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Setup

H1 � � // H
det //� _

��

T

G

= SU(W ) �
� // U(W )

det //
� _

��

U(1)

SO(V )

F is a a totally real �eld

E is a quadratic CM extension of F

(V , ϕ) is a quadratic space of dimension 2n + 1 over F

(W , ψ) is an E -hermitian F -hyperplane of (V , ϕ):

U(W ) ⊂ SO(W ) ⊂ SO(V )

U(n) ⊂ SO(2n) ⊂ SO(2n + 1)
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Embeddings of W 's in V 's

Lemma

Given (V , ϕ) over F and a quadratic extension E of F ,

1 There is at most one isomorphism class of (W , ψ) in (V , ϕ).

2 There is one if and only if, for every place v of F ,

V does not split at v =⇒ E does not split at v .

3 If a (W , ψ) exists, then all embeddings

U(W , ψ) ↪→ SO(V , ϕ)

are conjugated under SO(V , ϕ).
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Setup

De�nition

Let E [∞] be the sub�eld of E ab �xed by the image of

Ver : GalabF → GalabE
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Setup

De�nition

Let E [∞] be the sub�eld of E ab �xed by the image of

Ver : GalabF → GalabE

Lemma

The reciprocity map of E induces an isomorphism

T (F̂ )/T (F )
' // Gal(E [∞]/E )
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Setup

De�nition

Let E [∞] be the sub�eld of E ab �xed by the image of

Ver : GalabF → GalabE

We have a commutative diagram with exact rows and columns

1 // µ(E )

��

// T (F ) //

��

P //

��

1

1 // T (ÔF )

��

// T (F̂ ) //

��

⊕v splitZ //

��

1

1 // Gal(E [∞]/E ′) // Gal(E [∞]/E ) // Gal(E ′/E ) // 1
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Setup

When H(F ⊗ R) is not compact, this Galois group

Gal(E [∞]/E )

= T (F̂ )/T (F )

= H(F̂ )/H1(F̂ )H(F )

acts on

H1(F )\G (F̂ )/K

= H(F )\G (F̂ )/K

= H(F )H1(F̂ )\G (F̂ )/K

for any compact open subgroup K of G (F̂ ).
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Setup

Likewise,

Z[H(F )\G (F̂ )/K ]

= S
(
H(F )\G (F̂ )

)K
= Hom

G(F̂ )

(
Z[G (F̂ )/K ],S

(
H(F )\G (F̂ )

))

has a right action of the Hecke algebra

HK = Z[K\G (F̂ )/K ]

' End
G(F̂ )

(
Z[G (F̂ )/K ]

)
.
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Goal

We would like to understand

Gal(E [∞]/E ) Z[H(F )\G (F̂ )/K ] HK
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Motivation

Let M be a motive over F which is
irreducible, pure of weight −1, and symplectic of dimension 2n,

M ⊗M → Q(1).

Twist it by
orthogonal Artin motives of dimension 2

associated with ring class characters χ of E :

M ⊗ N(χ)

N(χ) = IndE/Fχ χ : Gal(E [∞]/E )→ Q×

.
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Motivation

Conjecture (Beilinson-Deligne-Bloch-Kato-Fontaine-Perrin-Riou)

There is an L-function with functional equation

L(M ⊗ N(χ), s) = ε(M ⊗ N(χ), s)L(M ⊗ N(χ),−s).

Moreover,

ords=0L(M ⊗ N(χ), s) = dimH1
mot(F ,M ⊗ N(χ))

= dimH1
f (F , (M ⊗ N(χ))p)

= dimH1
f (E (χ),Mp)χ

Corollary

The parity of dimH1
f is controlled by the root number ε(M ⊗ N(χ)).
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Motivation

Fact

The sign ε(M ⊗ N(χ)) essentially does not depend upon χ. Set

ε(ME ) ≡ ε(M ⊗ N(χ))

and assume that
ε(ME ) = −1.

