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o F is a a totally real field

e E is a quadratic CM extension of F

e (V,¢) is a quadratic space of dimension 2n + 1 over F
o (W,4) is an E-hermitian F-hyperplane of (V,¢):
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HC—> H-%% T = SU(W)— U(fV) 9t u(1)
G SO(V)

o F is a a totally real field

e E is a quadratic CM extension of F

e (V,¢) is a quadratic space of dimension 2n + 1 over F
o (W,4) is an E-hermitian F-hyperplane of (V,¢):

U(w) c So(w) c So(v)
U(n) € SO(2n) C SO(2n+1)
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Embeddings of W's in V's

Lemma

Given (V, ) over F and a quadratic extension E of F,
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Lemma

Given (V, ) over F and a quadratic extension E of F,

© There is at most one isomorphism class of (W, 1) in (V, ).
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Embeddings of W's in V's

Lemma

Given (V, ) over F and a quadratic extension E of F,

© There is at most one isomorphism class of (W, 1) in (V, ).
@ There is one If and only if, for every place v of F,

V does not split at v =—> E does not split at v.
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Embeddings of W's in V's

Lemma

Given (V, ) over F and a quadratic extension E of F,
© There is at most one isomorphism class of (W, 1) in (V, ).
@ There is one If and only if, for every place v of F,

V does not split at v =—> E does not split at v.
Q Ifa (W,v) exists, then all embeddings

U(W,¢) — SO(V,p)

are conjugated under SO(V, ¢).
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Definition
Let E[oo] be the subfield of E2” fixed by the image of

Ver : Gal2® — Gal2
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Definition
Let E[oo] be the subfield of E2” fixed by the image of

Ver : Gal2® — Gal2

The reciprocity map of E induces an isomorphism

T(F)/T(F) = Gal(E[oc] /E)
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Definition
Let E[oo] be the subfield of E2” fixed by the image of

Ver : Gal2® — Gal2

We have a commutative diagram with exact rows and columns

1 u(E) T(F) P 1

| |

T(OF) Tl By splice — 1
J | |

1 —— Gal(E[oo]/E") —= Gal(E[oc]/E) —= Gal(E'/E) —=1
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Definition
Let E[oo] be the subfield of E2” fixed by the image of

Ver : Gal2® — Gal2

We have a commutative diagram with exact rows and columns

1 u(E) T(F) 7[ 1
1l —— 1_[v T(OV) T(/’E) EBvsplitZ —1

| | |

1 — Gal(E[oo]/E") —= Gal(E[oc]/E) —= Gal(E'/E) —=1
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When H(F ® R) is not compact, this Galois group

Gal(E[o0]/E)

acts on

H'(F)\G(F)/K

for any compact open subgroup K of G(I?)
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When H(F ® R) is not compact, this Galois group

Gal(E[x]/E) = T(F)/T(F)

acts on

for any compact open subgroup K of G(I?)
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When H(F ® R) is not compact, this Galois group

o~

Gal(E[x]/E) = T(F)/T(F)
= H(F)/H'(F)H(F)

acts on

for any compact open subgroup K of G(I?)
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Likewise,

ZIH(F)\G(F)/K]

has a right action of the Hecke algebra

My = Z[K\G(F)/K]
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Likewise,

~ — ~\ K
ZIH(F\G(F)/K] = S (HIF)\G(F))

has a right action of the Hecke algebra

My = Z[K\G(F)/K]
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Likewise,

ZIH(F\G(F)/K] = § (HF)\G(F))"
— Homgg, (ZIG(F)/K]. S (HF\G(F)))
has a right action of the Hecke algebra

My = Z[K\G(F)/K]
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Likewise,

ZIH(F\G(F)/K] = § (HF)\G(F))"
— Homgg, (ZIG(F)/K]. S (HF\G(F)))
has a right action of the Hecke algebra
Hi = ZIK\G(F)/K]
~ End gz, (ZIG(F)/K])
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We would like to understand J

Gal(E[<]/E) < Z[H(F)\G(F)/K] = Hk
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@ Let M be a motive over F which is
irreducible, pure of weight —1, and symplectic of dimension 2n,

MM — Q(1).
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@ Let M be a motive over F which is
irreducible, pure of weight —1, and symplectic of dimension 2n,

MM — Q(1).

e Twist it by
orthogonal Artin motives of dimension 2
associated with ring class characters x of E:

M ® N(x)

N(x) =Indg/px  x: Gal(E[>]/E) - Q"
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Conjecture (Beilinson-Deligne-Bloch-Kato-Fontaine-Perrin-Riou)

There is an L-function with functional equation
L(M ® N(x),s) = e(M ® N(x),s)L(M & N(x), —s).
Moreover,

ords—oL(M ® N(x),s) =dimH .(F, M ® N(x))
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Conjecture (Beilinson-Deligne-Bloch-Kato-Fontaine-Perrin-Riou)

There is an L-function with functional equation
L(M ® N(x),s) = e(M ® N(x),s)L(M & N(x), —s).
Moreover,

Ords:OL(M ® N(X),S) =dim Hrlnot(F7 M® N(X))
= dim H{ (F, (M ® N(x));)
= dim H (E(x), Mp)X

The parity of dim H} is controlled by the root number e(M @ N(x)).
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Motivation

The sign (M ® N(x)) essentially does not depend upon x. Set

e(Me) = (M @ N(x))
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The sign (M ® N(x)) essentially does not depend upon x. Set

e(Me) = (M @ N(x))

and assume that
e(Mg) = —1.
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Motivation

The sign (M ® N(x)) essentially does not depend upon x. Set
(M) = (M @ N(x))

and assume that
e(Mg) = —1.

Conjecture (Rohrlich type)

For most x's, we should have

ords—oL(M ® N(x),s) =1
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For most x's, we should have

dim H} (E(x), Mp)X = 1.
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Motivation

Corollary
For most x's, we should have

dim H} (E(x), Mp)X = 1.

We thus expect that
@ There is an Euler system

@ And it should be essentially unique
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Corollary

For most x's, we should have

dim H} (E(x), Mp)X = 1.

We thus expect that
@ There is an Euler system

@ And it should be essentially unique

Goal

Construct it! Along the way, all choices should be governed by our single
assumption on the root number, or cancel out.

