An analytic AKE program

DDC-2 seminar, MSRI

Neer Bhardwaj August 11, 2022

University of Illinois at Urbana-Champaign ⇢ ⇢ Weizmann Institute of Science

▸ AKE-type equivalence for valued fields with *analytic structure*.

- ▸ AKE-type equivalence for valued fields with *analytic structure*.
- ► In parallel to the original theory of valued fields, we develop an extension theory in our framework.
- ▸ AKE-type equivalence for valued fields with *analytic structure*.
- ► In parallel to the original theory of valued fields, we develop an extension theory in our framework.
- ▸ New is that in addition to AKE-type results for these structures, we obtain induced structure results for the coefficient field and monomial group.
- ▸ AKE-type equivalence for valued fields with *analytic structure*.
- ► In parallel to the original theory of valued fields, we develop an extension theory in our framework.
- ▸ New is that in addition to AKE-type results for these structures, we obtain induced structure results for the coefficient field and monomial group.

Joint work with Lou van den Dries.

[Classical AKE.](#page-5-0)

[Denef – van den Dries' analytic expansion.](#page-29-0)

[Some induced structure by Binyamini – Cluckers – Novikov.](#page-48-0)

The AKE principle

All rings are commutative with unity.

A valuation ring *R* is an integral domain such that for all *x* ≠ 0 ∈ *K* := Frac(*R*), *x* ∈ *R* or *x*⁻¹ ∈ *R*.

A valuation ring *R* is an integral domain such that for all *x* ≠ 0 ∈ *K* := Frac(*R*), *x* ∈ *R* or *x*⁻¹ ∈ *R*.

R is local, with maximal ideal $\mathcal{O}(R)$, *K* := Frac(*R*) is a valued field.

A valuation ring *R* is an integral domain such that for all *x* ≠ 0 ∈ *K* := Frac(*R*), *x* ∈ *R* or *x*⁻¹ ∈ *R*.

R is local, with maximal ideal $\mathcal{O}(R)$, *K* := Frac(*R*) is a valued field. A valued field is a \mathcal{L}_{val} := {0,1, +, -, ·, ≤} -structure.

A valuation ring *R* is an integral domain such that for all *x* ≠ 0 ∈ *K* := Frac(*R*), *x* ∈ *R* or *x*⁻¹ ∈ *R*.

R is local, with maximal ideal $\mathcal{O}(R)$, *K* := Frac(*R*) is a valued field. A valued field is a \mathcal{L}_{val} := {0,1, +, -, ·, ≤} -structure. $a \le b$ iff $a/b \in R$.

A valuation ring *R* is an integral domain such that for all *x* ≠ 0 ∈ *K* := Frac(*R*), *x* ∈ *R* or *x*⁻¹ ∈ *R*.

R is local, with maximal ideal $\mathcal{O}(R)$, *K* := Frac(*R*) is a valued field. A valued field is a \mathcal{L}_{val} := {0,1, +, -, ·, ≤} -structure. $a \le b$ iff $a/b \in R$.

 $\mathsf{Residue} \mathrel{\mathsf{field}} \mathrel{\pmb{k}}_K \coloneqq \mathcal{R}/\mathcal{O}(\mathcal{R})$, value group $\mathsf{\Gamma}_K \coloneqq K^\times / R^\times$.

A valuation ring *R* is an integral domain such that for all *x* ≠ 0 ∈ *K* := Frac(*R*), *x* ∈ *R* or *x*⁻¹ ∈ *R*.

R is local, with maximal ideal $\mathcal{O}(R)$, *K* := Frac(*R*) is a valued field. A valued field is a \mathcal{L}_{val} := {0,1, +, -, ·, ≤} -structure. $a \le b$ iff $a/b \in R$.

 $Residue field \, \boldsymbol{k}_K := R/\mathcal{O}(R)$, value group $\Gamma_K := K^\times/R^\times$. Residue map *π* ∶ *R* → *kK*, valuation map *v* ∶ *K* [×] → Γ*K*.

A valuation ring *R* is an integral domain such that for all *x* ≠ 0 ∈ *K* := Frac(*R*), *x* ∈ *R* or *x*⁻¹ ∈ *R*.

R is local, with maximal ideal $\mathcal{O}(R)$, *K* := Frac(*R*) is a valued field. A valued field is a $\mathcal{L}_{val} := \{0, 1, +, -, \cdot, \leq \}$ -structure. $a \leq b$ iff $a/b \in R$.

 $Residue field \, \boldsymbol{k}_K := R/\mathcal{O}(R)$, value group $\Gamma_K := K^\times/R^\times$. Residue map *π* ∶ *R* → *kK*, valuation map *v* ∶ *K* [×] → Γ*K*.

Theorem (Ax–Kochen–Ersov, 1965)

Let K and L be henselian valued fields of equicharacteristic 0.

A valuation ring *R* is an integral domain such that for all *x* ≠ 0 ∈ *K* := Frac(*R*), *x* ∈ *R* or *x*⁻¹ ∈ *R*.