Conjecture (Rohrlich type)

For most χ's, we should have

ords=0L(M ⊗ N(χ), s) = 1
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Motivation

Corollary

For most χ's, we should have

dimH1
f (E (χ),Mp)χ = 1.

We thus expect that

There is an Euler system

And it should be essentially unique

Goal

Construct it! Along the way, all choices should be governed by our single
assumption on the root number, or cancel out.
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Motives  Automorphic Reps

Conjecture (Clozel?)

M corresponds to an algebraic automorphic representation Φ of GL2n. . .

Conjecture (Arthur?)

. . . a generic parameter of symplectic type for a Langlands-Vogan packet

Π(Φ) = {(G , π)} / ∼

for automorphic cuspidal representations π of pure inner forms

G = SO(V ) dimF V = 2n + 1, disc(V ) = 1.
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Automorphic Reps  Shimura Varieties

Goal

We want: a Shimura Variety over F . . .

Fix σ0 : F ↪→ R inducing a place v0 | ∞ of F .

Look only at groups G = SO(V ) for which

signv (V ) =

{
(2n − 1, 2) v = v0,

(2n + 1, 0) v 6= v0.

They give rise to Shimura varieties Sh(G,X ) where

G = RF/QG and X = {oriented negative R-planes in Vv0} .

The re�ex �eld is σ0F and the dimension is 2n − 1.

Fact (Langlands Conjecture / Milne-Shih)

The pull-back of Sh(G,X ) through F → σ0F does not depend on σ0.
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G = RF/QG and X = {oriented negative R-planes in Vv0} .

The re�ex �eld is σ0F and the dimension is 2n − 1.

Fact (Langlands Conjecture / Milne-Shih)

The pull-back of Sh(G,X ) through F → σ0F does not depend on σ0.
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Shimura Varieties  Motives

Goal

. . . whose cohomology contains M . . .

Hypothesis

dimM
p,q
σ ∈ {0, 1} for all σ : F ↪→ C, p, q ∈ Z.

Fact

All π's in Π(G ,Φ) are cohomological with respect to a unique irreducible

algebraic representation V of G.

Conjecture (Kottwitz?)

Let V be the corresponding local system. Then for any π ∈ Π(G ,Φ),

H?(Sh(G,X ),V(n))[πf ] = H2n−1(Sh(G,X ),V(n))[πf ] ' σ0,∗M
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Special Cycles

Goal

. . . with lots of cycles de�ned over E [∞] . . .

An E -Hermitian F -hyperplane W of V gives a sub datum (H,Y) with

H = RF/QH and Y = {negative C− lines in Wv0}

The re�ex �eld is σ̃0E where σ̃0|F = σ0 and the dimension is n − 1.

For g ∈ G(Af ) = G (F̂ ), let ZK (g) be the image of g × Y in

ShK (G,X )(C) = G(Q)\ (G(Af )/K ×X ) .

This is an irreducible special cycle of codimension n de�ned over E [∞].

Lemma

The map g 7→ ZK (g) gives a bijection

Z[H(Q)\G(Af )/K ]→ Cycn(ShK (G,X )).
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Special Cycles

Goal

. . . with lots of cycles de�ned over E [∞] . . .
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ShK (G,X )(C) = G(Q)\ (G(Af )/K ×X ) .

This is an irreducible special cycle of codimension n de�ned over E [∞].

Lemma

The map g 7→ ZK (g) gives an HK [Gal(E [∞]/E )]-equivariant map

Z[H(Q)\G(Af )/K ]→ Cycn(ShK (G,X )).
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Special Classes

Goal

. . . and nice push-forward maps . . .

ZK (g) is the image of the connected component [Y] through

ιg : ShH(Af )∩gKg−1(H,Y)→ ShgKg−1(G,X )
g−→ ShK (G,X )

The pull-back ι∗gV is associated with the restriction of V to H.

Fact (Krämer)

dimHomH(1,V) = 1.