Christophe Cornut Berkeley 1 April 12, 2023 11/ 47



Motives ~~ Automorphic Reps

Conjecture (Clozel?)

M corresponds to an algebraic automorphic representation ® of GLy,. ..
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Motives ~~ Automorphic Reps

Conjecture (Clozel?)

M corresponds to an algebraic automorphic representation ® of GLy,. ..

Conjecture (Arthur?)

. a generic parameter of symplectic type for a Langlands-Vogan packet

n®) ={(G,m)}/~

for automorphic cuspidal representations 7 of pure inner forms

G =S0(V) dimgV =2n+1, disc(V)=1.
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Automorphic Reps ~~ Shimura Varieties

We want: a Shimura Variety over F. .. I
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Automorphic Reps ~~ Shimura Varieties
We want: a Shimura Variety over F. .. \

@ Fix 09 : F — R inducing a place vp | oo of F.
@ Look only at groups G = SO(V) for which

U P
@ They give rise to Shimura varieties Sh(G, X’) where
G =RF/pG and X = {oriented negative R-planes in V,,}.
@ The reflex field is ogF and the dimension is 2n — 1.
Fact (Langlands Conjecture / Milne-Shih)
The pull-back of Sh(G, X') through F — o¢F does not depend on oy.
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Shimura Varieties ~~ Motives

... whose cohomology contains M ... I
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... whose cohomology contains M ... \

dim M»9 € {0,1} forall o : F — C, p,q € Z.

All 7’s in TI(G, ®) are cohomological with respect to a unique irreducible
algebraic representation V of G.
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Shimura Varieties ~~ Motives

... whose cohomology contains M ...

dim M»9 € {0,1} forall o : F — C, p,q € Z.

All 7’s in TI(G, ®) are cohomological with respect to a unique irreducible
algebraic representation V of G.

_
_

\

Conjecture (Kottwitz?)
Let V be the corresponding local system. Then for any 7 € M(G, ®),

H*(Sh(G, X), V(n))[r¢] = H*""(Sh(G, X), V(n))[r¢] = 00 .M
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Special Cycles

... with lots of cycles defined over E[o0] ... l

@ An E-Hermitian F-hyperplane W of V gives a sub datum (H,)) with
H=Rr/gH and Y = {negative C —linesin W,,}
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Special Cycles

... with lots of cycles defined over E[o0] ... l

@ An E-Hermitian F-hyperplane W of V gives a sub datum (H,)) with
H=Rr/gH and Y = {negative C —linesin W,,}

@ The reflex field is 6o E where 6¢|r = 0 and the dimension is n — 1.
o For g € G(Af) = G(F), let Zx(g) be the image of g x ) in

Shi (G, X)(C) = G(Q)\ (G(Af)/K x X).
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Special Cycles

... with lots of cycles defined over E[o0] ... l

@ An E-Hermitian F-hyperplane W of V gives a sub datum (H,)) with
H=Rr/gH and Y = {negative C —linesin W,,}

@ The reflex field is 6o E where 6¢|r = 0 and the dimension is n — 1.
o For g € G(Af) = G(F), let Zx(g) be the image of g x ) in

Shi (G, X)(C) = G(Q)\ (G(Af)/K x X).

@ This is an irreducible special cycle of codimension n defined over E[o0].
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Special Cycles

... with lots of cycles defined over E[o0] ... \

@ An E-Hermitian F-hyperplane W of V gives a sub datum (H,)) with
H=Rr/gH and Y = {negative C —linesin W,,}

@ The reflex field is 6o E where 6¢|r = 0 and the dimension is n — 1.
o For g € G(Af) = G(F), let Zx(g) be the image of g x ) in

Shi (G, X)(C) = G(Q)\ (G(Af)/K x X).

@ This is an irreducible special cycle of codimension n defined over E[o0].

The map g — Zx(g) gives a bijection

H(Q)\G(Af)/K ~ Zx = {Zk(g)}-
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Special Cycles

... with lots of cycles defined over E[o0] ... \

@ An E-Hermitian F-hyperplane W of V gives a sub datum (H,)) with
H=Rr/gH and Y = {negative C —linesin W,,}

@ The reflex field is 6o E where 6¢|r = 0 and the dimension is n — 1.
o For g € G(Af) = G(F), let Zx(g) be the image of g x ) in

Shi (G, X)(C) = G(Q)\ (G(Af)/K x X).

@ This is an irreducible special cycle of codimension n defined over E[o0].

The map g — Zx(g) gives an Hy|Gal(E[occ]/E)]-equivariant map

Z[H(Q)\G(Ar)/K] = Cyc"(Shk(G, X)).
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Special Classes

... and nice push-forward maps ... I

o Zk(g) is the image of the connected component [)] through

tg © Shpgayngkg—1 (H, V) = Shgee—1(G, X) £+ Shy (G, X)
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Special Classes

... and nice push-forward maps ... l

o Zk(g) is the image of the connected component [V] through
tg © Shpgayngkg—1 (H, V) = Shgee—1(G, X) £+ Shy (G, X)

o The pull-back 13V is associated with the restriction of V to H.

Fact (Kramer)

dimHomy(1,V) = 1.

We obtain a class

zk(g) € H* (Shk (G, X),V(n)).
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Special Classes

... and nice push-forward maps ... l

o Zk(g) is the image of the connected component [V] through
tg © Shpgayngkg—1 (H, V) = Shgee—1(G, X) £+ Shy (G, X)

o The pull-back 13V is associated with the restriction of V to H.

Fact (Kramer)

dimHomy(1,V) = 1.