R is local, with maximal ideal $\mathcal{O}(R)$, *K* := Frac(*R*) is a valued field. A valued field is a $\mathcal{L}_{val} := \{0, 1, +, -, \cdot, \leq \}$ -structure. $a \leq b$ iff $a/b \in R$.

 $Residue field \, \boldsymbol{k}_K := R/\mathcal{O}(R)$, value group $\Gamma_K := K^\times/R^\times$. Residue map *π* ∶ *R* → *kK*, valuation map *v* ∶ *K* [×] → Γ*K*.

Theorem (Ax–Kochen–Ersov, 1965)

Let K and L be henselian valued fields of equicharacteristic 0. Then

 $K \equiv L \iff k_K \equiv k_l$ *as fields, and* $\Gamma_K \equiv \Gamma_l$ *as ordered groups.*

 $\mathbb{F}_p((t))$ and \mathbb{Q}_p have the same residue field– \mathbb{F}_p and value group– \mathbb{Z} .

$\mathbb{F}_p((t))$ and \mathbb{Q}_p have the same residue field– \mathbb{F}_p and value group–Z.

Corollary

Let σ be any L_{val} -sentence. Then

$$
\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma
$$

for all but finitely many primes p.

$\mathbb{F}_p((t))$ and \mathbb{Q}_p have the same residue field– \mathbb{F}_p and value group–Z.

Corollary

Let σ be any Lval*-sentence. Then*

$$
\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma
$$

for all but finitely many primes p.

Application: Ax-Kochen theorem.

 $\mathbb{F}_p((t))$ and \mathbb{Q}_p have the same residue field– \mathbb{F}_p and value group–Z.

Corollary

Let σ *be any* \mathcal{L}_{val} -sentence. Then

$$
\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma
$$

for all but finitely many primes p.

Application: Ax-Kochen theorem.

The AKE program runs through an extension theory of valued fields.

 $\mathbb{F}_p((t))$ and \mathbb{Q}_p have the same residue field– \mathbb{F}_p and value group–Z.

Corollary

Let σ be any Lval*-sentence. Then*

$$
\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma
$$

for all but finitely many primes p.

Application: Ax-Kochen theorem.

The AKE program runs through an extension theory of valued fields.

Gives relative elementarity, model completeness, elimination of quantifiers;

 $\mathbb{F}_p((t))$ and \mathbb{Q}_p have the same residue field– \mathbb{F}_p and value group–Z.

Corollary

Let σ be any Lval*-sentence. Then*

$$
\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma
$$

for all but finitely many primes p.

Application: Ax-Kochen theorem.

The AKE program runs through an extension theory of valued fields.

Gives relative elementarity, model completeness, elimination of quantifiers; and *induced structure results for lifts of the residue field and the value group.*

Consider the structure (K, C_K, G_K) , where *K* is a valued field.

Consider the structure (K, C_K, G_K) , where *K* is a valued field. *C^K* and *G^K* are lifts of the residue field and the value group.

Consider the structure (K, C_K, G_K) , where *K* is a valued field. *C^K* and *G^K* are lifts of the residue field and the value group.

Example $(C((t)), C, t^{\mathbb{Z}})$,

Consider the structure (K, C_K, G_K) , where *K* is a valued field. *C^K* and *G^K* are lifts of the residue field and the value group.

Example $(C((t)), C, t^{\mathbb{Z}})$, with $R = C[[t]], C$ a field and char $C = 0$.

Consider the structure (K, C_K, G_K) , where *K* is a valued field. *C^K* and *G^K* are lifts of the residue field and the value group.

Example $(C((t)), C, t^{\mathbb{Z}})$, with $R = C[[t]], C$ a field and char $C = 0$.

Theorem (*folklore)*

Suppose K and L are henselian of equicharacteristic 0.

Consider the structure (K, C_K, G_K) , where *K* is a valued field. *C^K* and *G^K* are lifts of the residue field and the value group.

Example $(C((t)), C, t^{\mathbb{Z}})$, with $R = C[[t]], C$ a field and char $C = 0$.

Theorem (*folklore)*

Suppose K and L are henselian of equicharacteristic 0. Then

$$
(K, C_K, G_K) \equiv (L, C_L, G_L) \iff C_K \equiv C_L \text{ and } G_K \equiv G_L.
$$

Consider the structure (K, C_K, G_K) , where *K* is a valued field. *C^K* and *G^K* are lifts of the residue field and the value group.

Example $(C((t)), C, t^{\mathbb{Z}})$, with $R = C[[t]], C$ a field and char $C = 0$.

Theorem (*folklore)*

Suppose K and L are henselian of equicharacteristic 0. Then

 $(K, C_K, G_K) \equiv (L, C_L, G_L) \iff C_K \equiv C_L \text{ and } G_K \equiv G_L$

Corollary

▸ *If X* [⊆] *^C m K is definable in* (*K, CK,G^K*)*, then X is even definable in the field* (C ^{*K*}; 0, 1, +, −, ⋅).