We obtain a class

zK (g) ∈ H2n (ShK (G,X ),V(n)) .
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Abel-Jacobi

Goal

. . . giving motivic extensions . . .

There is an exact sequence

1

zK (g)

��
1 // H2n−1 (Sh(G),V(n)) //

��

H2n−1 (Zc ,V(n)) // H2n
Z (Sh(G),V(n)) // H2n (Sh(G),V(n))

πK
f
⊗M

with Z = ZK (g).

By pull-back and push-out, we obtain

1 // πKf ⊗M // ? // S(ZK )0 // 1

S(ZK )0 = ker
(
S(ZK )→ H2n(ShK (G),V(n))

)
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An Euler System

Goal

. . . and an Euler System!

In p-adic cohomology, we obtain an extension

zK ,p(πf ) ∈ Ext1HK [GalE ]

(
S(ZK )0, π

K
f ⊗Mp

)

This may be evaluated at

A �xed linear form v 6= 0 on πK
f

A variable element φ ∈ S(ZK )0

. . . to give classes
zp(φ) ∈ H1(E [φ],Mp).

The distribution relations between these classes are encoded in the

HK [GalE ]− structure of S(ZK ) = Z[H(F )\G (F̂ )/K ].
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Choice of (G , πf )?

Conjecture (Arthur)

There are compatible bijections

Π(Φ) '

(∏
v

Sv/S

)∨
Π(Φv ) ' S∨v

where Sv is a �nite abelian group killed by 2 and S = {±1}.

In their study of SO(2n + 1)× U(1), Gross-Prasad produce a character

cχ :
∏
Sv → {±1} with cχ(−1) = ε(Φ, χ) = ε(M ⊗ N(χ))

= −1

Fact

cχ ≡ cE is essentially independant of χ.
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Choice of (G , πf )?

Modify the Gross-Prasad cE at ∞ to ci = cEf ci ,∞ with ci ,∞ in{
(cv )v |∞ : sign(cv ) =

{
(2n − 1, 2) v = v0 | ∞
(2n + 1, 0) v0 6= v | ∞

}
.

There are exactly n such elements: {c1, · · · , cn}.

AAARGH! It only works in 75% of the cases

If n is odd OR [F : Q] is even, then ci (−1) = 1.

We then have a canonical construction of

G = SO(V ) and πi = πEf ⊗ πi ,∞.

Fact

This speci�c V indeed contains an E-hermitian F -hyperplane W .
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Back to ZK

We look at

ZK = H(F )\G (F̂ )/K

= H(F )H1(F̂ )\G (F̂ )/K .

Sum over T (F )-orbits gives a morphism

Z[H1(F̂ )\G (F̂ )/K ] −→ Z[H(F )H1(F̂ )\G (F̂ )/K ]

It is equivariant for HK and

T (F̂ )→ Gal(E [∞]/E ).

If K =
∏

Kv , there are compatible isomorphisms

T (F̂ ) =
∏′

T (Fv )

Z[K\G (F̂ )/K ] = ⊗′Z [Kv\G (Fv )/Kv ]

Z[H1(F̂ )\G (F̂ )/K ] = ⊗′Z[H1(Fv )\G (Fv )/Kv ]
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Local Setup

Switch to local notations for F , E and

H1 � � // H
det//� _

��

T

G K? _oo

= H1(Fv ) �
� // H(Fv )

det//
� _

��

T (Fv )

G (Fv ) Kv
? _oo

We want to investigate the structure of

T Z[H1\G/K ] H
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What we want?

Suppose we are given:

T1 ⊂ T0: compact open subgroups of T ,

o: an element of H1\G/K �xed by T0,

t: a Hecke operator
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What we want?

Suppose we are given:

T1 ⊂ T0: compact open subgroups of T ,

o: an element of H1\G/K �xed by T0,

t: a Hecke operator

Question

Is there an s ∈ Z[H1\G/K ] �xed by T1 such that

t · o = TrT0/T1
(s)?
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What we want?