We obtain a class

2¢(g) € HZ) () (Shk (G, X), V(n)).
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Abel-Jacobi

... giving motivic extensions . .. I

There is an exact sequence
1

lzk(g)

1 —= H?"=1(Sh(G), V(n)) = H?"~1(2¢<,V(n)) = HZ" (Sh(G), V(n)) = H?" (Sh(G), V(n))

|

K
e @ M

with Z = Zx(g).
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Abel-Jacobi

... giving motivic extensions . .. l

There is an exact sequence

S(2k)

lzx

1 — H?"~1(Sh(G),V(n)) = H3p ' (Sh(G), V(n)) = H3" (Sh(G), V(n)) == H2" (Sh(G), V(n))

|

K
e @ M

with Zx = H(Q)\G(Af)/K.
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Abel-Jacobi

... giving motivic extensions . .. l

There is an exact sequence

S(2k)

lzx

1 — H?"~1(Sh(G),V(n)) = H3p ' (Sh(G), V(n)) = H3" (Sh(G), V(n)) == H2" (Sh(G), V(n))

|

ﬂ';( QM
with Zx = H(Q)\G(Af)/K. By pull-back and push-out, we obtain
1=7K@M-—=x—>S8(Zk)o =1

S(2k)o = ker (S(2k) — H?"(Shx(G), V(n)))
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An Euler System

... and an Euler System! I

@ In p-adic cohomology, we obtain an extension

zi p(mr) € EXt%—LK[GalE] (S(ZK)OW;( ® Mp)
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An Euler System

... and an Euler System! l

@ In p-adic cohomology, we obtain an extension

zi p(f) € EXt%—LK[GalE] (S(ZK)OW;( ® Mp)
@ This may be evaluated at

o A fixed linear form v # 0 on 7K
o A variable element ¢ € S(Zk)o
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An Euler System

... and an Euler System! l

@ In p-adic cohomology, we obtain an extension

zi p(mr) € EXt%—LK[GalE] (S(ZK)OW;( ® Mp)

@ This may be evaluated at
o A fixed linear form v # 0 on 7K
o A variable element ¢ € S(Zk)o

@ ... to give classes
2(¢) € H'(E[9], My).

@ The distribution relations between these classes are encoded in the

Hy[Galg] — structure of S(Zx) = Z[H(F)\G(F)/K].
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Choice of (G, 7f)?
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Choice of (G, 7f)?

Conjecture (Arthur)

There are compatible bijections

N(®) ~ <H SV/S) ne,) ~ 8Y

where S, is a finite abelian group killed by 2 and S = {£1}.
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XS = {1} with X(=1) = (@, x) = (M @ N(x))

Christophe Cornut Berkeley 1 April 12, 2023 19 /47



Choice of (G, 7f)?

Conjecture (Arthur)

There are compatible bijections

N(¢) ~ (H sv/s) ne,) ~ 8Y

where S, is a finite abelian group killed by 2 and S = {£1}.
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XS = {1} with X(=1) = (@, x) = (M @ N(x))
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N(¢) ~ (H sv/s) ne,) ~ 8Y

where S, is a finite abelian group killed by 2 and S = {£1}.

In their study of SO(2n+ 1) x U(1), Gross-Prasad produce a character

XIS = {1} with X(=1) = (@, x) = (M @ N(x))
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Choice of (G, 7f)?

Conjecture (Arthur)

There are compatible bijections

N(¢) ~ (H sv/s) ne,) ~ 8Y

where S, is a finite abelian group killed by 2 and S = {£1}.

In their study of SO(2n+ 1) x U(1), Gross-Prasad produce a character

XIS = {1} with X(=1) = ¢(®,x) = e(M @ N(x)) = ~1
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Choice of (G, 7f)?

Conjecture (Arthur)

There are compatible bijections

N(®) ~ (H SV/S> ne,) ~ 8Y

where S, is a finite abelian group killed by 2 and S = {£1}.

In their study of SO(2n+ 1) x U(1), Gross-Prasad produce a character

XIS = {1} with X(=1) = (@, x) = (M @ N(x))

E

cX = ¢t is essentially independant of x.
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Choice of (G, 7f)?

o Modify the Gross-Prasad c£ at 0o to ¢; = cF¢j o with ¢i o in

{(CV)VOO :sign(cy) = {(2” -1,2) v=uv| oo} ‘

(2n4+1,0) v #v|oo
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Choice of (G, 7f)?

o Modify the Gross-Prasad cf at oo to ¢; = c,‘fc,;OO with ¢j o in

{(CV)VOO :sign(cy) = {(2” -1,2) v=uv| oo} ‘

(2n+1,0) w#v]|oo

@ There are exactly n such elements: {c1,- -, ¢}
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Choice of (G, 7f)?

o Modify the Gross-Prasad cf at oo to ¢; = c,‘fc,;OO with ¢j o in

{(CV)VOO :sign(cy) = {(2” -1,2) v=uv| oo} ‘

(2n+1,0) w#v]|oo

@ There are exactly n such elements: {c1,- -, ¢}

AAARGH! It only works in 75% of the cases

If nis odd OR [F : Q] is even, then ¢j(—1) = 1.
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Choice of (G, 7f)?

o Modify the Gross-Prasad cf at oo to ¢; = c,‘fc,;OO with ¢j o in

{(CV)VOO :sign(cy) = {(2” -1,2) v=uv| oo} ‘

(2n+1,0) w#v]|oo

@ There are exactly n such elements: {c1,- -, ¢}

AAARGH! It only works in 75% of the cases

If nis odd OR [F : Q] is even, then ¢j(—1) = 1.

We then have a canonical construction of

G=S0(V) and == ﬂf ® T 0o-
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Choice of (G, 7f)?

o Modify the Gross-Prasad cf at oo to ¢; = c,‘fc,;OO with ¢j o in

{(CV)VOO :sign(cy) = {(2” -1,2) v=uv| oo} ‘

(2n+1,0) w#v]|oo

@ There are exactly n such elements: {c1,- -, ¢}

AAARGH! It only works in 75% of the cases

If nis odd OR [F : Q] is even, then ¢j(—1) = 1.

We then have a canonical construction of

G=S0(V) and == 7rf ® T 0o-

This specific V' indeed contains an E-hermitian F-hyperplane W . \

Christophe Cornut Berkeley 1 April 12, 2023 20 / 47




e We look at
Zi = H(F)\G(F)/K
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o We look at
Zk = H(F)\G(F)/K = H(F)H'(F)\G(F)/K.
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e We look at

Zk = H(F)\G(F)/K = H(F)H'(F)\G(F)/K.

@ Sum over T(F)-orbits gives a morphism

ZIH (F)\G(F)/K] — ZIH(F)H' (F)\G(F)/K]
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e We look at

Zk = H(F)\G(F)/K = H(F)H'(F)\G(F)/K.

@ Sum over T(F)-orbits gives a morphism

ZIH'(F)\G(F)/K] — Z[H(F)H (F)\G(F)/K]
@ It is equivariant for Hk and

T(F) — Gal(E[oo]/E).