Consider the structure (K, C_K, G_K) , where *K* is a valued field. *C^K* and *G^K* are lifts of the residue field and the value group.

Example $(C((t)), C, t^{\mathbb{Z}})$, with $R = C[[t]], C$ a field and char $C = 0$.

Theorem (*folklore)*

Suppose K and L are henselian of equicharacteristic 0. Then

$$
(K, C_K, G_K) \equiv (L, C_L, G_L) \iff C_K \equiv C_L \text{ and } G_K \equiv G_L.
$$

Corollary

- ▸ *If X* [⊆] *^C m K is definable in* (*K, CK,G^K*)*, then X is even definable in the field* (C ^{*K*}; 0, 1, +, −, ⋅).
- ▸ *Similarly, if Y* [⊆] *^G n K is definable in* (*K, CK,G^K*)*, then Y is even definable in the ordered group* (G_K ; 1, \cdot , \leq).

[Denef – van den Dries' analytic expansion.](#page-29-0)

[Some induced structure by Binyamini – Cluckers – Novikov.](#page-48-0)

Moreover, both \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are homomorphic images of $\mathbb{Z}[[t]]$:

 $\mathbb{Z}[\lceil t \rceil] \rightarrow \mathbb{Z}_p : a(t) \mapsto a(p)$

Moreover, both \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are homomorphic images of $\mathbb{Z}[[t]]$:

 $\mathbb{Z}[\lceil t \rceil] \rightarrow \mathbb{Z}_p : a(t) \mapsto a(p)$

 $\mathbb{Z}[\lceil t \rceil] \rightarrow \mathbb{F}_p[\lceil t \rceil]: a(t) \mapsto a(t) \text{ mod } p$

Moreover, both \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are homomorphic images of $\mathbb{Z}[[t]]$:

 $\mathbb{Z}[\lceil t \rceil] \rightarrow \mathbb{Z}_p : a(t) \mapsto a(p)$

 $\mathbb{Z}[\lceil t \rceil] \rightarrow \mathbb{F}_p[\lceil t \rceil]: a(t) \mapsto a(t) \text{ mod } p$

Can interpret the analytic structure on \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ through a common language.

Introducing restricted power series

For each *n* we have the ring of *restricted* or *strictly convergent* power series over Z[[*t*]]: Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩

Introducing restricted power series

For each *n* we have the ring of *restricted* or *strictly convergent* power series over Z[[*t*]]: Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n].$
For each *n* we have the ring of *restricted* or *strictly convergent* power series over Z[[*t*]]: Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n].$

Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ consists of the formal power series

For each *n* we have the ring of *restricted* or *strictly convergent* power series over Z[[*t*]]: Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n].$

Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ consists of the formal power series

 $f = f(Y_1, \ldots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y^{\nu_n}, \qquad \nu = (\nu_1, \ldots, \nu_n)$ ranging over \mathbb{N}^n ,

For each *n* we have the ring of *restricted* or *strictly convergent* power series over Z[[*t*]]: Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n].$

Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ consists of the formal power series

$$
f = f(Y_1,\ldots,Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1}\cdots Y^{\nu_n}, \qquad \nu = (\nu_1,\ldots,\nu_n) \text{ ranging over } \mathbb{N}^n,
$$

with all $a_{\nu} \in \mathbb{Z}[[t]]$ such that $a_{\nu} \to 0$, *t*-adically, as $|\nu| = \nu_1 + \cdots + \nu_n \to \infty$.

For each *n* we have the ring of *restricted* or *strictly convergent* power series over Z[[*t*]]: Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n].$

Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ consists of the formal power series

 $f = f(Y_1, \ldots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y^{\nu_n}, \qquad \nu = (\nu_1, \ldots, \nu_n)$ ranging over \mathbb{N}^n ,

with all $a_{\nu} \in \mathbb{Z}[[t]]$ such that $a_{\nu} \to 0$, *t*-adically, as $|\nu| = \nu_1 + \cdots + \nu_n \to \infty$.

Extend the language \mathcal{L}_{val} to $\mathcal{L}_{val}^{Z[[t]]}$ by augmenting an *n*-ary function ${\rm symbol}$ for each $f \in \mathbb{Z}[[t]]\langle Y_1,\ldots,Y_n\rangle.$

For each *n* we have the ring of *restricted* or *strictly convergent* power series over Z[[*t*]]: Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n].$

Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ consists of the formal power series

 $f = f(Y_1, \ldots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y^{\nu_n}, \qquad \nu = (\nu_1, \ldots, \nu_n)$ ranging over \mathbb{N}^n ,

with all $a_{\nu} \in \mathbb{Z}[[t]]$ such that $a_{\nu} \to 0$, *t*-adically, as $|\nu| = \nu_1 + \cdots + \nu_n \to \infty$.

Extend the language \mathcal{L}_{val} to $\mathcal{L}_{val}^{Z[[t]]}$ by augmenting an *n*-ary function ${\rm symbol}$ for each $f \in \mathbb{Z}[[t]]\langle Y_1,\ldots,Y_n\rangle.$

Construe \mathbb{Q}_p and $\mathbb{F}_p((t))$ as $\mathcal{L}^{\mathbb{Z}[[t]]}_{\text{val}}$ -structures.