Suppose we are given:

T1 ⊂ T0: compact open subgroups of T ,

o: an element of H1\G/K �xed by T0,

t: a Hecke operator

t · o = TrT0/T1
(s)?

There is such an s if and only if

∀x ∈ H1\G/K : [T0,x : T1,x ] | nx

where Ti ,x is the stabilizer of x in Ti and

t · o =
∑

nxx .
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What we want?

Suppose we are given:

T1 ⊂ T0: compact open subgroups of T ,

o: an element of H1\G/K �xed by T0,

t: a Hecke operator

t · o = TrT0/T1
(s)?  ∀x : [T0,x : T1,x ] | nx?

We need to compute

1 The support of t · o
2 And for each x in this support,

1 the stabilizer Tx of x in T
2 the coe�cient nx of x in t · o
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Description of H\G/K

We �rst describe the T -orbit space in H1\G/K , i.e.

T\
(
H1\G/K

)
= H\G/K .

A toy case: linear groups

V : �nite free E -module of rank n and

H = GLE (V ) inside G = GLF (V )

K : hyperspecial in G , so

G/K = {OF − lattices in V } .
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All OF -orders in E are Gorenstein

De�nition (A chain of OF -orders)

OF ⊂ · · · ⊂ Oc+1 ⊂ Oc ⊂ · · · ⊂ O1 ⊂ O0 = OE

Oc := OF + Pc
FOE c ∈ N
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All OF -orders in E are Gorenstein

De�nition (A chain of OF -orders)

OF ⊂ · · · ⊂ Oc+1 ⊂ Oc ⊂ · · · ⊂ O1 ⊂ O0 = OE

Oc := OF + Pc
FOE c ∈ N

Fact

Each Oc is a local Gorenstein ring with maximal ideal

Pc =

{
PE ⊂ OE if c = 0,

PFOc−1 if c > 0

unless E = F × F and c = 0, where O0 = OE = OF ×OF .
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A result of Hyman Bass

Theorem (Hyman Bass)

For every OF -lattice L in V , there is an E-basis of V such that

L = Oc1e1 ⊕ · · · ⊕ Ocnen with c1 ≤ · · · ≤ cn, ci ∈ N.

Lemma

If HL = GL ∩ H is the stabilizer of L in H, then

detHL = O×c1 .
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Theorem (Hyman Bass)

For every OF -lattice L in V , there is an E-basis of V such that

L = Oc1e1 ⊕ · · · ⊕ Ocnen with c1 ≤ · · · ≤ cn, ci ∈ N.

Corollary

The assignment L 7→ (c1, · · · , cn) induces a bijection
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A result of Hyman Bass

Theorem (Hyman Bass)

For every OF -lattice L in V , there is an E-basis of V such that

L = Oc1e1 ⊕ · · · ⊕ Ocnen with c1 ≤ · · · ≤ cn, ci ∈ N.

Corollary

The assignment L 7→ (c1, · · · , cn) induces a bijection

H\G/K '−→ Nn
≤

Lemma

If HL = GL ∩ H is the stabilizer of L in H = GLE (V ), then

detEHL = O×c1 .

Christophe Cornut Berkeley_1 April 12, 2023 26 / 47



Generalisation (G = GL(V ))

Theorem

For every F -norm α on V , there is an E-basis of V such that

α = ‖−‖1 e1 ⊕ · · · ⊕ ‖−‖n en with ‖−‖i : E → R+

i.e. for every λ1, · · · , λn in E ,

α(λ1e1 + · · ·+ λnen) = max {‖λ1‖1 , · · · , ‖λn‖n}
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B(G ) = {F -norms on V } = extended Bruhat-Tits building of G .
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L 7→ αL =gauge norm of L is a G -equivariant embedding
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Generalisation (G = GL(V ))

Theorem

For every F -norm α on V , there is an E-basis of V such that

α = ‖−‖1 e1 ⊕ · · · ⊕ ‖−‖n en with ‖−‖i : E → R+

i.e. for every λ1, · · · , λn in E ,

α(λ1e1 + · · ·+ λnen) = max {‖λ1‖1 , · · · , ‖λn‖n}

Corollary

This gives a bijection

inv : H\B(G ) ' L(n)

where L(n) is the set of �e�ective divisors� of degree n on

L = E×\ {F-norms on E} .
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What is L?