Christophe Cornut Berkeley 1 April 12, 2023 21 /47



o We look at

Zk = H(F)\G(F)/K = H(F)H'(F)\G(F)/K.

@ Sum over T(F)-orbits gives a morphism
ZIH (F)\G(F)/K] — Z[H(F)H (F)\G(F)/K]
e It is equivariant for Hy and
T(F) — Gal(E[oc]/E).
o If K =]]K,, there are compatible isomorphisms
T(F) =[] T(F.)
K\G(F)/K = H K\G(F
HY(F)\G(F)/K = H HY(FO\G(F,)/

April 12, 2023



e We look at

Zk = H(F)\G(F)/K = H(F)H'(F)\G(F)/K.

@ Sum over T(F)-orbits gives a morphism
ZIH'(F)\G(F)/K] — Z[H(F)H (F)\G(F)/K]
e It is equivariant for Hy and
T(F) — Gal(E[oc]/E).
o If K =]]K,, there are compatible isomorphisms
=TI7¢)
ZIK\G(F)/K] = &'Z[K\G(F.)/K/]
ZIH'(F)\G(F)/K] = @Z[H' (F,)\G(F.)/K.]
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Local Setup

@ Switch to local notations for F, E and

HI-HET = HYR)SH(F) S T(R)
G <K G(F,) <K,
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Local Setup

@ Switch to local notations for F, E and

HI-HET = HYR)SH(F) S T(R)
G <K G(F,) <K,

@ We want to investigate the structure of

T < ZIHW\G/K] = H
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What we want?

Suppose we are given:

T1 C Tp: compact open subgroups of T,

o: an element of H\ G /K fixed by Ty,
t: a Hecke operator
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What we want?

Suppose we are given:

T1 C Tp: compact open subgroups of T,

o: an element of H\ G /K fixed by Ty,
t: a Hecke operator

Is there an s € Z[H'\ G /K] fixed by T such that

t-o0= ’:[‘I'TO/T1 (S)?
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What we want?

Suppose we are given:

T1 C Tp: compact open subgroups of T,

o: an element of H\ G /K fixed by Ty,
t: a Hecke operator

t-o= TrTo/T1(s)?
There is such an s if and only if

Vx € H\G/K : [Tox : Tix] | nx

where T; . is the stabilizer of x in T; and

t-o:anx.

Berkeley 1 April 12, 2023 23 /47
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What we want?

Suppose we are given:

T1 C Tp: compact open subgroups of T,

o: an element of H\ G /K fixed by Ty,
t: a Hecke operator

t-o="Tr,7,(s)? ~ Vx [Tox: Tix] | nk?

We need to compute

© The support of t- 0
@ And for each x in this support,

@ the stabilizer T, of x in T
@ the coefficient n, of x in t- o
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Description of H\G/K

We first describe the T-orbit space in H'\G/K, i.e.

T\ (H'\G/K) = H\G/K.
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Description of H\G/K

We first describe the T-orbit space in H'\G/K, i.e.

T\ (H'\G/K) = H\G/K.

A toy case: linear groups

o V: finite free E-module of rank n and

H = GLg(V) inside G = GLg(V)

@ K: hyperspecial in G, so

G/K = {OF — lattices in V}.
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All Op-orders in E are Gorenstein

Definition (A chain of Og-orders)

OFC'-‘COC.HCOCC-”COlCOOZOE
Oy = OF—i-’Pﬁ—OE ceN
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All Op-orders in E are Gorenstein

Definition (A chain of Og-orders)

OFC'-‘COC.HCOCC-”COlCOOZOE
Oy = OF—I—’PEOE ceN

Fact

Each O is a local Gorenstein ring with maximal ideal

Pe C O ifc= 0,
Pc = .
PeOc1  ifc>0

unless E=F x F and ¢ = 0, where Oy = Og = Of x OkF.
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A result of Hyman Bass

Theorem (Hyman Bass)

For every Og-lattice L in V/, there is an E-basis of V' such that

L=0qe1®---&0O,e, with cg<---<c¢c, ¢eN
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Theorem (Hyman Bass)

For every Og-lattice L in V/, there is an E-basis of V' such that

L=0qe1®---&0O,e, with cg<---<c¢c, ¢eN

@ c, is the smallest integer ¢ such that O L = L
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A result of Hyman Bass

Theorem (Hyman Bass)

For every Og-lattice L in V/, there is an E-basis of V' such that

L=0qe1®---&0O,e, with cg<---<c¢c, ¢eN

@ c, is the smallest integer ¢ such that O L = L

® Cpy1_;is the smallest integer ¢ such that O AL = AL
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A result of Hyman Bass

Theorem (Hyman Bass)

For every Og-lattice L in V/, there is an E-basis of V' such that

L=0qe1®---&0O,e, with cg<---<c¢c, ¢eN

@ c, is the smallest integer ¢ such that O L = L

@ Cpi1-i is the smallest integer ¢ such that (’)C/\’;:-L = /\’;:-L
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A result of Hyman Bass

Theorem (Hyman Bass)

For every Og-lattice L in V/, there is an E-basis of V' such that

L=0qe1®---&0O,e, with cg<---<c¢c, ¢eN

The assignment L — (c1,- -+, ¢p) induces a bijection

H\G/K — N2
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A result of Hyman Bass

Theorem (Hyman Bass)
For every Og-lattice L in V/, there is an E-basis of V' such that

L=0qe1®---&0O,e, with cg<---<c¢c, ¢eN

Corollary

The assignment L — (c1,- -+, cy) induces a bijection

H\G/K — N2

Lemma
If HL = Gy N H is the stabilizer of L in H, then

detH, = OF.

v
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A result of Hyman Bass

Theorem (Hyman Bass)
For every O-lattice L in V, there is an E-basis of V such that

L=0qe1®--®Ocen with c<---<¢, c¢eN

Corollary

The assignment L — (c1,- -+, ¢n) induces a bijection

H\G/K — N2

Lemma
If HL = G N H is the stabilizer of L in H = GLg(V/), then

deteH; = O?l .

v
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Generalisation (G = GL(V))