For each *n* we have the ring of *restricted* or *strictly convergent* power series over Z[[*t*]]: Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n].$

Z[[*t*]]⟨*Y*¹ *, . . . , Yⁿ*⟩ consists of the formal power series

 $f = f(Y_1, \ldots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y^{\nu_n}, \qquad \nu = (\nu_1, \ldots, \nu_n)$ ranging over \mathbb{N}^n ,

with all $a_{\nu} \in \mathbb{Z}[[t]]$ such that $a_{\nu} \to 0$, *t*-adically, as $|\nu| = \nu_1 + \cdots + \nu_n \to \infty$.

Extend the language \mathcal{L}_{val} to $\mathcal{L}_{val}^{Z[[t]]}$ by augmenting an *n*-ary function ${\rm symbol}$ for each $f \in \mathbb{Z}[[t]]\langle Y_1,\ldots,Y_n\rangle.$

Construe \mathbb{Q}_p and $\mathbb{F}_p((t))$ as $\mathcal{L}^{\mathbb{Z}[[t]]}_{\text{val}}$ -structures. $f \in \mathbb{Z}[[t]]\langle Y \rangle$ only takes values in \mathbb{Z}_p and $\mathbb{F}_p[[t]].$

Theorem (van den Dries, 1992)

Let σ be any $\mathcal{L}_{\text{val}}^{\mathbb{Z}\left[\lfloor t \rfloor \right]}$ -sentence. Then

$$
\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma
$$

for all but finitely many primes p.

Theorem (van den Dries, 1992)

Let σ be any $\mathcal{L}_{\text{val}}^{\mathbb{Z}\left[\lfloor t \rfloor \right]}$ -sentence. Then

$$
\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma
$$

for all but finitely many primes p.

Followed seminal work of Denef and van den Dries.

Followed seminal work of Denef and van den Dries. Strategy: Directly reduce to AKE-theory by Weierstrass division.

Followed seminal work of Denef and van den Dries. Strategy: Directly reduce to AKE-theory by Weierstrass division.

Application: solution to a problem posed by Serre.

Followed seminal work of Denef and van den Dries. Strategy: Directly reduce to AKE-theory by Weierstrass division.

Application: solution to a problem posed by Serre.

Gives relative elementarity, model completeness, elimination of quantifiers,

Followed seminal work of Denef and van den Dries. Strategy: Directly reduce to AKE-theory by Weierstrass division.

Application: solution to a problem posed by Serre.

Gives relative elementarity, model completeness, elimination of quantifiers, but not induced structure results for the coefficient field and monomial group.

[Classical AKE.](#page-5-0)

[Denef – van den Dries' analytic expansion.](#page-29-0)

[Some induced structure by Binyamini – Cluckers – Novikov.](#page-48-0)

A ring *R* has *A-analytic structure* if there is a ring morphism

 ι_n : *A* $\langle Y_1,\ldots,Y_n\rangle \rightarrow$ ring of *R*-valued functions on *R*^{*n*}

A ring *R* has *A-analytic structure* if there is a ring morphism

 ι_n : *A* $\langle Y_1,\ldots,Y_n\rangle \rightarrow$ ring of *R*-valued functions on *R*^{*n*}

for every *n*,

A ring *R* has *A-analytic structure* if there is a ring morphism

 ι_n : *A* $\langle Y_1,\ldots,Y_n\rangle \rightarrow$ ring of *R*-valued functions on *R*^{*n*}

for every *n*, with the following properties:

(A1) *ιⁿ*(*Yk*)(*y*¹ *, . . . , ^yⁿ*) ⁼ *^yk*, for *^k* ⁼ ¹*, . . . , ⁿ*;

A ring *R* has *A-analytic structure* if there is a ring morphism

 ι_n : *A* $\langle Y_1,\ldots,Y_n\rangle \rightarrow$ ring of *R*-valued functions on *R*^{*n*}

for every *n*, with the following properties:

(A1) *ιⁿ*(*Yk*)(*y*¹ *, . . . , ^yⁿ*) ⁼ *^yk*, for *^k* ⁼ ¹*, . . . , ⁿ*;

(A2) *ιⁿ*+¹ extends *ιn*.

A ring *R* has *A-analytic structure* if there is a ring morphism

 ι_n : *A* $\langle Y_1,\ldots,Y_n\rangle \rightarrow$ ring of *R*-valued functions on *R*^{*n*}

for every *n*, with the following properties:

(A1)
$$
\iota_n(Y_k)(y_1,\ldots,y_n) = y_k
$$
, for $k = 1,\ldots,n$;

(A2) *ιⁿ*+¹ extends *ιn*.

We consider valuation rings with *A*-analytic structure and their fraction fields as $\mathcal{L}_\mathrm{val}^A$ -structures.

