Jinhe (Vincent) Ye

IMJ-PRG

Aug 9, 2022

1 / 26

 299

イロト 不優 トメ 差 トメ 差 トー 差

Joint work with Will Johnson (Fudan U.) and Erik Walsberg (UC Irvine).

2 / 26

 299

メロトメ 御 トメ 君 トメ 君 トッ 君 し

Joint work with Will Johnson (Fudan U.) and Erik Walsberg (UC Irvine).

Throughout the talk, varieties are reduced separated schemes of finite type over some field and a curve is a variety of dimension 1. So (embedded) varieties are not required to be closed.

A majority of conjectures/questions in model theory of fields concern the relationship between model-theoretic "tameness" and algebraic properties.

A majority of conjectures/questions in model theory of fields concern the relationship between model-theoretic "tameness" and algebraic properties.

- **Omitting certain combinatorial configurations.** (stable/NIP/simple/NSOP, etc.)
- Admitting certain strutrual description of definable sets. (strongly minimal, o-minimal, C-minimal, etc.)
- Quantifier elimination/model completeness in a reasonable language. (ACF, RCF, ACVF, p-cf, pseudofinite fields, etc.)

A majority of conjectures/questions in model theory of fields concern the relationship between model-theoretic "tameness" and algebraic properties.

- **Omitting certain combinatorial configurations.** (stable/NIP/simple/NSOP, etc.)
- Admitting certain strutrual description of definable sets. (strongly minimal, o-minimal, C-minimal, etc.)
- Quantifier elimination/model completeness in a reasonable language. (ACF, RCF, ACVF, p-cf, pseudofinite fields, etc.)

Typically, the first 2 conditions follow from the last condition.

An overview of model theory of fields

Conjecture

An infinite stable field is separably closed.

Conjecture

An infinite simple field is bounded PAC.

Conjecture

An infinite NIP field is henselian.

We say a field is model complete if it's theory in the language of rings is model complete.

We say a field is model complete if it's theory in the language of rings is model complete.

- Quantifier elimination implies model completeness. Quantifier elimination in the language of rings implies algebraically closedness.
- $\bullet \mathbb{C}, \mathbb{R}, \mathbb{Q}_p$ are all model complete. But the last 2 does not have quantifier elimination in the language of rings.
- Pseudofinite fields are model complete after a slight expansion of language of rings.

A field K is large if for any integral positive dimensional variety V over K and V has a smooth K-point, then V has infinitely many K-points.

A field K is large if for any integral positive dimensional variety V over K and V has a smooth K-point, then V has infinitely many K-points.

- $\bullet \mathbb{C}, \mathbb{R}, \mathbb{Q}_p$ are large. Any field that can be equipped with a t-Henselian topology is large.
- Any PAC field is large. Recall that PAC says that any geometrically integral variety over K has a K -point.
- In the above axiomatizations of largeness and PAC, it suffices to mention only curves.
- Empirically, all the fields that are "tame" are large.

On the other hand, there are fields that are extremely wild in the sense of model theory that are still large, e.g. $\mathbb{C}((t_1,t_2)).$

On the other hand, there are fields that are extremely wild in the sense of model theory that are still large, e.g. $\mathbb{C}((t_1,t_2)).$ Several longstanding conjectures in model theory of fields have something to do with largeness as well.

Theorem 3 (Johnson, Tran, Walsberg, Y.)

The stable fields conjecture is true if the field is assumed to be large.

Theorem 4 (Johnson)

If K is the fraction field of a NIP domain R with $R \neq K$ and $Char(K) = p \neq 0$, then K is large.

A field K is **bounded** if for each n , there are only finitely many separably extensions of K of degree n .

A field K is **bounded** if for each n , there are only finitely many separably extensions of K of degree n.

Conjecture (Koenigsmann)

Bounded infinite implies large.

Question (Macintyre)

If K is model complete, is K bounded?

Question (Junker-Koenigsmann)

If K is model complete and infinite, is K large?