For every F-norm o on V/, there is an E-basis of V' such that

a=|-lha® --@l-l,en with |-|;:E—Ry
ie. forevery A\1,--- , A\, in E,
a(Arer + -+ Anen) = max{[[Arlly ;- [ Anll5}
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Generalisation (G = GL(V))

For every F-norm o on V/, there is an E-basis of V' such that

a=|-lha® --@l-l,en with |-|;:E—Ry
ie. forevery A\1,--- , A\, in E,
a(Arer + -+ Anen) = max{[[Arlly ;- [ Anll5}

e B(G) = {F-norms on V} = extended Bruhat-Tits building of G.
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Generalisation (G = GL(V))

For every F-norm o on V/, there is an E-basis of V' such that

a=|-lha® --@l-l,en with |-|;:E—Ry
ie. forevery A\1,--- , A\, in E,
a(Arer + -+ Anen) = max{[[Arlly ;- [ Anll5}

e B(G) = {F-norms on V} = extended Bruhat-Tits building of G.
e G acts on B(G) by (g - a)(x) = a(g™1x).
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Generalisation (G = GL(V))

For every F-norm o on V/, there is an E-basis of V' such that
a=|[-la® --@l-l,e with [-[;:E—Ry
ie. forevery A\1,--- , A\, in E,
a(Arer + -+ Anen) = max{[[Arlly ;- [ Anll5}

e B(G) = {F-norms on V} = extended Bruhat-Tits building of G.
e G acts on B(G) by (g - a)(x) = a(g™1x).

e L +— «a; =gauge norm of L is a G-equivariant embedding

G/K < B(G)
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Generalisation (G = GL(V))

For every F-norm o on V/, there is an E-basis of V' such that
a=|[-la® --@l-l,e with [-[;:E—Ry
ie. forevery A\1,--- , A\, in E,
a(Arer + -+ Anen) = max{[[Arlly ;- [ Anll5}

e B(G) = {F-norms on V} = extended Bruhat-Tits building of G.
e G acts on B(G) by (g - a)(x) = a(g™1x).

e L +— «a; =gauge norm of L is a G-equivariant embedding

G/K < B(G)
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Generalisation (G = GL(V))

For every F-norm o on V/, there is an E-basis of V' such that
a=|[-la® --@l-l,e with [-[;:E—Ry
i.e. forevery A\y,--- , A\, in E,
a(Arer + -+ Anen) = max{[[Arlly ;- [ Anll5}

Corollary

This gives a bijection
inv : H\B(G) ~ £

where L") is the set of “effective divisors” of degree n on

L = E*\{F-norms on E}.

v
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What is L7?

From now on, we will assume that E/F is unramified.
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From now on, we will assume that E/F is unramified.

There is a bijection

L ~ circle x half — line = ST x R.
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From now on, we will assume that E/F is unramified.

There is a bijection

L ~ circle x half — line = S x R,

It takes (2™, c) to the norm ¢ |||, : E — R4 with

n=/|c]

Il = gherk {97z Em (O =P0)
¢ g Il if z e nk (P, — 70O,)

where
@ g is the order of the residue field F of F
o 1Or =Pr
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From now on, we will assume that E/F is unramified.

There is a bijection

L ~ circle x half — line = S x R,

Lemma
If H, = H N G, is the stabilizer of o in H then

n

det(Ha) = OF ey i 1nv(@) = D (%isci).

i=1
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H\B(G) for G=SO(W)

We now take
H=UW) and G =S50(W)
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H\B(G) for G=SO(W)

We now take
H=UW) and G =S50(W)

Then B(G) is the set of self-dual norms « on W:

a(x) =a*(x) with a*(x)=sup {% ty e WA {0}} .
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H\B(G) for G=SO(W)

We now take
H=UW) and G =S50(W)

Theorem

For every a € B(G), there is a Witt E-decomposition
W=W,a W W_

which is adapted to «. This means

a(wy + wp + wo) = max(a(wy), a(wp), a(w_)}.

Moreover, a(wo) = |o(wo, wo)|*'? and

a(w:) =sup { = w0},

a(wy.)

Christophe Cornut Berkeley 1
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H\B(G) for G=SO(W)

We now take
H=UW) and G =S50(W)

Corollary

This gives a bijection
inv: F\B(G) =~ L™ inv(a) = class of inv(a|W,)
where m = dimg W™ is the Witt index of W and

L = segment X half — line = [-1,1] x Ry.
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H\B(G) for G=SO(W)

We now take
H=UW) and G =S50(W)

Corollary

This gives a bijection

inv: H\B(G) = Z'™  inv(a) = class of inv(a|W,)

Lemma
If Hy, = HN G, is the stabilizer of o in H then

n

det(H,) = {TO i#n>2m where inv(a) = Z(*,-, Gi).

Trmin(g;)] inn=2m i1
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H\B(G) for G=SO(V)

@ We now return to the original setup where

H=UW) and G=SO(V).
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H\B(G) for G=SO(V)

@ We now return to the original setup where
H=U(W) and G =S0(V).
@ We embed V as an F-hyperplane in a larger E-hermitian space

Wcvcw
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H\B(G) for G=SO(V)

@ We now return to the original setup where
H=U(W) and G =S0(V).
@ We embed V as an F-hyperplane in a larger E-hermitian space
Wcvcw

@ This gives rise to a diagram

H=U(W) H

| |

G = SO(W)—= G = SO(V) = G = SO(W)

Il
=
s
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H\B(G) for G=SO(V)

@ We now return to the original setup where
H=U(W) and G =S0(V).
@ We embed V as an F-hyperplane in a larger E-hermitian space
Wcvcw

@ This gives rise to a diagram

H=U(W) H= U(W)

| |

G = SO(W)—= G = SO(V) = G = SO(W)

@ The bottom line gives equivariant embeddings

B(G) < B(G) — B(G).
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H\B(G) for G=SO(V)

Consider the equivariant map

B(G) = B(G) x B(G) aw (a,a)

where o and @ are the projection and extension of «.

Christophe Cornut Berkeley 1 April 12, 2023 31 /47



H\B(G) for G=SO(V)

Consider the equivariant map

B(G) — B(G) x B(G) a— (a,@)

where o and @ are the projection and extension of «.

It induces an embedding

H\B(G) — H\B(G) x H\B(G)
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H\B(G) for G=SO(V)

Consider the equivariant map

B(G) = B(G) x B(G) aw (a,a)

where o and @ are the projection and extension of «.