Point of stimulation

With $A \coloneqq \mathbb{C}[[t]],$ construe $\mathbb{C}((t))$ as a $\mathcal{L}_{\text{val}}^{\mathbb{C}[[t]]}$ -structure,

Point of stimulation

With $A \coloneqq \mathbb{C}[[t]]$, construe $\mathbb{C}((t))$ as a $\mathcal{L}_{\text{val}}^{\mathbb{C}[[t]]}$ -structure, $-\mathbb{C}((t))_{\text{an}}$.

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure M comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}},$ the field $\mathbb{C},$ the ordered abelian group $\mathbb{Z}.$

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure M comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}},$ the field $\mathbb{C},$ the ordered abelian group $\mathbb{Z}.$ and the v and \overline{ac} maps relating the sorts.

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure M comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}},$ the field $\mathbb{C},$ the ordered abelian group $\mathbb{Z}.$

and the v and \overline{ac} maps relating the sorts.

Proposition (Binyamini – Cluckers – Novikov, 2022)

If P ⊆ $\mathbb{C}((t))^n$ is definable in \mathcal{M} , then P ∩ \mathbb{C}^n is definable in the field $(C; 0, 1, +, -, \cdot).$

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure M comprised of:

the analytic valued field $\mathbb{C}((t))_{an}$, the field \mathbb{C} , the ordered abelian group \mathbb{Z} .

and the v and \overline{ac} maps relating the sorts.

Proposition (Binyamini – Cluckers – Novikov, 2022)

If P ⊆ $\mathbb{C}((t))^n$ is definable in \mathcal{M} , then P ∩ \mathbb{C}^n is definable in the field $(C; 0, 1, +, -, \cdot).$

Proof uses that M has quantifier elimination.

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure M comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}},$ the field $\mathbb{C},$ the ordered abelian group $\mathbb{Z}.$

and the v and \overline{ac} maps relating the sorts.

Proposition (Binyamini – Cluckers – Novikov, 2022) *If P* ⊆ $\mathbb{C}((t))^n$ is definable in \mathcal{M} , then P ∩ \mathbb{C}^n is definable in the field $(C; 0, 1, +, -, \cdot).$

Proof uses that M has quantifier elimination.

Lou's "analytic AKE" results do give that any subset of C *ⁿ* definable in M is definable in the field $\mathbb C$, but that's not enough.

Theorem (B. – van den Dries, 2022)

▸ *If X* [⊆] *^C ^m is definable in* (*C*((*t*))an*, ^C,^t* Z)*, then X is even definable in the field* (*C*; 0*,* 1*,*+*,*−*,* ⋅)*.*

Theorem (B. – van den Dries, 2022)

- ▸ *If X* [⊆] *^C ^m is definable in* (*C*((*t*))an*, ^C,^t* Z)*, then X is even definable in the field* (*C*; 0*,* 1*,*+*,*−*,* ⋅)*.*
- ▸ *Similarly, if Y* [⊆] (*^t* Z) *n is definable in* (*C*((*t*))an*, C,t* Z)*, then Y is* e ven definable in the ordered group $(t^{\mathbb{Z}}; 1, \cdot, \leqslant)$.

Theorem (B. – van den Dries, 2022)

- ▸ *If X* [⊆] *^C ^m is definable in* (*C*((*t*))an*, ^C,^t* Z)*, then X is even definable in the field* (*C*; 0*,* 1*,*+*,*−*,* ⋅)*.*
- ▸ *Similarly, if Y* [⊆] (*^t* Z) *n is definable in* (*C*((*t*))an*, C,t* Z)*, then Y is* e ven definable in the ordered group $(t^{\mathbb{Z}}; 1, \cdot, \leqslant)$.

The BCN proposition is a special case.

Theorem (B. – van den Dries, 2022)

- ▸ *If X* [⊆] *^C ^m is definable in* (*C*((*t*))an*, ^C,^t* Z)*, then X is even definable in the field* (*C*; 0*,* 1*,*+*,*−*,* ⋅)*.*
- ▸ *Similarly, if Y* [⊆] (*^t* Z) *n is definable in* (*C*((*t*))an*, C,t* Z)*, then Y is* e ven definable in the ordered group $(t^{\mathbb{Z}}; 1, \cdot, \leqslant)$.

The BCN proposition is a special case. Note that subsets $\mathbb C$ and $t^{\mathbb Z}$ of $\mathbb{C}((t))$ are not definable in M.

[Classical AKE.](#page-5-0)

[Denef – van den Dries' analytic expansion.](#page-29-0)

[Some induced structure by Binyamini – Cluckers – Novikov.](#page-48-0)

[Running the AKE program.](#page-67-0)

R will denote a valuation *A*-ring.