From now on, we will assume that E/F is unrami�ed.

Lemma

There is a bijection

L ' circle× half − line = S1 × R+.
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What is L?

From now on, we will assume that E/F is unrami�ed.

Lemma

There is a bijection

L ' circle× half − line = S1 × R+.

It takes (e2iπθ, c) to the norm qθ ‖−‖c : E → R+ with

‖z‖c = q
1
2 c+k

{
q−c if z ∈ π−k (On − Pn)

q−dce if z ∈ π−k (Pn − πOn)
n = dce

where

q is the order of the residue �eld F of F

πOF = PF
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What is L?

From now on, we will assume that E/F is unrami�ed.

Lemma

There is a bijection

L ' circle× half − line = S1 × R+.

Lemma

If Hα = H ∩ Gα is the stabilizer of α in H then

det(Hα) = O×dmin(ci )e if inv(α) =
n∑

i=1

(?i , ci ).
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H\B(G) for G=SO(W)

We now take
H = U(W ) and G = SO(W )

Corollary

This gives a bijection

inv : H\B(G ) ' L(m)
inv(α) = class of inv(α|W+)

Lemma

If Hα = H ∩ Gα is the stabilizer of α in H then

det(Hα) =

{
T0 if n > 2m

Tdmin(ci )e in n = 2m
where inv(α) =

n∑
i=1

(?i , ci ).
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H\B(G) for G=SO(W)

We now take
H = U(W ) and G = SO(W )

Then B(G ) is the set of self-dual norms α on W :

α(x) = α∗(x) with α∗(x) = sup

{
|ϕ(x , y)|
α(y)

: y ∈W \ {0}
}
.

Corollary

This gives a bijection

inv : H\B(G ) ' L(m)
inv(α) = class of inv(α|W+)

Lemma

If Hα = H ∩ Gα is the stabilizer of α in H then
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H\B(G) for G=SO(W)

We now take
H = U(W ) and G = SO(W )

Theorem

For every α ∈ B(G ), there is a Witt E-decomposition

W = W+ ⊕W0 ⊕W−

which is adapted to α. This means

α(w+ + w0 + w−) = max(α(w+), α(w0), α(w−)}.

Moreover, α(w0) = |ϕ(w0,w0)|1/2 and

α(w−) = sup

{
|ϕ(w−,w+)|
α(w+)

: w+ ∈W+ \ {0}
}
.

Corollary

This gives a bijection

inv : H\B(G ) ' L(m)
inv(α) = class of inv(α|W+)

Lemma

If Hα = H ∩ Gα is the stabilizer of α in H then

det(Hα) =
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We now take
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Corollary

This gives a bijection

inv : H\B(G ) ' L(m)
inv(α) = class of inv(α|W+)

where m = dimE W+ is the Witt index of W and

L = segment× half − line = [−1, 1]× R+.
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H\B(G) for G=SO(V)

We now return to the original setup where

H = U(W ) and G = SO(V ).

We embed V as an F -hyperplane in a larger E -hermitian space

W ⊂ V ⊂W

This gives rise to a diagram

H = U(W )

��

// H = U(W )

��
G = SO(W ) // G = SO(V ) // G = SO(W )

The bottom line gives equivariant embeddings

B(G ) ↪→ B(G ) ↪→ B(G ).
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H\B(G) for G=SO(V)

Consider the equivariant map

B(G )→ B(G )× B(G ) α 7→ (α, α)

where α and α are the projection and extension of α.