It induces an embedding

H\B(G) — H\B(G) x H\B(G)

Corollary

We obtain an injective invariant

inv: H\B(G) — ' inv(a) = inv(a) + inv(@)

where m = Wittg (W) + Wittg (W)

<
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H\B(G) for G=SO(V)

Consider the equivariant map

B(G) = B(G) x B(G) aw (a,a)

where o and @ are the projection and extension of «.

It induces an embedding

H\B(G) — H\B(G) x H\B(G)

Corollary

We obtain an injective invariant

inv: H\B(G) — ' inv(a) = inv(a) + inv(@)

where m = Wittg (W) + Wittg (W) = Wittg (V).

<
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Working with inv (G split)

So H\B(G) is a subset of the set of

«effective divisors» of degree n on [0,1]xR,.
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Working with inv (G split)

Here is one such divisor, for x € B(G).
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Working with inv (G split)

The stabilizer T, of [x] € HY\B(G) in T is given by:
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Working with inv (G split)

The stabilizer T, of [x] € H}\B(G) in T is given by:

Stab T(X) = T[c'|
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Working with inv (G split)

The stabilizer T, of [x] € H}\B(G) in T is given by:

Stabr(x) = Tje1 where T, ={z/z:2€ O}}.
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Working with inv (G split)

For this divisor to be in the image of inv ...

(n=24+14+4+24+14+3+1+2=16)

‘e
le
le
4e 3
e 2e
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Working with inv (G split)

. consider it modulo 2. ..

le
le
40 3
20 20
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Working with inv (G split)

consider it modulo 2. ..
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Working with inv (G split)

. then the remaining points have to be on a broken line:
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Working with inv (G split)

For n = 1: the point should just be on this broken line!
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Working with inv (G split)

Here is the “support” of the G-hyperspecial H-orbits.
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Working with inv (G split)

Here is the “support” of the G-hyperspecial H-orbits. We obtain:

H\G/K = H\B°(G) ~ N~
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Working with inv (G split)

Here are the “support” of the H-orbits of all G-vertices. ..

) )
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Working with inv (G split)

. and the “support” of H-orbits of mid-points of G-edges.
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Working with inv (G split)

The source and target invariants are computed as follows.
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Working with inv (G split)

And the base point corresponds to an H-orbit of hyperspecials in B(H):

B°(H) = B(H) N B°(G)
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Working with inv (G split)

The orbits of the adjacent edges. ..
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Working with inv (G split)

The orbits of the adjacent edges satisfy

m+p+qg+r=n p=(g—1)r=0mod?2.
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Working with inv (G split)

So the orbits of the adjacent vertices also satisfy

m+p+qg+r=np=(g—1)r=0mod?2.
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Vertices and oriented edges (split SO(5))

@ An apartment
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Vertices and oriented edges (split SO(5))

@ Hyper/
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Vertices and oriented edges (split SO(5))

@ An alcove
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Vertices and oriented edges (split SO(5))

@ A new point
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Vertices and oriented edges (split SO(5))

@ An half-alcove
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Vertices and oriented edges (split SO(5))

@ ... oriented!
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Vertices and oriented edges (split SO(5))

Christophe Cornut Berkeley 1 April 12, 2023 33 /47



Vertices and oriented edges (split SO(5))

e Neighbours of
hyperspecial

Christophe Cornut Berkeley 1 April 12, 2023 33 /47



Vertices and oriented edges (split SO(5))

@ 71 operator
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Vertices and oriented edges (split SO(5))

@ 7, operator
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The support of
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The support of

= ° Ti(o)
o o ¢ =0: 2 orbits
i ° e ¢ =1: 1 orbit
L Y ||
—e
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The support of
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e ¢ =0: 2 orbits
o ¢ =1: 2 orbits
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Where we are

@ We have described
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t(o) = Z Ny X.
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Where we are

@ We have described

71 the space of T orbits in H'\G/K
1 the stabilizers T, of x € H'\G/K
i the support of Hecke operators on Z[H'\ G /K]

o We still need to compute the coefficients of

t(o) = Z Ny X.

There are TWO Hecke actions on

Z[H"\G /K]

...and | mixed them up! Special thanks to Waqar Ali Shah!
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The TWO Hecke actions on Z[H\ G /K]

e Two point of views on Z[H*\ G /K]:
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The TWO Hecke actions on Z[H\ G /K]

e Two point of views on Z[H*\ G /K]:
Good: K-invariant functions on the right G-space H'\ G
BAD: H!-coinvariants in the left G-module Z[G /K]

e Bad action is easier to compute, since H = Endg(Z[G/K])

@ Any Q-measure u! on H! gives an isomorphism over Q:

Q[H\ G /K] + bad action 4 Q[H*\ G /K] + good action

b's p(x) - x

where
pr(x) = pt(HNgKg™t) if x=HgK.
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The TWO Hecke actions on Z[H\ G /K]

e Two point of views on Z[H*\ G /K]:
Good: K-invariant functions on the right G-space H'\ G
BAD: H!-coinvariants in the left G-module Z[G /K]

e Bad action is easier to compute, since H = Endg(Z[G/K])

@ Any Q-measure u! on H! gives an isomorphism over Q:

Q[H\ G /K] + bad action 4 Q[H*\ G /K] + good action

b's p(x) - x

where
pr(x) = pt(HNgKg™t) if x=HgK.

@ The two actions have the same support.
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| can still work with the bad action

We want:

teood(0) = anx, Vx: [Tox: Tix] | nx.
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| can still work with the bad action

We want:
thad(0) = Z myX, Vx: [Tox: Tix] | ut(x) - my.

© With the normalization u!(0) = 1,
6)(tbad(o)) = tgood(o)'
Q If c = ¢(x), then T, = T, so

1 ifc>1,

Tox: T =[ToNT.:T1NT.] =
[Tox: Tix]=[ToNTe: TiN T {q—i—l oo,
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| can still work with the bad action

We want:
thad(0) = Z myX, Vx with ¢(x) =0: g+ 1| p*(x)- my.