R will denote a valuation *A*-ring. Then $K = \text{Frac}(R)$ is an $\mathcal{L}^A_{\text{val}}$ -structure.

```
R will denote a valuation A-ring.
Then K = \text{Frac}(R) is an \mathcal{L}^A_{\text{val}}-structure.
```
Assume from here on that *A*-ring *R* is *viable*:
Work with valuation rings with *A*-analytic structure.

```
R will denote a valuation A-ring.
Then K = \text{Frac}(R) is an \mathcal{L}^A_{\text{val}}-structure.
```
Assume from here on that *A*-ring *R* is *viable*: $O(R) = \rho R$ for some ρ , and $\rho \in \sqrt{\overline{O(A)R}}$.

Work with valuation rings with *A*-analytic structure.

```
R will denote a valuation A-ring.
Then K = \text{Frac}(R) is an \mathcal{L}^A_{\text{val}}-structure.
```
Assume from here on that *A*-ring *R* is *viable*: $O(R) = \rho R$ for some ρ , and $\rho \in \sqrt{\overline{O(A)R}}$.

 R viable $\implies R$ is henselian.

Work with valuation rings with *A*-analytic structure.

```
R will denote a valuation A-ring.
Then K = \text{Frac}(R) is an \mathcal{L}^A_{\text{val}}-structure.
```
Assume from here on that *A*-ring *R* is *viable*: $O(R) = \rho R$ for some ρ , and $\rho \in \sqrt{\overline{O(A)R}}$.

 R viable $\implies R$ is henselian.

Our assumptions give that viable valuation *A*-rings have:

piecewise uniform Weierstrass division with respect to parameters.

Let *L* be an $\mathcal{L}_{\text{val}}^A$ -extension of *K*.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K .

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K .

Suppose *^a* [∈] *^L* is algebraic over *^K*.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K .

Suppose *^a* [∈] *^L* is algebraic over *^K*. Henselianity of *R* gives $K_a = K(a)$.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K .

Suppose *^a* [∈] *^L* is algebraic over *^K*. Henselianity of *R* gives $K_a = K(a)$.

Want an isomorphism theory for *Ka*:

1. when $a \leq 1$ and $\pi(a)$ is transcendental over \mathbf{k}_k .

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K .

Suppose *^a* [∈] *^L* is algebraic over *^K*. Henselianity of *R* gives $K_a = K(a)$.

Want an isomorphism theory for *Ka*:

- 1. when $a \leq 1$ and $\pi(a)$ is transcendental over \mathbf{k}_k .
- 2. when $a \neq 0$ and $dv(a) \notin \Gamma_K$ for all $d \geq 1$.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K .

Suppose *^a* [∈] *^L* is algebraic over *^K*. Henselianity of *R* gives $K_a = K(a)$.

Want an isomorphism theory for *Ka*:

- 1. when $a \le 1$ and $\pi(a)$ is transcendental over \mathbf{k}_k .
- 2. when $a \neq 0$ and $dv(a) \notin \Gamma_K$ for all $d \geq 1$.
- 3. when *K*(*a*) is an immediate extension of *K*.

Assume char $k_K = 0$.

Assume char k_K = 0. So *K* is algebraically maximal,

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightsquigarrow a$, $a \in R_L$.

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightarrow a$, $a \in R_L$. Is K_a an immediate extension of *K*?

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightarrow a$, $a \in R_L$. Is K_a an immediate extension of *K*?

```
Set R(a) := \{q(a) : q \in R\{Z\}\}\
```
Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightarrow a$, $a \in R_L$. Is K_a an immediate extension of *K*?

Set $R(a) := \{g(a) : g \in R\{Z\}\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A\{Y_1, \ldots, Y_n, Z\}\}\$

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightarrow a$, $a \in R_L$. Is K_a an immediate extension of *K*?

Set $R(a) := \{g(a) : g \in R\{Z\}\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A\{Y_1, \ldots, Y_n, Z\}\}\$ *R*⟨*a*⟩ ⊆ *K*_{*a*},

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R\{Z\}\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A\{Y_1, \ldots, Y_n, Z\}\}\$ *^R*⟨*a*⟩ [⊆] *^Ka*, *^K*(*a*) [⊊] *^Ka*,

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightarrow a$, $a \in R_L$. Is K_a an immediate extension of *K*?

Set $R(a) := \{g(a) : g \in R\{Z\}\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A\{Y_1, \ldots, Y_n, Z\}\}\$

 $R(a) \subseteq K_a$, $K(a) \nsubseteq K_a$, and $R(a)$ is not a valuation ring.

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R\{Z\}\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A\{Y_1, \ldots, Y_n, Z\}\}\$

 $R(a) \subseteq K_a$, $K(a) \nsubseteq K_a$, and $R(a)$ is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$
a = a_{\rho} + t_{\rho} u_{\rho},
$$

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R\{Z\}\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A\{Y_1, \ldots, Y_n, Z\}\}\$

 $R(a) \subseteq K_a$, $K(a) \nsubseteq K_a$, and $R(a)$ is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$
a = a_{\rho} + t_{\rho} u_{\rho}, \quad t_{\rho} \in R,
$$

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R\{Z\}\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A\{Y_1, \ldots, Y_n, Z\}\}\$

 $R(a) \subseteq K_a$, $K(a) \nsubseteq K_a$, and $R(a)$ is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$
a = a_{\rho} + t_{\rho} u_{\rho}, \quad t_{\rho} \in R, \quad u_{\rho} \in K(a)^{\times}
$$

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightarrow a$, $a \in R_l$. Is K_{ρ} an immediate extension of K?