Theorem

It induces an embedding

H\B(G ) ↪→ H\B(G )× H\B(G )

Corollary

We obtain an injective invariant

inv : H\B(G ) ↪→ L(m)
inv(α) = inv(α) + inv(α)

where m = WittE (W ) + WittE (W )

= WittF (V )

.
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Working with inv (G split)

So H\B(G ) is a subset of the set of

�e�ective divisors� of degree n on [0,1]×R+.
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Working with inv (G split)

Here is one such divisor, for x ∈ B(G ).
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Working with inv (G split)

The stabilizer Tx of [x ] ∈ H1\B(G ) in T is given by:

StabT (x) = Tdce where Tr =
{
z/z : z ∈ O×r

}

.
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Working with inv (G split)

For this divisor to be in the image of inv . . .

(n = 2 + 1 + 4 + 2 + 1 + 3 + 1 + 2 = 16)

1

1

3

1

2
4

2

2
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Working with inv (G split)

. . . consider it modulo 2. . .
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Working with inv (G split)

. . . consider it modulo 2. . .

Christophe Cornut Berkeley_1 April 12, 2023 32 / 47



Working with inv (G split)

. . . then the remaining points have to be on a broken line:
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Working with inv (G split)

For n = 1: the point should just be on this broken line!
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Working with inv (G split)

Here is the �support� of the G -hyperspecial H-orbits.

H\G/K = H\B◦(G ) ' Nn
≤
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Here is the �support� of the G -hyperspecial H-orbits. We obtain:

H\G/K = H\B◦(G ) ' Nn
≤
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Working with inv (G split)

Here are the �support� of the H-orbits of all G -vertices. . .
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Working with inv (G split)

. . . and the �support� of H-orbits of mid-points of G -edges.

Christophe Cornut Berkeley_1 April 12, 2023 32 / 47



Working with inv (G split)

The source and target invariants are computed as follows.

>

<
<

>

<

>

>

>
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Working with inv (G split)

And the base point corresponds to an H-orbit of hyperspecials in B(H):

B◦(H) = B(H) ∩ B◦(G )

n
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Working with inv (G split)

The orbits of the adjacent edges. . .

satisfy

m + p + q + r = n, p ≡ (q − 1)r ≡ 0 mod 2.

m

p

q

r
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Working with inv (G split)

So the orbits of the adjacent vertices also satisfy

m + p + q + r = n, p ≡ (q − 1)r ≡ 0 mod 2.

m

p

q

r
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Vertices and oriented edges (split SO(5))

An apartment

Hyper/spéciaux

An alcove

A new point

An half-alcove

... oriented!

Neighbours of
hyperspecial

T1 operator

T2 operator
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Vertices and oriented edges (split SO(5))

>

>>

An apartment

Hyper/spéciaux
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A new point

An half-alcove

... oriented!
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The support of Ti(o) when n = 2

T1(o)

c = 0: 2 orbits

c = 1: 1 orbit

T2(o)

c = 0: 2 orbits

c = 1: 2 orbits

c = 2: 1 orbit!
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Where we are

We have described

2� the space of T orbits in H1\G/K
2� the stabilizers Tx of x ∈ H1\G/K
2� the support of Hecke operators on Z[H1\G/K ]

We still need to compute the coe�cients of

t(o) =
∑

nxx .

Problem

There are TWO Hecke actions on

Z[H1\G/K ]

. . . and I mixed them up! Special thanks to Waqar Ali Shah!
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The TWO Hecke actions on Z[H1\G/K ]

Two point of views on Z[H1\G/K ]:

Good: K -invariant functions on the right G -space H1\G
BAD: H1-coinvariants in the left G -module Z[G/K ]

Bad action is easier to compute, since H = EndG (Z[G/K ])

Any Q-measure µ1 on H1 gives an isomorphism over Q:

Q[H1\G/K ] + bad action
θ // Q[H1\G/K ] + good action

x // µ1(x) · x

where
µ1(x) = µ1(H1 ∩ gKg−1) if x = H1gK .