© With the normalization u!(0) = 1,
6)(tbad(o)) = tgood(o)'
Q If c = ¢(x), then T, = T, so

1 ifc>1,

Tox: T =[ToNT.:T1NT.] =
[Tox: Tix]=[ToNTe: TiN T {q—i—l oo,
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| can still work with the bad action

We want:
thad(0) = Z My X, Vx with ¢(x) =0: q+1]|p*(x)- my.

© With the normalization u!(0) = 1,
6)(tbad(o)) = tgood(o)'
Q If c = ¢(x), then T, = T, so

[Tox: Tial = [ToNTe: AN T =4 ezl

0,x - "1,x] — 0 c- Il cl — q+1 ife—0.

© The projection H'\G/K — H\G/K gives an equivariant map
ZIH'\G/K] — Z[H\G /K]

for the bad actions, which multiplies my by [To : Tx].
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| can still work with the bad action

We want: in Z[H\G /K],
thad(0) = Z myX, Vx with c(x) =0: g+ 1] u(x)- mx.
where 11 on H is normalized by p(o) =1 and
w(x)=pu(HNgKg™") for x = HgK.
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What | want:

o | thus want (in Z[H\G/K]),

thad(0) = Z mex  Vxwith ¢(x) =0: (g+1)]| p(x)my.
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What | want:

o | thus want (in Z[H\G/K]),

thad(0) = Z mex  Vxwith ¢(x) =0: (g+1)]| p(x)my.
@ | had shown

thad(0) = Z My x Vx with ¢(x)=0: (g+1)| My.
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What | want:

o | thus want (in Z[H\G/K]),

thad(0) = Y mex  Vxwith c(x) =0: (q+1) | p(x)m,.
o | had shown

thaa(0) = D _mex  Vxwithc(x)=0: (q+1)| my.

@ | compute my, and now also p(x):
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o | thus want (in Z[H\G/K]),

thad(0) = Y mex  Vxwith c(x) =0: (q+1) | p(x)m,.
o | had shown

thaa(0) = D _mex  Vxwithc(x)=0: (q+1)| my.

@ | compute my, and now also p(x):
o using the graph structure on vertices of B(G),
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What | want:

o | thus want (in Z[H\G/K]),

thad(0) = Y mex  Vxwith c(x) =0: (q+1) | p(x)m,.
@ | had shown

thaa(0) = D _mex  Vxwithc(x)=0: (q+1)| my.
@ | compute my, and now also p(x):

o using the graph structure on vertices of B(G),
o viewing B(G) as a space of norms for computations.
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The method

A norm a € B(G) has balls (Of-modules) and spheres (F-vector spaces)

a A
B(a < q) and S(a,\) = %

equipped with simple structures coming from G (=G-structures).
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© The H-structure on G gives H-structures on all spheres S.

@ The H-invariant of « can be read from the H-structure on S.
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The method

A norm a € B(G) has balls (Of-modules) and spheres (F-vector spaces)

a A
B(a < q) and S(a,\) = %

equipped with simple structures coming from G (=G-structures).

© The H-structure on G gives H-structures on all spheres S.

@ The H-invariant of « can be read from the H-structure on S.
© Nearby G-edges correspond to points in G-Grassmanians on S.
© The H-structure on S stratifies these G-Grassmanians.

© Counting points on these strata gives access to the m,’'s.

@ Choosing a good path between x and o gives access to the p(x)’s.
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Linear case: (1) H-induced structures on spheres.

o Let L be an Of-lattice in an E-vector space V. Then

LCc---CcOLCOqLC---COLCOgL
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Linear case: (1) H-induced structures on spheres.

o Let L be an Of-lattice in an E-vector space V. Then
LCc---CcOLCOqLC---COLCOgL
@ This gives a filtration on the sphere S = L/7L,

SC:ker<L OCL>_Lﬂ7T(’)CL+7TL

— =
L 7OL L

Christophe Cornut Berkeley 1 April 12, 2023 40 / 47



Linear case: (1) H-induced structures on spheres.

o Let L be an Of-lattice in an E-vector space V. Then
LCc---CcOLCOqLC---COLCOgL
@ This gives a filtration on the sphere S = L/7L,

SC:ker(L—> O.L ) _ LN7O L+ 7L

L 7OL L

@ Dualizing twice, we may complete this to

0c---CcSCS1C--CScS®c...cstcsc-..csS
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Linear case: (1) H-induced structures on spheres.

o Let L be an Of-lattice in an E-vector space V. Then
LCc---CcOLCOqLC---COLCOgL
@ This gives a filtration on the sphere S = L/7L,

SC:ker<L OCL>_Lﬂ7TOCL+7TL

— =
L 7OL L

@ Dualizing twice, we may complete this to
0C--CSCS1C--CScSc--.cstcsc--.cS
o Multiplication in V' by 1 € ker(Trg/r) N Of induces isomorphisms
Gré(S) = S/ = Gre(S) = Sc-1/Sc

and a structure of E-vector space on S(0) = S%/S,.
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Linear case: (2) Invariants.

Recall:
H\G/K ~NZ via L>~0qf @ @0,
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Linear case: (2) Invariants.

Recall:
H\G/K ~NZ via L>~0qf @ @0,

The multiplicity of ¢ ininv(L) = (c1,--- ,cn) is equal to

dimp GreS = dimp Gr¢S  ifc #0
dimg S(0) ifc=0
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Linear case: (3) Edges

@ An edge of type k from Lo to Ly is

wlo C Ly C Ly with dimFLo/lek.
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Linear case: (3) Edges

@ An edge of type k from Lo to Ly is
wlo C Ly C Ly with dimFLo/lek.

@ Notation:
LO — L1

Christophe Cornut Berkeley 1 April 12, 2023 42 / 47
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@ An edge of type k from Lo to Ly is
wlo C Ly C Ly with dimFLo/lek.

@ Notation: . .
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Linear case: (3) Edges

@ An edge of type k from Lo to Ly is
wlo C Ly C Ly with dimFLo/lek.