A field K is **bounded** if for each n , there are only finitely many separably extensions of K of degree n.

Conjecture (Koenigsmann)

Bounded infinite implies large.

Question (Macintyre)

If K is model complete, is K bounded?

Question (Junker-Koenigsmann)

If K is model complete and infinite, is K large?

We answer the two questions negatively.

Let T be a theory

- \bullet T is inductive if it is axiomatized by \forall ∃-formulas. It is equivalent to that a union of chain of models is a model.
- \bullet $M \models T$ is existentially closed (e.c.) if any existential formula over M that holds in $N \models T$ extending M holds in M.

Let T be a theory

- \bullet T is inductive if it is axiomatized by \forall ∃-formulas. It is equivalent to that a union of chain of models is a model.
- \bullet $M \models \top$ is existentially closed (e.c.) if any existential formula over M that holds in $N \models T$ extending M holds in M.
- The theory of fields is inductive. The existentially closed models are exactly the algebraically closed fields.
- Existentially closed models of formally real fields are the real closed fields.

For an inductive theory T , we have the following:

- Any model of T embeds into an e.c. model.
- If the class of existentially closed models is an elementary class, axiomatized by \mathcal{T}^{\prime} , then \mathcal{T}^{\prime} is model complete (in the language of T). In this case, we say that T has a model companion and T' is the model companion of T .

For an inductive theory T , we have the following:

- Any model of T embeds into an e.c. model.
- If the class of existentially closed models is an elementary class, axiomatized by \mathcal{T}^{\prime} , then \mathcal{T}^{\prime} is model complete (in the language of T). In this case, we say that T has a model companion and T' is the model companion of T .

In the previous slide: The model companion of the theory of fields is the theory of algebraically closed field; The model companion of the theory of formally real fields is the theory of real closed fields.

From now on, all fields will be of characteristic 0.

Theorem 7 (Fermat)

 $x^4 + y^4 = 1$ has only 4 solutions in \mathbb{Q} .

From now on, all fields will be of characteristic 0.

Theorem 7 (Fermat)

 $x^4 + y^4 = 1$ has only 4 solutions in \mathbb{Q} .

Consider T_0 to be the theory of fields and $x^4 + y^4 = 1$ has only 4 solutions.

From now on, all fields will be of characteristic 0.

Theorem 7 (Fermat)

 $x^4 + y^4 = 1$ has only 4 solutions in \mathbb{Q} .

Consider T_0 to be the theory of fields and $x^4 + y^4 = 1$ has only 4 solutions.

Note that T_0 is inductive, and closed under subfields.

From now on, all fields will be of characteristic 0.

Theorem 7 (Fermat)

 $x^4 + y^4 = 1$ has only 4 solutions in \mathbb{Q} .

Consider T_0 to be the theory of fields and $x^4 + y^4 = 1$ has only 4 solutions.

Note that T_0 is inductive, and closed under subfields.

Theorem 8 (Johnson, Walsberg, Y.)

 T_0 has a model companion.

Corollary 9

There is a non-large model complete field.

In general, for K_0 with $\text{Char}(K_0) = 0$, take any curve C_0 over K_0 of genus ≥ 2 with only finitely many (possibly 0) K_0 -points.

In general, for K_0 with $\text{Char}(K_0) = 0$, take any curve C_0 over K_0 of genus ≥ 2 with only finitely many (possibly 0) K_0 -points.

Theorem 10 (J-W-Y)

The theory of fields K extending K_0 (naming K_0 as constants) with the $C_0(K) = C_0(K_0)$ has a model companion $C_0 \text{XF}.$

In general, for K_0 with $Char(K_0) = 0$, take any curve C_0 over K_0 of genus ≥ 2 with only finitely many (possibly 0) K_0 -points.

Theorem 10 (J- \overline{W} -Y)

The theory of fields K extending K_0 (naming K_0 as constants) with the $C_0(K) = C_0(K_0)$ has a model companion $C_0 \text{XF}$.

