Jörg Weber

Lund University

Mathematical Problems in Fluid Dynamics — MSRI / SLMath — July 18, 2023

Joint work with Erik Wahlén

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할

 $2Q$

 L_{Basics} L_{Basics} L_{Basics}

[The differential equations](#page-1-0)

Sketch

- \blacktriangleright 2D
- ▶ free boundary problem
- Ω water domain
- \blacktriangleright *S* free surface
- \blacktriangleright water inviscid. incompressible
- ▶ constant density
- Ω (and all appearing functions) L-periodic in X
- lat bed $Y = 0$
- presence of gravity and (possibly) surface tension \rightsquigarrow constants $g > 0$, $\sigma > 0$

KORK EXKEY EL SOLO

- \blacktriangleright Euler equations in Ω
- \blacktriangleright kinematic boundary condition on *S* and $Y = 0$
- \blacktriangleright dynamic boundary equation on S

 L_{Basis}

 \Box [The differential equations](#page-1-0)

Equations

Time-dependent

 \blacktriangleright Euler equation in Ω(*t*):

 $\frac{D\mathbf{u}}{Dt} \coloneqq \mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla(p + gY)$

incompressibility in $\Omega(t)$:

 $\nabla \cdot \mathbf{u} = 0$

▶ kinematic boundary condition on $\partial \Omega(t) \stackrel{\text{loc.}}{=} \{F = 0\}$:

$$
\frac{DF}{Dt}=0
$$

dynamic boundary equation on $S(t)$:

$$
p=p_{\rm atm}-\sigma\kappa
$$

 $(\kappa$ mean curvature)

constant speed c of propagation in **e**1-direction −→−→−→ change to moving frame −→−→−→ $X - ct \rightsquigarrow X$ **^u** [−] **e**¹ ⇝ **^u**

Steady

 \blacktriangleright Euler equation in Ω :

$$
(\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla(p + gY)
$$

 \blacktriangleright incompressibility in Ω :

 $\nabla \cdot \mathbf{u} = 0$

kinematic boundary condition on S and $Y = 0$:

▶ dynamic boundary equation on ς .

 $p = p_{\text{atm}} - \sigma \kappa$

KORK EXKEY EL SOLO

 $\mathrel{\sqsubseteq}_{\mathit{Basics}}$ $\mathrel{\sqsubseteq}_{\mathit{Basics}}$ $\mathrel{\sqsubseteq}_{\mathit{Basics}}$

 $\mathrel{\mathop{\rule{0pt}{.15pt}}\mathrel{\mathop{\rule{0pt}{.15pt}}\mathrel{\rule{0pt}{.15pt}}}}$ [The differential equations](#page-1-0)

Vorticity, stream function

 \blacktriangleright vorticity ω

$$
\omega = \nabla \times \mathbf{u} = \partial_X \mathbf{u}_2 - \partial_Y \mathbf{u}_1
$$

 \blacktriangleright vorticity equation (2D!)

$$
(\mathbf{u} \cdot \nabla)\omega = 0 \tag{1}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

▶ stream function ψ

$$
\nabla \cdot \mathbf{u} = 0 \implies \exists \psi : \mathbf{u} = \nabla^{\perp} \psi = (\psi_Y, -\psi_X)
$$

$$
\implies (\mathbf{u} \cdot \nabla)\psi = 0
$$
 (2)

 \triangleright (in non-degenerate cases:) [\(1\)](#page-3-0) and [\(2\)](#page-3-1) imply a functional relation

 $\omega = \gamma(\psi)$

 \blacktriangleright this gives

$$
\Delta \psi = -\nabla \times \nabla^{\perp} \psi = -\nabla \times \mathbf{u} = -\omega = -\gamma(\psi)
$$

```
New results on global bifurcation oftraveling periodic water waves
Basics}}The differential equations
```
Boundary conditions

▶ kinematic boundary condition:

 $\nabla^{\perp}\psi \cdot \mathbf{n} = \mathbf{u} \cdot \mathbf{n} = 0 \implies \psi$ locally constant on boundary