Set $R(a) := \{g(a) : g \in R\{Z\}\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A\{Y_1, \ldots, Y_n, Z\}\}\$

 $R(a) \subseteq K_a$, $K(a) \nsubseteq K_a$, and $R(a)$ is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$
a = a_{\rho} + t_{\rho} u_{\rho}, \quad t_{\rho} \in R, \quad u_{\rho} \in K(a)^{\times}
$$

and *v*(t _{*ρ*}) is strictly increasing as a function of $\rho > \rho_0$.

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R\{Z\}\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A\{Y_1, \ldots, Y_n, Z\}\}\$

 $R(a) \subseteq K_a$, $K(a) \subseteq K_a$, and $R(a)$ is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$
a = a_{\rho} + t_{\rho} u_{\rho}, \quad t_{\rho} \in R, \quad u_{\rho} \in K(a)^{\times}
$$

and $v(t_0)$ is strictly increasing as a function of $\rho > \rho_0$.

 R (a) ⊆ R (u_a) ⊆ R_a ,

Assume char k_k = 0. So K is algebraically maximal, and we need only consider the case of a pc-sequence (*a^ρ*) of transcendental type.

Take $a_{\rho} \rightarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R\{Z\}\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A\{Y_1, \ldots, Y_n, Z\}\}\$

R(*a*) ⊆ *K*_{*a*}, *K*(*a*) ⊊ *K*_{*a*}, and *R*(*a*) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$
a = a_{\rho} + t_{\rho} u_{\rho}, \quad t_{\rho} \in R, \quad u_{\rho} \in K(a)^{\times}
$$

and $v(t_0)$ is strictly increasing as a function of $\rho > \rho_0$.

 $R(a) \subseteq R(u_p) \subseteq R_a$, and we discover that $R_a = \bigcup_{p>a_0} R(u_p)$.

Let *^a* [∈] *^L*.

Let *^a* [∈] *^L*. Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms,

Let *^a* [∈] *^L*. Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Let *^a* [∈] *^L*.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free $\mathcal{L}^{\mathcal{A}}_{\text{val}}$ -type of a over K is completely determined *by its quantifier-free* \mathcal{L}_{val} -type over K.

Let *^a* [∈] *^L*.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free $\mathcal{L}^{\mathcal{A}}_{\text{val}}$ -type of a over K is completely determined *by its quantifier-free* \mathcal{L}_{val} -type over K.

Lemma

(i) *If a* \leq 1 *and* π (*a*) *is transcendental over* \mathbf{k}_k *, then* K_a *is an immediate extension of K*(*a*)*.*

Let *^a* [∈] *^L*.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free $\mathcal{L}^{\mathcal{A}}_{\text{val}}$ -type of a over K is completely determined *by its quantifier-free* \mathcal{L}_{val} -type over K.

Lemma

- (i) *If a* \leq 1 *and* π (*a*) *is transcendental over* \mathbf{k}_k *, then* K_a *is an immediate extension of K*(*a*)*.*
- (ii) *If a* \neq 0 *and dv*(*a*) $\notin \Gamma_K$ for all $d \geq 1$, then K_a is an immediate *extension of K*(*a*)

Let *^a* [∈] *^L*.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free $\mathcal{L}^{\mathcal{A}}_{\text{val}}$ -type of a over K is completely determined *by its quantifier-free* \mathcal{L}_{val} -type over K.

Lemma

- (i) *If a* \leq 1 *and* π (*a*) *is transcendental over* \mathbf{k}_k *, then* K_a *is an immediate extension of K*(*a*)*.*
- (ii) *If a* \neq 0 *and dv*(*a*) $\notin \Gamma_K$ for all $d \geq 1$, then K_a is an immediate *extension of K(a)* **provided** Γ_K *is a Z-group and* R_a *is viable.*

Let *^a* [∈] *^L*.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free $\mathcal{L}^{\mathcal{A}}_{\text{val}}$ -type of a over K is completely determined *by its quantifier-free* \mathcal{L}_{val} -type over K.

Lemma

- (i) *If a* \leq 1 *and* π (*a*) *is transcendental over* \mathbf{k}_k *, then* K_a *is an immediate extension of K*(*a*)*.*
- (ii) *If a* \neq 0 *and dv*(*a*) $\notin \Gamma_K$ for all $d \geq 1$, then K_a is an immediate *extension of K(a)* **provided** Γ_K *is a Z-group and* R_a *is viable.*
- \cdot Is K_a always an immediate extension of $K(a)$?