To simplify notation, we will work with the case C_0 is the Fermat's curve with 4 \mathbb{O} -points removed and $K_0 = \mathbb{O}$.

Let T_0 denote the theory of fields K with characteristic 0 and $C_0(K) = \emptyset$.

Theorem 11

 $K \vDash T_0$ is e.c. iff the following two conditions hold:

- (1) For any finite proper extension L/K , $C_0(L) \neq \emptyset$.
- (2) If V is a geometrically integral variety over K, either there is a dominant $V \rightarrow C_0$ over K or $V(K) \neq \emptyset$.

Let T_0 denote the theory of fields K with characteristic 0 and $C_0(K) = \emptyset$.

Theorem 11

 $K \models T_0$ is e.c. iff the following two conditions hold:

- (1) For any finite proper extension L/K , $C_0(L) \neq \emptyset$.
- (2) If V is a geometrically integral variety over K, either there is a dominant $V \rightarrow C_0$ over K or $V(K) \neq \emptyset$.

Proof of \Rightarrow .

If K is e.c and L is a proper finite extension, then $K \nleq_1 L$. It means that $L \neq T_0$. Thus (1) is satisfied.

For V a geometrically integral variety over K , if there is no dominant $V \rightarrow C_0$ over K, it means that $C_0(K(V)) = \emptyset$. Thus $K \leq_1 K(V)$, so $V(K) \neq \emptyset$. Thus we have verified (2).

Axioms of $C_0\chi$ F

Note that (2) is equivalent to $(2')$.

 $(2')$ If V is a geometrically integral variety over K, either there is a dominant morphism $V \rightarrow C_0$ over K or $V(K)$ is Zariski dense in V.

Axioms of $C_0\text{XF}$

Note that (2) is equivalent to $(2')$.

 $(2')$ If V is a geometrically integral variety over K, either there is a dominant morphism $V \rightarrow C_0$ over K or $V(K)$ is Zariski dense in V.

We also need the following fact.

Fact

Suppose that V is an integral K-variety. Then $K \leq 1$ K(V) if and only if $V(K)$ is Zariski dense in V.

Axioms of $C_0\text{XF}$

Note that (2) is equivalent to (2').

 $(2')$ If V is a geometrically integral variety over K, either there is a dominant morphism $V \rightarrow C_0$ over K or $V(K)$ is Zariski dense in V.

We also need the following fact.

Fact

Suppose that V is an integral K-variety. Then $K \leq 1$ K(V) if and only if $V(K)$ is Zariski dense in V.

Proof of \Leftarrow .

Let L/K and $L \models T_0$. We need to show $K \leq_1 L$. WLOG, L is finitely generated over K. So $L = K(V)$ for some integral variety V/K . If V is not geometrically integral, then L contains a proper finite extension of K , a contradiction to (1) .

Axioms of $C_0\text{XF}$

Note that (2) is equivalent to (2').

 $(2')$ If V is a geometrically integral variety over K, either there is a dominant morphism $V \rightarrow C_0$ over K or $V(K)$ is Zariski dense in V.

We also need the following fact.

Fact

Suppose that V is an integral K-variety. Then $K \leq 1$ K(V) if and only if $V(K)$ is Zariski dense in V.

Proof of \Leftarrow .

Let L/K and $L \models T_0$. We need to show $K \leq_1 L$. WLOG, L is finitely generated over K. So $L = K(V)$ for some integral variety V/K . If V is not geometrically integral, then L contains a proper finite extension of K , a contradiction to (1) . Hence V is geometrically integral. Since $L \vDash T_0$, it must be the case that $C_0(L) = \emptyset$. By (2'), $V(K)$ is Zariski dense in V.

- \bullet (1) is first-order.
- \bullet (2) requires quantifying over the set of morphisms $V \rightarrow C_0$.