 \triangleright ψ determined up to constant \rightsquigarrow consider

$$
\psi = 0 \text{ on } S, \quad \psi = -m \text{ on } Y = 0 \ (m \in \mathbb{R})
$$

▶ Bernoulli's law: hydraulic head

$$
E = \frac{|\mathbf{u}|^2}{2} + p + gY + \int_0^{\psi} \gamma(s) \, ds = \frac{|\nabla \psi|^2}{2} + p + gY + \int_0^{\psi} \gamma(s) \, ds
$$

constant in Ω:

$$
\nabla E = (\mathbf{u} \cdot \nabla)\mathbf{u} - \omega \mathbf{u}^{\perp} + \nabla(p + gY) + \gamma(\psi)\nabla\psi = 0
$$

▶ dynamic boundary condition:

$$
p = p_{\text{atm}} - \sigma \kappa \implies \frac{|\nabla \psi|^2}{2} - \sigma \kappa + g(Y - h) = Q,
$$

$$
Q := E - p_{\text{atm}} - gh - \int_0^{\psi} \gamma(s) \, ds \text{ constant on } S
$$

KORKARYKERKE PORCH

 $\mathrel{\sqsubseteq}_{\mathit{Basics}}$ $\mathrel{\sqsubseteq}_{\mathit{Basics}}$ $\mathrel{\sqsubseteq}_{\mathit{Basics}}$

 $\mathrel{\mathop{\rule{0pt}{.15pt}}\mathrel{\mathop{\rule{0pt}{.15pt}}\mathrel{\rule{0pt}{.15pt}}}}$ [The differential equations](#page-1-0)

Summary

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 | ⊙ Q Q*

```
New results on global bifurcation oftraveling periodic water waves
L_{Basis}History}}
```
History

Irrotational ($\gamma = 0$)

▶ Stokes mid 1800's: formal expansions, conjecture about wave of greatest height

- ▶ Levi-Civita, Struik, Nekrasov '20s, Jones & Toland '80s: small-amplitude waves
- ▶ Krasovskii '61, Keady & Norbury '78: large-amplitude waves
- AMICK, FRAENKEL & TOLAND '82, PLOTNIKOV '82: proof of Stokes' conjecture **Rotational** ($\nu \neq 0$)
	- ▶ Gerstner 1802, Crapper '57, Kinnersley '76: explicit solutions
	- DUBREIL-JACOTIN '34: small-amplitude, small γ
	- \triangleright Goyon '54, ZEIDLER '73: general γ
	- \triangleright CONSTANTIN & STRAUSS '04: large amplitude, general γ
	- ▶ '04–: Ambrose, Constantin, Ehrnström, Escher, Groves, Henry, Hur, Kozlov, Kuznetsov, Lokharu, Martin, Matioc, Matioc, Strauss, Varholm, Vărvărucă, Wahlén, Walsh, Weiss, Wheeler, Wright, . . .**KORKARYKERKE POLO**

```
New results on global bifurcation oftraveling periodic water waves
Basics}}Motivation}
```
Motivation

- semi-hodograph transform $q = X$, $p = -\psi$
- conformal change of variables
- naive: scaling the height on each vertical ray

Try to allow for all properties in full generality!

strategy: use conformal change of variables, rewrite equations as "identity plus compact"

1solitary case

```
New results on global bifurcation oftraveling periodic water waves
Basics}}Motivation}
```
Do overhanging waves exist (without surface tension)?

- no, if flow is irrotational (Spielvogel '70; AMICK '87)
- ▶ no, in case of constant vorticity for downstream flows (Constantin, Strauss & Vărvărucă '21)
- ▶ yes, numerical evidence in case of constant vorticity for upstream flows (e.g., Simmen & SAFFMAN '85; DYACHENKO & HUR '19)

Why "identity plus compact"?

Or, how to obtain a global bifurcation result?

- ▶ degree methods especially useful in connection with semi-hodograph transform; requires assumptions (properness, Fredholmness, spectral properties) at all points, not only at solutions
- ▶ analytic methods: requires assumptions only at solutions, therefore easier to check; but analyticity is a strong condition
- ▶ identity plus compact: requires work to reformulate the equations, but saves some work later; is it even possible to reformulate the equations in this way?

