An analytic AKE program

DDC-2 seminar, MSRI

Neer Bhardwaj

August 11, 2022

University of Illinois at Urbana-Champaign -> -> Weizmann Institute of Science

► AKE-type equivalence for valued fields with *analytic structure*.

- ► AKE-type equivalence for valued fields with *analytic structure*.
- ► In parallel to the original theory of valued fields, we develop an extension theory in our framework.

- ► AKE-type equivalence for valued fields with *analytic structure*.
- ► In parallel to the original theory of valued fields, we develop an extension theory in our framework.
- New is that in addition to AKE-type results for these structures, we obtain induced structure results for the coefficient field and monomial group.

- ► AKE-type equivalence for valued fields with *analytic structure*.
- ► In parallel to the original theory of valued fields, we develop an extension theory in our framework.
- New is that in addition to AKE-type results for these structures, we obtain induced structure results for the coefficient field and monomial group.

Joint work with Lou van den Dries.

1 Classical AKE.

2 Denef – van den Dries' analytic expansion.

3 Some induced structure by Binyamini – Cluckers – Novikov.

The AKE principle

All rings are commutative with unity.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := Frac(R), x \in R \text{ or } x^{-1} \in R.$

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := Frac(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal o(R), *K* := Frac(*R*) is a valued field.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := Frac(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal $\mathcal{O}(R)$, $K := \operatorname{Frac}(R)$ is a valued field. A valued field is a $\mathcal{L}_{\operatorname{val}} := \{0, 1, +, -, \cdot, \leq\}$ -structure.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := Frac(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal o(R), $K := \operatorname{Frac}(R)$ is a valued field. A valued field is a $\mathcal{L}_{\operatorname{val}} := \{0, 1, +, -, \cdot, \leq\}$ -structure. $a \leq b$ iff $a/b \in R$.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := Frac(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal o(R), $K := \operatorname{Frac}(R)$ is a valued field. A valued field is a $\mathcal{L}_{\operatorname{val}} := \{0, 1, +, -, \cdot, \leq\}$ -structure. $a \leq b$ iff $a/b \in R$.

Residue field $\mathbf{k}_{\mathcal{K}} \coloneqq R/\mathcal{O}(R)$, value group $\Gamma_{\mathcal{K}} \coloneqq \mathcal{K}^{\times}/R^{\times}$.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := Frac(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal o(R), $K := \operatorname{Frac}(R)$ is a valued field. A valued field is a $\mathcal{L}_{\operatorname{val}} := \{0, 1, +, -, \cdot, \leq\}$ -structure. $a \leq b$ iff $a/b \in R$.

Residue field $\mathbf{k}_{K} \coloneqq R/\mathcal{O}(R)$, value group $\Gamma_{K} \coloneqq K^{\times}/R^{\times}$. Residue map $\pi : R \to \mathbf{k}_{K}$, valuation map $v : K^{\times} \to \Gamma_{K}$.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := Frac(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal o(R), $K := \operatorname{Frac}(R)$ is a valued field. A valued field is a $\mathcal{L}_{\operatorname{val}} := \{0, 1, +, -, \cdot, \leq\}$ -structure. $a \leq b$ iff $a/b \in R$.

Residue field $\mathbf{k}_{K} \coloneqq R/\mathcal{O}(R)$, value group $\Gamma_{K} \coloneqq K^{\times}/R^{\times}$. Residue map $\pi : R \to \mathbf{k}_{K}$, valuation map $v : K^{\times} \to \Gamma_{K}$.

Theorem (Ax-Kochen-Ersov, 1965)

Let K and L be henselian valued fields of equicharacteristic 0.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := Frac(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal o(R), $K := \operatorname{Frac}(R)$ is a valued field. A valued field is a $\mathcal{L}_{\operatorname{val}} := \{0, 1, +, -, \cdot, \leq\}$ -structure. $a \leq b$ iff $a/b \in R$.

Residue field $\mathbf{k}_{K} \coloneqq R/\mathcal{O}(R)$, value group $\Gamma_{K} \coloneqq K^{\times}/R^{\times}$. Residue map $\pi : R \to \mathbf{k}_{K}$, valuation map $v : K^{\times} \to \Gamma_{K}$.

Theorem (Ax-Kochen-Ersov, 1965)

Let K and L be henselian valued fields of equicharacteristic 0. Then

 $K \equiv L \iff \mathbf{k}_K \equiv \mathbf{k}_L$ as fields, and $\Gamma_K \equiv \Gamma_L$ as ordered groups.