- \bullet (1) is first-order.
- \bullet (2) requires quantifying over the set of morphisms $V \rightarrow C_0$. The set of morphisms between two definable set is not a definable set in general. For example, $\text{Var}(\mathbb{A}^n,\mathbb{A}^1)$ is $\mathcal{K}[X_1,\ldots,X_n].$ This can be seen as an union of definable sets indexed by N.

- \bullet (1) is first-order.
- \bullet (2) requires quantifying over the set of morphisms $V \rightarrow C_0$.

The set of morphisms between two definable set is not a definable set in general. For example, $\text{Var}(\mathbb{A}^n,\mathbb{A}^1)$ is $\mathcal{K}[X_1,\ldots,X_n].$ This can be seen as an union of definable sets indexed by N. We need some bounds on the "complexity". Hopefully, here is where the assumption that the genus of C_0 is ≥ 2 comes in.

We need the following: For a family of varieties V , we must be able to definably access the set of morphisms $V_a \rightarrow C_0$ uniformly. We need the following: For a family of varieties V , we must be able to definably access the set of morphisms $V_a \rightarrow C_0$ uniformly. If V is a family of curves, using Riemann-Hurwitz, we have that for any $f: V_2 \rightarrow C_0$.

$$
deg(f) \leq \frac{g(V_a)-1}{g(C_0)-1}.
$$

This allows us to bound the complexity of a representation of f using quotients of polynomials, which makes it definable.

In general, given a normal projective varitety $X \subseteq \mathbb{P}^n$ and f : X → C_0 ⊆ \mathbb{P}^m , using sufficiently general hyperplane intersection, we get a smooth projective curve $C \subseteq X$ and $f|_C : C \to C_0$ is a dominant morphism. Riemann-Hurwitz bounds its complexity.

In general, given a normal projective varitety $X \subseteq \mathbb{P}^n$ and f : X → C_0 ⊆ \mathbb{P}^m , using sufficiently general hyperplane intersection, we get a smooth projective curve $C \subseteq X$ and $f|_C : C \to C_0$ is a dominant morphism. Riemann-Hurwitz bounds its complexity. From this setup, one can bound the complexity of the graph of $f: X \rightarrow C_0$ in terms of the genus of C_0 and the (projective) degree of X and C_0 and degree of $f \mid_C$ (considering everything as embedded in $\mathbb{P}^n \times \mathbb{P}^m$).

For largeness and PAC, it suffices to mention curves in the axiomatization.

Question 1

Does (1) + (2 for curves) characterize $C_0 XF$?

For largeness and PAC, it suffices to mention curves in the axiomatization.

Question 1

Does (1) + (2 for curves) characterize C_0XF ?

And here is a meta-question.

Question 2

Do geometric invariants like "genus" carry a stability-theoretic meaning? For example: What is a model-theoretic criterion of the definability of Def(−,X)?

For largeness and PAC, it suffices to mention curves in the axiomatization.

Question 1

Does (1) + (2 for curves) characterize C_0XF ?

And here is a meta-question.

Question 2

Do geometric invariants like "genus" carry a stability-theoretic meaning? For example: What is a model-theoretic criterion of the definability of $Def(-, X)$?

Concluding remark before we move on: $C_0 XF$ can be large if C_0 is a smooth projective curve and $C_0(\mathbb{Q}) = \emptyset$.

Let V, W be two geometrically integral varieties over K and $f: V \times W \rightarrow C_0$ be a rational map, then it factors over V or W generically.

Let V, W be two geometrically integral varieties over K and $f: V \times W \rightarrow C_0$ be a rational map, then it factors over V or W generically.

Proof.

Assume f does not factor through V. Note that there are only finitely many non-constant rational maps $W \rightarrow C_0$ (Mordell's conjecture for function fields), then $f(x, -)$ can be chosen to be independent of x after shrinking V .

Let $K_1, K_2 \vDash C_0 \text{XF}$ and K is a common relatively algebraically closed subfield of both K_i's, then the map $\mathrm{id} : K \to K$ is a partial elementary map between Kⁱ 's.