Our analytic AKE equivalence

Let $A = \mathbb{Z}[[t]]$ and $\mathcal{O}(A) = t\mathbb{Z}[[t]].$
Let $A = \mathbb{Z}[[t]]$ and $\mathcal{O}(A) = t\mathbb{Z}[[t]].$ Then for $\mathcal{L}_{val}^{\text{Acg}}$ -structures $\mathcal{K} = (K_{\text{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\text{an}}, C_F, G_F)$:

Let $A = \mathbb{Z}[\lceil t \rceil]$ and $\mathcal{O}(A) = t\mathbb{Z}[\lceil t \rceil].$ Then for $\mathcal{L}_{val}^{\text{Acg}}$ -structures $\mathcal{K} = (K_{\text{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\text{an}}, C_F, G_F)$:

Theorem (B. – van den Dries, 2022)

Assume char $\mathbf{k}_k = 0$ *and* Γ_k *is a* Z-group.

Let $A = \mathbb{Z}[\lceil t \rceil]$ and $\mathcal{O}(A) = t\mathbb{Z}[\lceil t \rceil].$ Then for $\mathcal{L}_{val}^{\text{Acg}}$ -structures $\mathcal{K} = (K_{\text{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\text{an}}, C_F, G_F)$:

Theorem (B. – van den Dries, 2022)

Assume char $k_k = 0$ *and* Γ_k *is a* Z-group. Suppose $t \in G_k$, G_l .

Let $A = \mathbb{Z}[\lceil t \rceil]$ and $\mathcal{O}(A) = t\mathbb{Z}[\lceil t \rceil].$ Then for $\mathcal{L}_{val}^{\text{Acg}}$ -structures $\mathcal{K} = (K_{\text{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\text{an}}, C_F, G_F)$:

Theorem (B. – van den Dries, 2022)

Assume char $k_K = 0$ *and* Γ_K *is a* \mathbb{Z} -group. Suppose $t \in G_K$, G_l . Then

 $K = \mathcal{E} \iff C_K = C_F \text{ and } G_K = f_{F}$.

Let $A = \mathbb{Z}[\lceil t \rceil]$ and $\mathcal{O}(A) = t\mathbb{Z}[\lceil t \rceil].$ Then for $\mathcal{L}_{val}^{\text{Acg}}$ -structures $\mathcal{K} = (K_{\text{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\text{an}}, C_F, G_F)$:

Theorem (B. – van den Dries, 2022)

Assume char $k_K = 0$ *and* Γ_K *is a* \mathbb{Z} -group. Suppose $t \in G_K$, G_l . Then

$$
K \equiv \mathcal{E}
$$
 \iff $C_K \equiv C_E$ and $G_K \equiv_t G_E$.

Using an NIP transfer principle by Jahnke and Simon, we obtain:

Let $A = \mathbb{Z}[\lceil t \rceil]$ and $\mathcal{O}(A) = t\mathbb{Z}[\lceil t \rceil].$ Then for $\mathcal{L}_{val}^{\text{Acg}}$ -structures $\mathcal{K} = (K_{\text{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\text{an}}, C_F, G_F)$:

Theorem (B. – van den Dries, 2022)

Assume char $k_K = 0$ *and* Γ_K *is a* \mathbb{Z} -group. Suppose $t \in G_K$, G_l . Then

$$
K \equiv \mathcal{E}
$$
 \iff $C_K \equiv C_E$ and $G_K \equiv_t G_E$.

Using an NIP transfer principle by Jahnke and Simon, we obtain:

Proposition (B. – van den Dries, 2022)

Let A be "general". Assume char $k_K = 0$ *and* Γ_K *is a Z-group.*

Let $A = \mathbb{Z}[\lceil t \rceil]$ and $\mathcal{O}(A) = t\mathbb{Z}[\lceil t \rceil].$ Then for $\mathcal{L}_{val}^{\text{Acg}}$ -structures $\mathcal{K} = (K_{\text{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\text{an}}, C_F, G_F)$:

Theorem (B. – van den Dries, 2022)

Assume char $k_K = 0$ *and* Γ_K *is a* \mathbb{Z} -group. Suppose $t \in G_K$, G_l . Then

$$
K \equiv \mathcal{E}
$$
 \iff $C_K \equiv C_E$ and $G_K \equiv_t G_E$.

Using an NIP transfer principle by Jahnke and Simon, we obtain:

Proposition (B. – van den Dries, 2022)

Let A be "general". Assume char $k_K = 0$ *and* Γ_K *is a Z-group. Then*

the Acg-field K *has* NIP \iff *the ring* k_k *has* NIP.

References

- L. van den Dries, *Analytic Ax-Kochen-Ersov theorems*, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), 379–398, Contemp. Math. 131.3, AMS, Providence, (1992).
- J. Denef and L. van den Dries, *p-adic and real subanalytic sets*, Ann. Math. 128 (1988), 79-138.
- F. R. Cluckers, L. Lipshitz, *Strictly convergent analytic structures*, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 1, 107–149.
- 暈 G. Binyamini, R. Cluckers, and D. Novikov, *Point counting and Wilkie's conjecture for non-Archimedean Pfaffian and Noetherian functions*, Duke Mathematical Journal 171 (2022), no. 9, 1823–1842.

Thank you!