 $\mathbb{F}_{p}((t))$ and \mathbb{Q}_{p} have the same residue field- \mathbb{F}_{p} and value group- \mathbb{Z} .

 $\mathbb{F}_{\rho}((t))$ and \mathbb{Q}_{ρ} have the same residue field- \mathbb{F}_{ρ} and value group- \mathbb{Z} .

Corollary

Let σ be any \mathcal{L}_{val} -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

 $\mathbb{F}_{\rho}((t))$ and \mathbb{Q}_{ρ} have the same residue field- \mathbb{F}_{ρ} and value group- \mathbb{Z} .

Corollary

Let σ be any \mathcal{L}_{val} -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Application: Ax-Kochen theorem.

 $\mathbb{F}_{\rho}((t))$ and \mathbb{Q}_{ρ} have the same residue field- \mathbb{F}_{ρ} and value group- \mathbb{Z} .

Corollary

Let σ be any \mathcal{L}_{val} -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Application: Ax-Kochen theorem.

The AKE program runs through an extension theory of valued fields.

 $\mathbb{F}_{\rho}((t))$ and \mathbb{Q}_{ρ} have the same residue field- \mathbb{F}_{ρ} and value group- \mathbb{Z} .

Corollary

Let σ be any \mathcal{L}_{val} -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Application: Ax-Kochen theorem.

The AKE program runs through an extension theory of valued fields.

Gives relative elementarity, model completeness, elimination of quantifiers;

 $\mathbb{F}_{\rho}((t))$ and \mathbb{Q}_{ρ} have the same residue field- \mathbb{F}_{ρ} and value group- \mathbb{Z} .

Corollary

Let σ be any \mathcal{L}_{val} -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Application: Ax-Kochen theorem.

The AKE program runs through an extension theory of valued fields.

Gives relative elementarity, model completeness, elimination of quantifiers; and *induced structure results for lifts of the residue field and the value group*.

Consider the structure (K, C_K, G_K) , where K is a valued field.

Consider the structure (K, C_K, G_K) , where K is a valued field. C_K and G_K are lifts of the residue field and the value group.

Consider the structure (K, C_K, G_K) , where K is a valued field. C_K and G_K are lifts of the residue field and the value group.

Example $(C((t)), C, t^{\mathbb{Z}})$,

Consider the structure (K, C_K, G_K) , where K is a valued field. C_K and G_K are lifts of the residue field and the value group.

Example $(C((t)), C, t^{\mathbb{Z}})$, with R = C[[t]], C a field and char C = 0.

Consider the structure (K, C_K, G_K) , where K is a valued field. C_K and G_K are lifts of the residue field and the value group.

Example $(C((t)), C, t^{\mathbb{Z}})$, with R = C[[t]], C a field and char C = 0.

Theorem (folklore)

Suppose K and L are henselian of equicharacteristic 0.

Consider the structure (K, C_K, G_K) , where K is a valued field. C_K and G_K are lifts of the residue field and the value group.

Example $(C((t)), C, t^{\mathbb{Z}})$, with R = C[[t]], C a field and char C = 0.

Theorem (folklore)

Suppose K and L are henselian of equicharacteristic 0. Then

 $(K, C_K, G_K) \equiv (L, C_L, G_L) \iff C_K \equiv C_L \text{ and } G_K \equiv G_L.$

Consider the structure (K, C_K, G_K) , where K is a valued field. C_K and G_K are lifts of the residue field and the value group.

Example $(C((t)), C, t^{\mathbb{Z}})$, with R = C[[t]], C a field and char C = 0.

Theorem (folklore)

Suppose K and L are henselian of equicharacteristic 0. Then

 $(K,C_K,G_K)\equiv (L,C_L,G_L)\iff C_K\equiv C_L \ and \ G_K\equiv G_L.$

Corollary

▶ If $X \subseteq C_K^m$ is definable in (K, C_K, G_K) , then X is even definable in the field $(C_K; 0, 1, +, -, \cdot)$.

Consider the structure (K, C_K, G_K) , where K is a valued field. C_K and G_K are lifts of the residue field and the value group.

Example $(C((t)), C, t^{\mathbb{Z}})$, with R = C[[t]], C a field and char C = 0.

Theorem (folklore)

Suppose K and L are henselian of equicharacteristic 0. Then

 $(K,C_K,G_K)\equiv (L,C_L,G_L)\iff C_K\equiv C_L \ and \ G_K\equiv G_L.$

Corollary

- ► If $X \subseteq C_K^m$ is definable in (K, C_K, G_K) , then X is even definable in the field $(C_K; 0, 1, +, -, \cdot)$.
- Similarly, if Y ⊆ Gⁿ_K is definable in (K, C_K, G_K), then Y is even definable in the ordered group (G_K; 1, ·, ≤).