L
[Reformulation](#page-10-0)

 $L_{I\text{-}raminar}$ flow solutions

Laminar flow solutions

KOD KAD KED KED E LOQO

X

L

L
[Reformulation](#page-10-0)

[Conformal change of variables](#page-11-0)

Conformal change of variables (see Constantin & Vărvărucă '11)

- $H = U + iV$: $\Omega_h \rightarrow \Omega$ conformal
- \blacktriangleright $H: \overline{\Omega_h} \to \overline{\Omega}$ homeomorphism
- ▶ "surface to surface, bottom to bottom"
- \blacktriangleright $U(x + L, y) = U(x, y) + L,$ $V(x + L, y) = V(x, y)$
- \blacktriangleright *h* unique (fixed in the following)
- H unique up to translations in x
- ▶ S of class $C^{1,\beta}, \beta > 0$ \Rightarrow $|dH/dz| = |\nabla V| \neq 0$ in $\overline{\Omega_h}$

 $\blacktriangleright V = V[w + h]$ uniquely determined by $w = V(\cdot, 0) - h$ via
 $\Delta V = 0$ in Ω_h , $V = w + h$ on $y = 0$, $V = 0$ on $y = -h$

- *U* harmonic conjugate of $-V$
- \blacktriangleright surface *S* parameterized by

$$
S = \left\{ \left(x + (C_h^L w)(x), w(x) + h \right) : x \in \mathbb{R} \right\}
$$

KORK EXKEY EL SOLO

L
[Reformulation](#page-10-0)

[Conformal change of variables](#page-11-0)

New equations

- \triangleright *C*^L_h^T Fourier multiplier with symbol −*i* coth(*kvh*), *v* := 2π/L (↔ assume $\langle w \rangle = 0$)
- After suitable translation $U(x, 0) = x + (C_h^L w)(x)$
- mean curvature

$$
\kappa = \kappa[w](x) = \frac{\left(1 + (C_h^L w')(x)\right)w''(x) - w'(x)(C_h^L w'')(x)}{\left((1 + (C_h^L w')(x))^2 + w'(x)^2\right)^{3/2}}
$$

▶ we work with the unknown (a, w, ϕ) , where

$$
\psi=(\phi+\psi^\lambda)\circ H^{-1},\quad Q=\frac{\lambda^2}{2}+q
$$

▶ natural assumptions: $w > -h$ on $\mathbb{R}, x \mapsto (x + (C_h^L w)(x), w(x) + h)$ injective on \mathbb{R}

new equations:

$$
\Delta \phi = -\gamma (\phi + \psi^{\lambda}) |\nabla V|^2 + \gamma (\psi^{\lambda}) \quad \text{in } \Omega_h,
$$

\n
$$
\phi = 0 \quad \text{on } y = 0 \text{ and } y = -h,
$$

and $((Sf)(x) := f(x, 0))$ $(S\phi_y + \lambda)^2$ $\frac{(S\phi_y + \lambda)^2}{2\left((1 + C_h^L w')^2 + w'^2\right)} - \sigma \frac{(1 + C_h^L w')w'' - w' C_h^L w''}{\left((1 + C_h^L w')^2 + w'^2\right)^{3/2}}$ $-\sigma \frac{(1+C_h^Lw')w''-w'C_h^Lw''}{\sqrt{3/2}}$ $\frac{1 + C_h w}{(1 + C_h^L w')^2 + w'^2}$ + gw = Q on R [Reformulation](#page-10-0)

[Identity plus compact](#page-13-0)