@ Notation: . .
Lo — L n_—> 7TLO

@ Set Gr(k,S) = k-dimensional F-spaces in S = L/7L. Thus

{L LN *} <YL Gr(2n— &, S)

{* LN L} <1 Gr(k,S)
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Linear case: (4) Simple stratas

k . . . .
Edges Lo — Ly between lattices with H-invariants

,Cyoo-,c,c+1,---c+1
~—— ~~

m m—k k

correspond to the following stratas:
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Edges Lo — Ly between lattices with H-invariants

,Cyoo-,c,c+1,---c+1
~—— ~~

m m—k k

correspond to the following stratas:

S = Ly/mLy: singleton {Sc} in Gr(k,S).
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Linear case: (4) Simple stratas

k . . . .
Edges Lo — Ly between lattices with H-invariants

,Cyoo-,c,c+1,---c+1
~—— ~~

m m—k k
correspond to the following stratas:
S = Ly/mLy: singleton {Sc} in Gr(k,S).
S = Lg/mLy: big strata of W's in Gr(2n — k, S) such that

dimg W, largest E-sub of W ¢ =0
m—k= i Wc -
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Linear case: (4) Simple stratas

k . . . .
Edges Lo — Ly between lattices with H-invariants

,Cyoo-,c,c+1,---c+1
~—— ~~

m m—k k

correspond to the following stratas:
S = Ly/mLy: singleton {Sc} in Gr(k,S).
S = Lg/mLy: big strata of W's in Gr(2n — k, S) such that

c =

dimg W, largest E-sub of W ¢ =0
m—k= W, =

Let mio (= 1) and mg; be the size of these strata.

Wﬁ55_1 C>0

J
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Linear case: (5) Coefficients

Let x; € H\G/K correspond to L;, so
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Linear case: (5) Coefficients

Let x; € H\G/K correspond to L;, so

Xg = ,Cytvr yC L} "',C,"',C,C+1,"',C+1 =X
—— —— ~
m m—k k
&
Settf:K(ﬂ k >Ke7—l.Then
I2nfk

my g is the coefficient of xg in ;" (x1)

mo,1 is the coefficient of x; in t, (xo)
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Linear case: (5) Coefficients

Let x; € H\G/K correspond to L;, so

Remark (on m; o = 1)

The other integer mo1 counts Lyi's in t, (Lo) in a specified H-orbit. Since
Lo = OcLy, we have H;, C Hy,. So they form a single H; -orbit, and

1(Hiy) — p(x0)

MOV (H) T (k)
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Linear case: (5) Nice paths

Fix ¢ <--- <c¢,in N". We want a path

OO@"'@OO JUNS Ocl@"‘@oc”-
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Fix ¢ <--- <c¢,in N". We want a path

O D DOy ~ Ocl@"‘@oc”-

Example (n=5and L=0; & O, ® Oy & Oy & Os)
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Example (n=5and L=0; & O, ® Oy & Oy & Os)
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Linear case: (5) Nice paths

Fix ¢ <--- <c¢,in N". We want a path

(’)0@...@(’)0 JUNS Ocl@"‘@oc”-

Example (n=5and L=0; & O, ® Oy & Oy & Os)

x1=01090,00:9 0,0 O,
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Linear case: (5) Nice paths

Fix ¢ <--- <c¢,in N". We want a path

(’)0@...@(’)0 JUNS Ocl@"‘@oc”-

Example (n=5and L=0; & O, ® Oy & Oy & Os)

X0=01 D00, O, ® Oy
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Linear case: (5) Nice paths

Fix ¢ <--- <c¢,in N". We want a path

(’)0@...@(’)0 JUNS Ocl@"‘@oc”-

Example (n=5and L=0; & O, ® Oy & Oy & Os)

3=0190, 80,803 O3
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Linear case: (5) Nice paths

Fix ¢ <--- <c¢,in N". We want a path

(’)0@...@(’)0 JUNS Ocl@"‘@oc”-

Example (n=5and L=0; & O, ® Oy & Oy & Os)

=01 D080, B 04 & Oy
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Linear case: (5) Nice paths

Fix ¢ <--- <c¢,in N". We want a path

(’)0@...@(’)0 JUNS Ocl@"‘@oc”-

Example (n=5and L=0; & O, ® Oy & Oy & Os)

5 =01 D0, & 08O Os
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Linear case: (5) Nice paths

Fix ¢ <--- <c¢,in N". We want a path

O D DOy ~ Ocl@"‘@oc”-

Example (n=5and L=0; & O, ® Oy & Oy & Os)

5 4 2 2 1
Xo —> X1 —> X2 —> X3 —>» X4 — X5

So
plxs) plxa) plxs) ple) pla)

p(xs) = 1(xa) ’ 11(x3) ’ w(x2) ‘ w(x1) ' 1(x0)
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For H=U(W) and G = SO(Wor V)

@ There's more G-structure on spheres
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Christophe Cornut Berkeley 1 April 12, 2023 46 / 47



For H=U(W) and G = SO(Wor V)

@ There's more G-structure on spheres
o For a self-dual norm, we have dualities

B(a < q")Y =B(a< ¢'™?) and S(a, )" =S(a, 1 =)

o These dualities induce symmetric pairings on S(«,0), S(a,1/2).
@ The H-structure is “trackable” when G = SO(W).

Christophe Cornut Berkeley 1 April 12, 2023 46 / 47



For H=U(W) and G = SO(Wor V)

@ There's more G-structure on spheres
o For a self-dual norm, we have dualities

B(a < q")Y =B(a< ¢'™?) and S(a, )" =S(a, 1 =)

o These dualities induce symmetric pairings on S(«,0), S(a,1/2).

@ The H-structure is “trackable” when G = SO(W). Here is a closed
formula for the volume of the stabilizer of all edges or vertices:

w(e) = g M .7 (e) - o (e(0), e(2), e(20), e(02), e(myg))
T (Ao + 26(00), N> + 26(20))
7 (e(00), €(20)) - o (e(00), €(20))
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For H=U(W) and G = SO(Wor V)

@ There's more G-structure on spheres
o For a self-dual norm, we have dualities

B(a < q")Y =B(a< ¢'™?) and S(a, )" =S(a, 1 =)

o These dualities induce symmetric pairings on S(«,0), S(a,1/2).

@ The H-structure is “trackable” when G = SO(W). Here is a closed
formula for the volume of the stabilizer of all edges or vertices:

w(e) = g M .7 (e) - o (e(0), e(2), e(20), e(02), e(myg))
T (Ao + 26(00), Ny + 26(20))
7 (e(00), €(20)) - o (e(00), €(20))

@ The H-structure is horrible when G = SO(V).
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This is the end...

Thank Youl
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