3 Some induced structure by Binyamini – Cluckers – Novikov.

Moreover, both \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are homomorphic images of $\mathbb{Z}[[t]]$:

 $\mathbb{Z}[[t]] \to \mathbb{Z}_p: a(t) \mapsto a(p)$

Moreover, both \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are homomorphic images of $\mathbb{Z}[[t]]$:

 $\mathbb{Z}[[t]] \to \mathbb{Z}_p : a(t) \mapsto a(p)$

 $\mathbb{Z}[[t]] \to \mathbb{F}_p[[t]] : a(t) \mapsto a(t) \bmod p$

Moreover, both \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are homomorphic images of $\mathbb{Z}[[t]]$:

 $\mathbb{Z}[[t]] \to \mathbb{Z}_p : a(t) \mapsto a(p)$

 $\mathbb{Z}[[t]] \to \mathbb{F}_p[[t]] : a(t) \mapsto a(t) \bmod p$

Can interpret the analytic structure on \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ through a common language.

Introducing restricted power series

For each *n* we have the ring of *restricted* or *strictly convergent* power series over $\mathbb{Z}[[t]]: \mathbb{Z}[[t]] \langle Y_1, \dots, Y_n \rangle$

Introducing restricted power series

For each *n* we have the ring of *restricted* or *strictly convergent* power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.
For each *n* we have the ring of *restricted* or *strictly convergent* power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

 $\mathbb{Z}[[t]](Y_1,\ldots,Y_n)$ consists of the formal power series

For each *n* we have the ring of *restricted* or *strictly convergent* power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

 $\mathbb{Z}[[t]](Y_1,\ldots,Y_n)$ consists of the formal power series

$$f = f(Y_1, \dots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y^{\nu_n}, \qquad \nu = (\nu_1, \dots, \nu_n) \text{ ranging over } \mathbb{N}^n,$$

For each *n* we have the ring of *restricted* or *strictly convergent* power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

 $\mathbb{Z}[[t]](Y_1,\ldots,Y_n)$ consists of the formal power series

$$f = f(Y_1, \dots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y^{\nu_n}, \qquad \nu = (\nu_1, \dots, \nu_n) \text{ ranging over } \mathbb{N}^n,$$

with all $a_{\nu} \in \mathbb{Z}[[t]]$ such that $a_{\nu} \to 0$, *t*-adically, as $|\nu| = \nu_1 + \dots + \nu_n \to \infty$.

For each *n* we have the ring of *restricted* or *strictly convergent* power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

 $\mathbb{Z}[[t]](Y_1,\ldots,Y_n)$ consists of the formal power series

 $f = f(Y_1, \dots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y^{\nu_n}, \qquad \nu = (\nu_1, \dots, \nu_n) \text{ ranging over } \mathbb{N}^n,$

with all $a_{\nu} \in \mathbb{Z}[[t]]$ such that $a_{\nu} \to 0$, *t*-adically, as $|\nu| = \nu_1 + \dots + \nu_n \to \infty$.

Extend the language \mathcal{L}_{val} to $\mathcal{L}_{val}^{\mathbb{Z}[[t]]}$ by augmenting an *n*-ary function symbol for each $f \in \mathbb{Z}[[t]](Y_1, \ldots, Y_n)$.

For each *n* we have the ring of *restricted* or *strictly convergent* power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

 $\mathbb{Z}[[t]](Y_1,\ldots,Y_n)$ consists of the formal power series

 $f = f(Y_1, \dots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y^{\nu_n}, \qquad \nu = (\nu_1, \dots, \nu_n) \text{ ranging over } \mathbb{N}^n,$

with all $a_{\nu} \in \mathbb{Z}[[t]]$ such that $a_{\nu} \to 0$, *t*-adically, as $|\nu| = \nu_1 + \dots + \nu_n \to \infty$.

Extend the language \mathcal{L}_{val} to $\mathcal{L}_{val}^{\mathbb{Z}[[t]]}$ by augmenting an *n*-ary function symbol for each $f \in \mathbb{Z}[[t]](Y_1, \ldots, Y_n)$.

Construe \mathbb{Q}_p and $\mathbb{F}_p((t))$ as $\mathcal{L}_{val}^{\mathbb{Z}[[t]]}$ -structures.

