effective Hausdorff Dimension

formulated by compressibility

Definition

A sequence x € 2“ is algorithmically compressible by a factor of s iff
there are infinitely many ¢ such that K(x | £) < s¢, where K denotes
prefix-free Kolmogorov complexity.

11/21



Effective Hausdorff Dimension
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Definition

A sequence x € 2“ is algorithmically compressible by a factor of s iff
there are infinitely many ¢ such that K(x | £) < s¢, where K denotes
prefix-free Kolmogorov complexity.

Theorem (Mayordomo 2002)

For any x € 2%, dimgf ({x}) is the infimum of the s such that x is

algorithmically compressible by a factor of s.
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Effective Hausdorff Dimension

formulated by compressibility

Definition

A sequence x € 2% is algorithmically compressible by a factor of s iff
there are infinitely many ¢ such that K(x | £) < s¢, where K denotes
prefix-free Kolmogorov complexity.

Theorem (Mayordomo 2002)

For any x € 2%, dimgf ({x}) is the infimum of the s such that x is

algorithmically compressible by a factor of s.

» We will abbreviate and write dim&" (x) for diml ({x}).

> We can relativize to a real z and write dim?" *)(x).
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Point-to-Set for Hausdorff Dimension

Theorem (J. Lutz and N. Lutz 2017)

For A C 2%, the Hausdorff dimension of A is equal to
the infimum over all B C N
of the supremum over all x € A
of the effective-relative-to-B Hausdorff dimension of x.
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Capacitability

examples where the effective theory is helpful

Theorem
» (Davies 1952) If A is analytic and H"(A) > 0 then A has a compact
subset C such that H"(C) > 0.

» (Davies 1956 for t°, Sion and Sjerve 1962) If A is analytic and not
o-finite for H" then A has a compact subset C such that C is not
o-finite for H".
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Beyond analytic

Theorem

» There is a set E such that E has dimension 1 and E has no perfect
subset.
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Beyond analytic

Theorem
» There is a set E such that E has dimension 1 and E has no perfect
subset.
» Con(ZFC) implies Con(ZFC) and RN L has dimension 1 and has no
perfect subset. Note that RN L is a ¥}-set.



Beyond analytic

Theorem

» There is a set E such that E has dimension 1 and E has no perfect
subset.

» Con(ZFC) implies Con(ZFC) and RN L has dimension 1 and has no
perfect subset. Note that RN L is a ¥}-set.

» If V = L then there is a co-analytic subset E of 2 which is
dimension 1 and has no perfect subset.

— E is the maximal thin N} set.



Sets of Strong Dimension h

Definition

A set E has strong dimension h iff
V[f < h= H'(E) = ]
Vglh < g = HE(E) = 0]

As a limiting case, E has strong dimension 0 iff for all g, H&(E) = 0.
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Example
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Sets of Strong Dimension h
Definition
A set E has strong dimension h iff
V[f < h= H'(E) = ]
Vglh < g = HE(E) = 0]

As a limiting case, E has strong dimension 0 iff for all g, H&(E) = 0.

Example

A line segment within the plane has strong dimension 1.

Remark

By a theorem of Besicovitch, if H"(A) = 0 then there is a j < h such
that H/(A) = 0. Consequently, if H"(A) = 0 then A does not have strong
dimension h.



Sets of Strong Dimension h

Theorem (Besicovitch 1956, generalized Rogers 1962)

If E is compact and is non-c-finite for H", then there is a g such that
h < g and E is non-c-finite for H&.

Thus, if E is compact then E cannot have strong dimension h and be
non-o-finite for H".
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If E is compact and is non-c-finite for H", then there is a g such that
h < g and E is non-c-finite for H&.

Thus, if E is compact then E cannot have strong dimension h and be
non-o-finite for H".

Theorem (Davies 1956 for x°, Sion and Sjerve 1962)

If E is analytic and is non-o-finite for H", then there is a compact subset
of E that is non-o-finite for H".

Hence, we can make the above observation for analytic sets.
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Sets of Strong Dimension h

Theorem (Besicovitch 1956, generalized Rogers 1962)

If E is compact and is non-c-finite for H", then there is a g such that
h < g and E is non-c-finite for H&.

Thus, if E is compact then E cannot have strong dimension h and be
non-o-finite for H".

Theorem (Davies 1956 for x°, Sion and Sjerve 1962)

If E is analytic and is non-o-finite for H", then there is a compact subset
of E that is non-o-finite for H".

Hence, we can make the above observation for analytic sets.

Conjecture

For a € [0,1), the set of real numbers & such that & has irrationality
exponent a does not have a strong dimension.
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Sets of Strong Dimension h

Now we move away from Diophantine examples.

Theorem (Besicovitch 1963)

If CH then there is a set E C R? such that E has strong linear dimension
and is non-o-finite for linear measure.
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Sets of Strong Dimension h

Now we move away from Diophantine examples.

Theorem (Besicovitch 1963)

If CH then there is a set E C R? such that E has strong linear dimension
and is non-o-finite for linear measure.

Theorem (Combining Besicovitch 1963 with Erdés, Kunen and Mauldin
1981)

If V = L there there is a N} set E C R? such that E has strong linear
dimension and is non-o-finite for linear measure.
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Borel Conjecture

Definition

A set E C R has strong measure 0 iff for any sequence of positive real
numbers {¢;} there is a sequence of open intervals {O;} such that for
each i, O; has length ¢;, and E C U, O;.
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Borel Conjecture

Definition

A set E C R has strong measure 0 iff for any sequence of positive real
numbers {¢;} there is a sequence of open intervals {O;} such that for
each i, O; has length ¢;, and E C U, O;.

Borel (1919) conjectured that strong measure 0 implies countable (BC).
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Borel Conjecture

Definition

A set E C R has strong measure 0 iff for any sequence of positive real
numbers {¢;} there is a sequence of open intervals {O;} such that for
each i, O; has length ¢;, and E C U, O;.

Borel (1919) conjectured that strong measure 0 implies countable (BC).

Theorem
» (Sierpiriski 1928) CH implies -BC.
» (Laver 1976) Con(ZFC) implies Con(ZFC + BC).
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Borel Conjecture

A set E has strong dimension 0 iff it has strong measure 0.
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Borel Conjecture

Theorem (Besicovitch 1955)

A set E has strong dimension 0 iff it has strong measure 0.

Theorem (Another variation on Besicovitch 1963)

—BC implies that there is a subset of R? which has strong linear
dimension and which is non-o-finite for linear measure.
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Two Challenges

A technical challenge:

Question

Does the Borel Conjecture imply that there do not exist h and E such
that E has strong dimension h and E is not o-finite for H"?
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Two Challenges

A technical challenge:

Question

Does the Borel Conjecture imply that there do not exist h and E such
that E has strong dimension h and E is not o-finite for H"?
A conceptual challenge:

Question

Since the dimension of a set is not supported by its closed subsets, is
there a simple characteristic sets which does support their dimension?
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The End
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