The two actions have the same support.
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I can still work with the bad action

We want:

in Z[H\G/K ],

tgood(o) =
∑

nxx , ∀x : [T0,x : T1,x ] | nx .

1 With the normalization µ1(o) = 1,

θ(tbad (o)) = tgood (o).

2 If c = c(x), then Tx = Tc , so

[T0,x : T1,x ] = [T0 ∩ Tc : T1 ∩ Tc ] =

{
1 if c ≥ 1,

q + 1 if c = 0.

3 The projection H1\G/K → H\G/K gives an equivariant map

Z[H1\G/K ]� Z[H\G/K ]

for the bad actions, which multiplies mx by [T0 : Tx ].
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I can still work with the bad action

We want: in Z[H\G/K ],

tbad (o) =
∑

mxx , ∀x with c(x) = 0 : q + 1 | µ(x) ·mx .

where µ on H is normalized by µ(o) = 1 and

µ(x) = µ(H ∩ gKg−1) for x = HgK .

1 With the normalization µ1(o) = 1,
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What I want:

I thus want (in Z[H\G/K ]),

tbad(o) =
∑

mxx ∀x with c(x) = 0 : (q + 1) | µ(x)mx .

I had shown

tbad(o) =
∑

mxx ∀x with c(x) = 0 : (q + 1) | mx .

I compute mx , and now also µ(x):

using the graph structure on vertices of B(G ),
viewing B(G ) as a space of norms for computations.
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The method

A norm α ∈ B(G ) has balls (OF -modules) and spheres (F-vector spaces)

B(α ≤ qλ) and S(α, λ) =
B(α ≤ qλ)

B(α < qλ)

equipped with simple structures coming from G (=G -structures).

1 The H-structure on G gives H-structures on all spheres S .

2 The H-invariant of α can be read from the H-structure on S .

3 Nearby G -edges correspond to points in G -Grassmanians on S .

4 The H-structure on S strati�es these G -Grassmanians.

5 Counting points on these strata gives access to the mx 's.

6 Choosing a good path between x and o gives access to the µ(x)'s.
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Linear case: (1) H-induced structures on spheres.

Let L be an OF -lattice in an E -vector space V . Then

L ⊂ · · · ⊂ OcL ⊂ Oc−1L ⊂ · · · ⊂ O1L ⊂ O0L

This gives a �ltration on the sphere S = L/πL,

Sc = ker

(
L

πL
→ OcL

πOcL

)
=

L ∩ πOcL + πL

πL

Dualizing twice, we may complete this to

0 ⊂ · · · ⊂ Sc ⊂ Sc−1 ⊂ · · · ⊂ S0 ⊂ S0 ⊂ · · · ⊂ Sc−1 ⊂ Sc ⊂ · · · ⊂ S

Multiplication in V by η ∈ ker(TrE/F ) ∩ O×E induces isomorphisms

Grc(S) = Sc/Sc−1 '−→ Grc(S) = Sc−1/Sc

and a structure of E-vector space on S(0) = S0/S0.
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Linear case: (2) Invariants.

Recall:
H\G/K ' Nn

≤ via L ' Oc1 ⊕ · · · ⊕ Ocn .

Lemma

The multiplicity of c in inv(L) = (c1, · · · , cn) is equal to{
dimFGrcS = dimFGr

cS if c 6= 0

dimE S(0) if c = 0
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Linear case: (3) Edges

An edge of type k from L0 to L1 is

πL0 ⊂ L1 ⊂ L0 with dimF L0/L1 = k .

Notation:
L0

k−→ L1

2n−k−→ πL0

Set Gr(k , S) = k-dimensional F-spaces in S = L/πL. Thus{
L

k−→ ?
}
oo 1:1 // Gr(2n − k , S)

{
?

k−→ L
}
oo 1:1 // Gr(k , S)
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Linear case: (4) Simple stratas

Edges L0
k−→ L1 between lattices with H-invariants , c , · · · , c︸ ︷︷ ︸

m

 k−→

 , c , · · · , c︸ ︷︷ ︸
m−k

, c + 1, · · · , c + 1︸ ︷︷ ︸
k


correspond to the following stratas:

S = L1/πL1: singleton {Sc} in Gr(k , S).