For each *n* we have the ring of *restricted* or *strictly convergent* power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the *t*-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

 $\mathbb{Z}[[t]](Y_1,\ldots,Y_n)$ consists of the formal power series

 $f = f(Y_1, \dots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y^{\nu_n}, \qquad \nu = (\nu_1, \dots, \nu_n) \text{ ranging over } \mathbb{N}^n,$

with all $a_{\nu} \in \mathbb{Z}[[t]]$ such that $a_{\nu} \to 0$, *t*-adically, as $|\nu| = \nu_1 + \dots + \nu_n \to \infty$.

Extend the language \mathcal{L}_{val} to $\mathcal{L}_{val}^{\mathbb{Z}[[t]]}$ by augmenting an *n*-ary function symbol for each $f \in \mathbb{Z}[[t]](Y_1, \ldots, Y_n)$.

Construe \mathbb{Q}_p and $\mathbb{F}_p((t))$ as $\mathcal{L}_{val}^{\mathbb{Z}[[t]]}$ -structures. $f \in \mathbb{Z}[[t]](Y)$ only takes values in \mathbb{Z}_p and $\mathbb{F}_p[[t]]$.

Theorem (van den Dries, 1992)

Let σ be any $\mathcal{L}_{val}^{\mathbb{Z}[[t]]}$ -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Theorem (van den Dries, 1992)

Let σ be any $\mathcal{L}_{val}^{\mathbb{Z}[[t]]}$ -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Followed seminal work of Denef and van den Dries.

Followed seminal work of Denef and van den Dries. Strategy: Directly reduce to AKE-theory by Weierstrass division.

Followed seminal work of Denef and van den Dries. Strategy: Directly reduce to AKE-theory by Weierstrass division.

Application: solution to a problem posed by Serre.

Followed seminal work of Denef and van den Dries. Strategy: Directly reduce to AKE-theory by Weierstrass division.

Application: solution to a problem posed by Serre.

Gives relative elementarity, model completeness, elimination of quantifiers,

Followed seminal work of Denef and van den Dries. Strategy: Directly reduce to AKE-theory by Weierstrass division.

Application: solution to a problem posed by Serre.

Gives relative elementarity, model completeness, elimination of quantifiers, but **not** induced structure results for the coefficient field and monomial group.

1 Classical AKE.

2 Denef – van den Dries' analytic expansion.

3 Some induced structure by Binyamini – Cluckers – Novikov.

Formal analytic structure

In the role of $\mathbb{Z}[[t]]$ we consider a general noetherian ring A with a distinguished ideal $\mathcal{O}(A) \neq A$, and A is $\mathcal{O}(A)$ -adically complete.

A ring R has A-analytic structure if there is a ring morphism

 $\iota_n : A(Y_1, \ldots, Y_n) \rightarrow \text{ ring of } R\text{-valued functions on } R^n$

Formal analytic structure

In the role of $\mathbb{Z}[[t]]$ we consider a general noetherian ring A with a distinguished ideal $\mathcal{O}(A) \neq A$, and A is $\mathcal{O}(A)$ -adically complete.

A ring R has A-analytic structure if there is a ring morphism

 $\iota_n : A(Y_1, \dots, Y_n) \rightarrow \text{ ring of } R\text{-valued functions on } R^n$

for every n,

A ring R has A-analytic structure if there is a ring morphism

 $\iota_n : A(Y_1, \dots, Y_n) \rightarrow \text{ ring of } R\text{-valued functions on } R^n$

for every *n*, with the following properties:

(A1) $\iota_n(Y_k)(y_1,...,y_n) = y_k$, for k = 1,...,n;

A ring R has A-analytic structure if there is a ring morphism

 $\iota_n : A(Y_1, \dots, Y_n) \rightarrow \text{ ring of } R\text{-valued functions on } R^n$

for every *n*, with the following properties:

(A1) $\iota_n(Y_k)(y_1,...,y_n) = y_k$, for k = 1,...,n;

(A2) ι_{n+1} extends ι_n .

A ring R has A-analytic structure if there is a ring morphism

 $\iota_n : A(Y_1, \ldots, Y_n) \rightarrow \text{ ring of } R\text{-valued functions on } R^n$

for every *n*, with the following properties:

(A1)
$$\iota_n(Y_k)(y_1,...,y_n) = y_k$$
, for $k = 1,...,n$;

(A2) ι_{n+1} extends ι_n .

We consider valuation rings with A-analytic structure and their fraction fields as \mathcal{L}_{val}^{A} -structures.

Point of stimulation

With $A \coloneqq \mathbb{C}[[t]]$, construe $\mathbb{C}((t))$ as a $\mathcal{L}_{val}^{\mathbb{C}[[t]]}$ -structure,

Point of stimulation

With $A \coloneqq \mathbb{C}[[t]]$, construe $\mathbb{C}((t))$ as a $\mathcal{L}_{val}^{\mathbb{C}[[t]]}$ -structure, $-\mathbb{C}((t))_{an}$.