Let $K_1, K_2 \vDash C_0 \text{XF}$ and K is a common relatively algebraically closed subfield of both K_i's, then the map $\mathrm{id} : K \to K$ is a partial elementary map between Kⁱ 's.

Proof Sketch.

One can check easily that we can amalgamate K_1, K_2 over K into some $L \vDash T_0$ (it follows from Lemma [12\)](#page-44-0). One may suppose that $L \vDash C_0 \text{XF}.$

We gather some facts needed in order to characterize the completions of $C_0\mathrm{XF}$. Recall that $\mathrm{Abs}(K)=K\cap\mathbb{Q}^{\mathrm{alg}}$.

We gather some facts needed in order to characterize the completions of $C_0\mathrm{XF}$. Recall that $\mathrm{Abs}(K)=K\cap\mathbb{Q}^{\mathrm{alg}}$.

Corollary 14

Let $K_1, K_2 \vDash C_0 \text{XF}$, then $K_1 \equiv K_2$ iff $\text{Abs}(K_1) \cong \text{Abs}(K_2)$.

We gather some facts needed in order to characterize the completions of $C_0\mathrm{XF}$. Recall that $\mathrm{Abs}(K)=K\cap\mathbb{Q}^{\mathrm{alg}}$.

Corollary 14

Let $K_1, K_2 \vDash C_0 \text{XF}$, then $K_1 \equiv K_2$ iff $\text{Abs}(K_1) \cong \text{Abs}(K_2)$.

With a bit of work, we characterize all the completions of C_0XF .

Theorem 15

For any $F \models T_0$, there is a regular extension K/F such that $K \vDash C_0 \text{XF}.$ In particular, for any $F \subseteq \mathbb{Q}^{alg}$ with $F \models T_0$, there is $K \models C_0 \text{XF}$ with $\text{Abs}(K) \cong F$.

Corollary 16

The theory axiomtized by C_0XF and $Abs(M) = \mathbb{Q}$ is complete and decidable. Particularly, there is a decidable non-large field.

Corollary 16

The theory axiomtized by C_0XF and $Abs(M) = \mathbb{Q}$ is complete and decidable. Particularly, there is a decidable non-large field.

A field K is Hilbertian if for any $f \in K[X, Y]$ irreducible, there are infinitely many $a \in K$ such that $f(a, Y)$ is irreducible.

Theorem 17

 C_0 -exculding fields are Hilbertian.

Proof.

Take $K \vDash C_0 \text{XF}$. Note there is no non-constant morphism $\mathbb{A}^1 \to \mathcal{C}_0$, so $\mathcal{C}_0(\mathcal{K}(t))$ = \varnothing . By Theorem [15,](#page-48-0) there is $\mathcal{M}/\mathcal{K}(t)$ regular such that $M \models C_0 \text{XF}$. So $K \leq M$ by Theorem 11. So $K(t)^{\text{alg}} \cap M = K(t)$. This is equivalent to Hilbertianity.

Since Hilbertian fields are not bounded, we have

Corollary 18

Models of C_0XF are not bounded. Thus, there is a unbounded model complete field.

Similar methods enables us to study finite extensions of C_0XF .

Corollary 19

Every proper finite extension L of $K \vDash C_0 \text{XF}$ is PAC.

Corollary 20 (Srinivasan)

There is a virtually large yet non-large field.

Theorem 21

 $C_0 \text{XF}$ has TP_2 .

Theorem 22

 C_0XF has $NSOP_4$. There is a properly $NSOP_4$ example.

Theorem 21

 C_0 XF has TP_2 .

Theorem 22

 C_0 XF has $NSOP_4$. There is a properly $NSOP_4$ example.

Proof.

Let
$$
C_0 := x^4 + y^4 = -z^4
$$
 and $K_0 = \mathbb{R}$. Let φ be saying $x - y$ is a non-zero 4-th power. It has SOP_3 .

25 / 26

 Ω

 \Box

目

メロメメ 御 メメ きょく ミメー

Thank you for your attention.