S = L0/πL0: big strata of W 's in Gr(2n − k , S) such that

m − k =

{
dimEWc

dimFWc

Wc =

{
largest E-sub of W c = 0

W ∩ Sc−1 c > 0.

Let m1,0 (= 1) and m0,1 be the size of these strata.
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Linear case: (5) Coe�cients

Let xi ∈ H\G/K correspond to Li , so

x0 =

· · · , c , · · · , c︸ ︷︷ ︸
m

 k−→

· · · , c , · · · , c︸ ︷︷ ︸
m−k

, c + 1, · · · , c + 1︸ ︷︷ ︸
k

 = x1
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 k−→

· · · , c , · · · , c︸ ︷︷ ︸
m−k

, c + 1, · · · , c + 1︸ ︷︷ ︸
k

 = x1

Fact

Set t±k = K

(
π±Ik

I2n−k

)
K ∈ H. Then

m1,0 is the coe�cient of x0 in t+
k (x1)

m0,1 is the coe�cient of x1 in t−k (x0)
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x0 =
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m

 k−→

· · · , c , · · · , c︸ ︷︷ ︸
m−k

, c + 1, · · · , c + 1︸ ︷︷ ︸
k

 = x1

Remark (on m1,0 = 1)

The other integer m0,1 counts L1's in t−k (L0) in a speci�ed H-orbit. Since
L0 = OcL1, we have HL1 ⊂ HL0 . So they form a single HL0-orbit, and

m0,1 =
µ(HL0)

µ(HL1)
=
µ(x0)

µ(x1)
.
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Linear case: (5) Nice paths

Fix c1 ≤ · · · ≤ cn in Nn. We want a path

O0 ⊕ · · · ⊕ O0  Oc1 ⊕ · · · ⊕ Ocn .

Example (n = 5 and L = O1 ⊕O2 ⊕O2 ⊕O4 ⊕O5)
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Linear case: (5) Nice paths
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Linear case: (5) Nice paths

Fix c1 ≤ · · · ≤ cn in Nn. We want a path

O0 ⊕ · · · ⊕ O0  Oc1 ⊕ · · · ⊕ Ocn .

Example (n = 5 and L = O1 ⊕O2 ⊕O2 ⊕O4 ⊕O5)

x0
5−→ x1

4−→ x2
2−→ x3

2−→ x4
1−→ x5

So

µ(x5) =
µ(x5)

µ(x4)
· µ(x4)

µ(x3)
· µ(x3)

µ(x2)
· µ(x2)

µ(x1)
· µ(x1)

µ(x0)
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For H = U(W ) and G = SO(W or V )

There's more G -structure on spheres

For a self-dual norm, we have dualities

B(α ≤ qλ)∨ = B(α < q1−λ) and S(α, λ)∗ = S(α, 1− λ)

These dualities induce symmetric pairings on S(α, 0), S(α, 1/2).

The H-structure is �trackable� when G = SO(W ).

Here is a closed
formula for the volume of the stabilizer of all edges or vertices:

µ(e) = q−Λ(e) · π (e) · σ (e(0), e(2), e(20), e(02), e(m0))

× τ (∆0 + 2e(00),∆2 + 2e(20))

π (e(00), e(20)) · σ (e(00), e(20))

The H-structure is horrible when G = SO(V ).
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formula for the volume of the stabilizer of all edges or vertices:

µ(e) = q−Λ(e) · π (e) · σ (e(0), e(2), e(20), e(02), e(m0))

× τ (∆0 + 2e(00),∆2 + 2e(20))

π (e(00), e(20)) · σ (e(00), e(20))

The H-structure is horrible when G = SO(V ).
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This is the end...

Thank You!
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