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure \mathcal{M} comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}},$ the field $\mathbb{C},$ the ordered abelian group $\mathbb{Z}.$

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure \mathcal{M} comprised of:

the analytic valued field $\mathbb{C}((t))_{an}$, the field \mathbb{C} , the ordered abelian group \mathbb{Z} . and the v and $\overline{\mathrm{ac}}$ maps relating the sorts.

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure ${\cal M}$ comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}},$ the field $\mathbb{C},$ the ordered abelian group $\mathbb{Z}.$

and the ${\rm v}$ and $\overline{{\rm ac}}$ maps relating the sorts.

Proposition (Binyamini - Cluckers - Novikov, 2022)

If $P \subseteq \mathbb{C}((t))^n$ is definable in \mathcal{M} , then $P \cap \mathbb{C}^n$ is definable in the field $(\mathbb{C}; 0, 1, +, -, \cdot)$.

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure ${\cal M}$ comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}},$ the field $\mathbb{C},$ the ordered abelian group $\mathbb{Z}.$

and the ${\rm v}$ and $\overline{{\rm ac}}$ maps relating the sorts.

Proposition (Binyamini – Cluckers – Novikov, 2022)

If $P \subseteq \mathbb{C}((t))^n$ is definable in \mathcal{M} , then $P \cap \mathbb{C}^n$ is definable in the field $(\mathbb{C}; 0, 1, +, -, \cdot)$.

Proof uses that $\mathcal M$ has quantifier elimination.

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure ${\cal M}$ comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}},$ the field $\mathbb{C},$ the ordered abelian group $\mathbb{Z}.$

and the ${\rm v}$ and $\overline{{\rm ac}}$ maps relating the sorts.

Proposition (Binyamini – Cluckers – Novikov, 2022) If $P \subseteq \mathbb{C}((t))^n$ is definable in \mathcal{M} , then $P \cap \mathbb{C}^n$ is definable in the field $(\mathbb{C}; 0, 1, +, -, \cdot)$.

Proof uses that $\mathcal M$ has quantifier elimination.

Lou's "analytic AKE" results do give that any subset of \mathbb{C}^n definable in \mathcal{M} is definable in the field \mathbb{C} , but that's not enough.

Theorem (B. – van den Dries, 2022)

 If X ⊆ C^m is definable in (C((t))_{an}, C, t^Z), then X is even definable in the field (C; 0, 1, +, -, ·).

Theorem (B. – van den Dries, 2022)

- If X ⊆ C^m is definable in (C((t))_{an}, C, t^Z), then X is even definable in the field (C; 0, 1, +, -, ·).
- Similarly, if Y ⊆ (t^Z)ⁿ is definable in (C((t))_{an}, C, t^Z), then Y is even definable in the ordered group (t^Z; 1, ., ≤).

Theorem (B. – van den Dries, 2022)

- If X ⊆ C^m is definable in (C((t))_{an}, C, t^Z), then X is even definable in the field (C; 0, 1, +, -, ·).
- Similarly, if Y ⊆ (t^Z)ⁿ is definable in (C((t))_{an}, C, t^Z), then Y is even definable in the ordered group (t^Z; 1, ., ≤).

The BCN proposition is a special case.

Theorem (B. – van den Dries, 2022)

- If X ⊆ C^m is definable in (C((t))_{an}, C, t^Z), then X is even definable in the field (C; 0, 1, +, -, ·).
- Similarly, if Y ⊆ (t^Z)ⁿ is definable in (C((t))_{an}, C, t^Z), then Y is even definable in the ordered group (t^Z; 1, ., ≤).

The BCN proposition is a special case. Note that subsets \mathbb{C} and t^Z of $\mathbb{C}((t))$ are not definable in \mathcal{M} .

2 Denef – van den Dries' analytic expansion.

4 Running the AKE program.

R will denote a valuation A-ring.

R will denote a valuation *A*-ring. Then K = Frac(R) is an \mathcal{L}_{val}^{A} -structure.

```
R will denote a valuation A-ring.
Then K = Frac(R) is an \mathcal{L}_{val}^{A}-structure.
```

Assume from here on that A-ring R is viable:
Work with valuation rings with A-analytic structure.

```
R will denote a valuation A-ring.
Then K = Frac(R) is an \mathcal{L}_{val}^{A}-structure.
```

Assume from here on that A-ring R is viable: $\sigma(R) = \rho R$ for some ρ , and $\rho \in \sqrt{\sigma(A)R}$. Work with valuation rings with A-analytic structure.

```
R will denote a valuation A-ring.
Then K = Frac(R) is an \mathcal{L}_{val}^{A}-structure.
```

Assume from here on that A-ring R is viable: $\sigma(R) = \rho R$ for some ρ , and $\rho \in \sqrt{\sigma(A)R}$.

R viable \implies R is henselian.

Work with valuation rings with A-analytic structure.

```
R will denote a valuation A-ring.
Then K = Frac(R) is an \mathcal{L}_{val}^{A}-structure.
```

Assume from here on that A-ring R is viable: $o(R) = \rho R$ for some ρ , and $\rho \in \sqrt{o(A)R}$.

R viable \implies R is henselian.

Our assumptions give that viable valuation A-rings have:

piecewise uniform Weierstrass division with respect to parameters.

Let *L* be an \mathcal{L}_{val}^{A} -extension of *K*.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K.

Suppose $a \in L$ is algebraic over K.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K.

Suppose $a \in L$ is algebraic over K. Henselianity of R gives $K_a = K(a)$.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K.

Suppose $a \in L$ is algebraic over K. Henselianity of R gives $K_a = K(a)$.

Want an isomorphism theory for K_a :

1. when $a \leq 1$ and $\pi(a)$ is transcendental over $\mathbf{k}_{\mathcal{K}}$.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K.

Suppose $a \in L$ is algebraic over K. Henselianity of R gives $K_a = K(a)$.

Want an isomorphism theory for K_a :

- 1. when $a \leq 1$ and $\pi(a)$ is transcendental over k_{K} .
- 2. when $a \neq 0$ and $dv(a) \notin \Gamma_K$ for all $d \ge 1$.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K.

Suppose $a \in L$ is algebraic over K. Henselianity of R gives $K_a = K(a)$.

Want an isomorphism theory for K_a :

- 1. when $a \leq 1$ and $\pi(a)$ is transcendental over \mathbf{k}_{K} .
- 2. when $a \neq 0$ and $dv(a) \notin \Gamma_K$ for all $d \ge 1$.
- 3. when K(a) is an immediate extension of K.

Assume char $k_K = 0$.

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal,

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \rightsquigarrow a, a \in R_L$.

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \sim a$, $a \in R_L$. Is K_a an immediate extension of K?

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \sim a$, $a \in R_L$. Is K_a an immediate extension of K?

```
Set R(a) := \{g(a) : g \in R(Z)\}
```

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \rightsquigarrow a, a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A(Y_1, \ldots, Y_n, Z)\}$

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \rightsquigarrow a, a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, \dots, a_n, a) : f \in A(Y_1, \dots, Y_n, Z)\}$ $R(a) \subseteq K_a,$

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \rightsquigarrow a, a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, \dots, a_n, a) : f \in A(Y_1, \dots, Y_n, Z)\}$ $R(a) \subseteq K_a, K(a) \not\subseteq K_a,$

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \rightsquigarrow a, a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A(Y_1, \ldots, Y_n, Z)\}$

 $R(a) \subseteq K_a$, $K(a) \subsetneq K_a$, and R(a) is not a valuation ring.

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \rightsquigarrow a, a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, \dots, a_n, a) : f \in A(Y_1, \dots, Y_n, Z)\}$

 $R(a) \subseteq K_a$, $K(a) \subsetneq K_a$, and R(a) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$a = a_{\rho} + t_{\rho} u_{\rho},$$

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \rightsquigarrow a, a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A(Y_1, \ldots, Y_n, Z)\}$

 $R(a) \subseteq K_a$, $K(a) \subsetneq K_a$, and R(a) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$a = a_{\rho} + t_{\rho}u_{\rho}, \quad t_{\rho} \in R,$$

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \rightsquigarrow a, a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A(Y_1, \ldots, Y_n, Z)\}$

 $R(a) \subseteq K_a$, $K(a) \subsetneq K_a$, and R(a) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$a = a_{\rho} + t_{\rho}u_{\rho}, \quad t_{\rho} \in R, \quad u_{\rho} \in K(a)^{\times}$$

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \rightsquigarrow a, a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A(Y_1, \ldots, Y_n, Z)\}$

 $R(a) \subseteq K_a$, $K(a) \subsetneq K_a$, and R(a) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$a = a_{\rho} + t_{\rho}u_{\rho}, \quad t_{\rho} \in R, \quad u_{\rho} \in K(a)^{\times}$$

and $v(t_{\rho})$ is strictly increasing as a function of $\rho > \rho_0$.

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \rightsquigarrow a, a \in R_L$. Is K_a an immediate extension of K?

 $\mathsf{Set}\ R\langle a\rangle \coloneqq \{g(a):\ g\in R\langle Z\rangle\} = \bigcup_n \{f(a_1,\ldots,a_n,a):\ f\in A\langle Y_1,\ldots,Y_n,Z\rangle\}$

 $R(a) \subseteq K_a$, $K(a) \subsetneq K_a$, and R(a) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$a = a_{\rho} + t_{\rho}u_{\rho}, \quad t_{\rho} \in R, \quad u_{\rho} \in K(a)^{\times}$$

and $v(t_{\rho})$ is strictly increasing as a function of $\rho > \rho_0$.

 $R\langle a \rangle \subseteq R\langle u_{\rho} \rangle \subseteq R_a$,

Assume char $\mathbf{k}_{K} = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_{ρ}) of transcendental type.

Take $a_{\rho} \rightsquigarrow a, a \in R_L$. Is K_a an immediate extension of K?

Set $R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, \ldots, a_n, a) : f \in A(Y_1, \ldots, Y_n, Z)\}$

 $R(a) \subseteq K_a$, $K(a) \subsetneq K_a$, and R(a) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$a = a_{\rho} + t_{\rho}u_{\rho}, \quad t_{\rho} \in R, \quad u_{\rho} \in K(a)^{\times}$$

and $v(t_{\rho})$ is strictly increasing as a function of $\rho > \rho_0$.

 $R(a) \subseteq R(u_{\rho}) \subseteq R_a$, and we discover that $R_a = \bigcup_{\rho > \rho_0} R(u_{\rho})$.

Let $a \in L$.

Let $a \in L$. Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms,

Let $a \in L$. Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Let $a \in L$.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free \mathcal{L}_{val}^{A} -type of a over K is completely determined by its quantifier-free \mathcal{L}_{val} -type over K.

Let $a \in L$.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free \mathcal{L}_{val}^A -type of a over K is completely determined by its quantifier-free \mathcal{L}_{val} -type over K.

Lemma

(i) If a ≤ 1 and π(a) is transcendental over k_K, then K_a is an immediate extension of K(a).

Let *a* ∈ *L*.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free \mathcal{L}_{val}^{A} -type of a over K is completely determined by its quantifier-free \mathcal{L}_{val} -type over K.

Lemma

- (i) If a ≤ 1 and π(a) is transcendental over k_K, then K_a is an immediate extension of K(a).
- (ii) If $a \neq 0$ and $dv(a) \notin \Gamma_K$ for all $d \ge 1$, then K_a is an immediate extension of K(a)

Let *a* ∈ *L*.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free \mathcal{L}_{val}^{A} -type of a over K is completely determined by its quantifier-free \mathcal{L}_{val} -type over K.

Lemma

- (i) If a ≤ 1 and π(a) is transcendental over k_K, then K_a is an immediate extension of K(a).
- (ii) If $a \neq 0$ and $dv(a) \notin \Gamma_{\kappa}$ for all $d \ge 1$, then K_a is an immediate extension of K(a) provided Γ_{κ} is a \mathbb{Z} -group and R_a is viable.

Let *a* ∈ *L*.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free \mathcal{L}_{val}^A -type of a over K is completely determined by its quantifier-free \mathcal{L}_{val} -type over K.

Lemma

- (i) If a ≤ 1 and π(a) is transcendental over k_K, then K_a is an immediate extension of K(a).
- (ii) If $a \neq 0$ and $dv(a) \notin \Gamma_K$ for all $d \ge 1$, then K_a is an immediate extension of K(a) provided Γ_K is a \mathbb{Z} -group and R_a is viable.
- Is K_a always an immediate extension of K(a)?

Our analytic AKE equivalence

Let $A = \mathbb{Z}[[t]]$ and $\mathcal{O}(A) = t\mathbb{Z}[[t]]$.
Let $A = \mathbb{Z}[[t]]$ and $o(A) = t\mathbb{Z}[[t]]$. Then for \mathcal{L}_{val}^{Acg} -structures $\mathcal{K} = (K_{an}, C_K, G_K)$ and $\mathcal{E} = (E_{an}, C_E, G_E)$:

Let $A = \mathbb{Z}[[t]]$ and $o(A) = t\mathbb{Z}[[t]]$. Then for \mathcal{L}_{val}^{Acg} -structures $\mathcal{K} = (K_{an}, C_K, G_K)$ and $\mathcal{E} = (E_{an}, C_E, G_E)$:

Theorem (B. – van den Dries, 2022)

Assume char $\mathbf{k}_{K} = 0$ and Γ_{K} is a \mathbb{Z} -group.

Let $A = \mathbb{Z}[[t]]$ and $o(A) = t\mathbb{Z}[[t]]$. Then for \mathcal{L}_{val}^{Acg} -structures $\mathcal{K} = (K_{an}, C_K, G_K)$ and $\mathcal{E} = (E_{an}, C_E, G_E)$:

Theorem (B. – van den Dries, 2022)

Assume char $\mathbf{k}_{K} = 0$ and Γ_{K} is a \mathbb{Z} -group. Suppose $t \in G_{K}, G_{L}$.

Let $A = \mathbb{Z}[[t]]$ and $o(A) = t\mathbb{Z}[[t]]$. Then for \mathcal{L}_{val}^{Acg} -structures $\mathcal{K} = (K_{an}, C_K, G_K)$ and $\mathcal{E} = (E_{an}, C_E, G_E)$:

Theorem (B. – van den Dries, 2022)

Assume char $\mathbf{k}_{K} = 0$ and Γ_{K} is a \mathbb{Z} -group. Suppose $t \in G_{K}, G_{L}$. Then

 $\mathcal{K} \equiv \mathcal{E} \iff C_K \equiv C_E \text{ and } G_K \equiv_t G_E.$

Let $A = \mathbb{Z}[[t]]$ and $o(A) = t\mathbb{Z}[[t]]$. Then for \mathcal{L}_{val}^{Acg} -structures $\mathcal{K} = (K_{an}, C_K, G_K)$ and $\mathcal{E} = (E_{an}, C_E, G_E)$:

Theorem (B. – van den Dries, 2022)

Assume char $\mathbf{k}_{K} = 0$ and Γ_{K} is a \mathbb{Z} -group. Suppose $t \in G_{K}, G_{L}$. Then

$$\mathcal{K} \equiv \mathcal{E} \iff C_K \equiv C_E \text{ and } G_K \equiv_t G_E.$$

Using an NIP transfer principle by Jahnke and Simon, we obtain:

Let $A = \mathbb{Z}[[t]]$ and $o(A) = t\mathbb{Z}[[t]]$. Then for \mathcal{L}_{val}^{Acg} -structures $\mathcal{K} = (K_{an}, C_K, G_K)$ and $\mathcal{E} = (E_{an}, C_E, G_E)$:

Theorem (B. – van den Dries, 2022)

Assume char $\mathbf{k}_{K} = 0$ and Γ_{K} is a \mathbb{Z} -group. Suppose $t \in G_{K}, G_{L}$. Then

$$\mathcal{K} \equiv \mathcal{E} \iff C_K \equiv C_E \text{ and } G_K \equiv_t G_E.$$

Using an NIP transfer principle by Jahnke and Simon, we obtain:

Proposition (B. – van den Dries, 2022)

Let A be "general". Assume char $\mathbf{k}_{K} = 0$ and Γ_{K} is a \mathbb{Z} -group.

Let $A = \mathbb{Z}[[t]]$ and $o(A) = t\mathbb{Z}[[t]]$. Then for \mathcal{L}_{val}^{Acg} -structures $\mathcal{K} = (K_{an}, C_K, G_K)$ and $\mathcal{E} = (E_{an}, C_E, G_E)$:

Theorem (B. – van den Dries, 2022)

Assume char $\mathbf{k}_{K} = 0$ and Γ_{K} is a \mathbb{Z} -group. Suppose $t \in G_{K}, G_{L}$. Then

$$\mathcal{K} \equiv \mathcal{E} \iff C_K \equiv C_E \text{ and } G_K \equiv_t G_E.$$

Using an NIP transfer principle by Jahnke and Simon, we obtain:

Proposition (B. – van den Dries, 2022)

Let A be "general". Assume char $\mathbf{k}_{K} = 0$ and Γ_{K} is a \mathbb{Z} -group. Then

the Acg-field \mathcal{K} has NIP \iff the ring $\mathbf{k}_{\mathcal{K}}$ has NIP.

References

- L. van den Dries, *Analytic Ax-Kochen-Ersov theorems*, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), 379–398, Contemp. Math. 131.3, AMS, Providence, (1992).
- J. Denef and L. van den Dries, *p-adic and real subanalytic sets*, Ann. Math. 128 (1988), 79-138.
- R. Cluckers, L. Lipshitz, Strictly convergent analytic structures, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 1, 107–149.
- G. Binyamini, R. Cluckers, and D. Novikov, Point counting and Wilkie's conjecture for non-Archimedean Pfaffian and Noetherian functions, Duke Mathematical Journal 171 (2022), no. 9, 1823–1842.

Thank you!