Identity plus compact

- \triangleright focus now on the case $\sigma = 0$
- \blacktriangleright try to rewrite equations as

$$
(q, w, \phi) = \mathcal{M}(\lambda, q, w, \phi)
$$

with M compact

▶ easy: compactness in ϕ : $M_3 := \mathcal{A}$, where $\mathcal{A} = \mathcal{A}(\lambda, w, \phi)$ solves

$$
\Delta \mathcal{A} = -\gamma (\phi + \psi^{\lambda}) |\nabla V|^2 + \gamma (\psi^{\lambda}) \quad \text{in } \Omega_h,
$$

$$
\mathcal{A} = 0 \quad \text{on } y = 0 \text{ and } y = -h
$$

KORKARYKERKE POLO

 \blacktriangleright harder: compactness in w

 $\mathrel{\mathop{\longleftarrow}}$ [Reformulation](#page-10-0)

[Identity plus compact](#page-13-0)

Compactness in w

Lemma

Under suitable regularity assumptions and if $\phi = \mathcal{A}(\lambda, w, \phi)$ *,*

$$
\frac{(S\phi_y + \lambda)^2}{2\left((1 + C_h^L w')^2 + w'^2\right)} + gw = Q
$$

is equivalent to

$$
\langle R\cos\left((C_h^L)^{-1}\mathcal{P}(\ln R)\right)\rangle = 1,
$$

$$
w' = R\sin\left((C_h^L)^{-1}\mathcal{P}(\ln R)\right),
$$

where

$$
R(\lambda, q, w, \phi) := \frac{|\mathcal{S}\partial_y \mathcal{A}(\lambda, w, \phi) + \lambda|}{\sqrt{2(Q - gw)}}.
$$

Kロトメ部トメミトメミト ミニのRC

[Global bifurcation](#page-15-0)

 \Box [General conclusions](#page-15-0)

Rabinowitz

Theorem (Rabinowitz)

Assume

- ▶ *Banach space,* [⊂] ^R [×] *open,*
- ▶ $F ∈ C(U; X)$ admits the form $F(\lambda, x) = x + f(\lambda, x)$ with f compact,
- \blacktriangleright $F_r(\cdot, 0) \in C(\mathbb{R}; L(X, X)).$
- \blacktriangleright $F(\lambda_0, 0) = 0$,
- \blacktriangleright $F_x(\lambda, 0)$ *has an odd crossing number at* $\lambda = \lambda_0$ (satisfied if assumptions of Crandall–Rabinowitz are met)*.*

KORKARYKERKE POLO

Let S denote the closure of the set of nontrivial solutions of $F(\lambda, x) = 0$ in $\mathbb{R} \times X$ and K denote the *connected component of* S to which $(\lambda_0, 0)$ belongs. Then one of the following alternatives occurs:

- (i) *K* is unbounded;
- (ii) *K* contains a point $(\lambda_1, 0)$ with $\lambda_1 \neq \lambda_0$;
- (iii) K contains a point on the boundary of U.

[Global bifurcation](#page-15-0)

[General conclusions](#page-15-0)

Main theorem

Theorem

Assume

- $▶$ *there exists* $\lambda_0 \neq 0$ *such that*
	- ▶ 0 *is not in the Dirichlet spectrum of* $\partial_y^2 + \gamma'(\psi^{\lambda_0})$ *on* [−*h*, 0]*,*
	- **►** the dispersion relation $d(-(kv)^2, \lambda_0) = 0$ has exactly one solution $k_0 \in \mathbb{N}$,
- ▶ the transversality condition $d_{\lambda}\left(-(k_0\nu)^2, \lambda_0\right) \neq 0$ holds.

Then one of the following alternatives occurs:

- (i) K is unbounded: $|\lambda|$ unbounded, or w unbounded in $C^{0,\delta}_{\text{per}}(\mathbb{R})$ for any $\delta \in (5/6,1]$, or vorticity *unbounded in* (*physical domain*) *for any* > ¹*;*
- (ii) *K* contains a point $(\lambda_1, 0, 0)$ with $\lambda_1 \neq \lambda_0$;
- (iii) *a wave of greatest height is approached, i.e.,* $Q g \max_{\mathbb{R}} w \rightarrow 0$ *along a sequence of solutions;*
- (iv) the conformal map degenerates, i.e., $\min_{\mathbb{R}} \Bigl((1+C_h^L w')^2+w'^2\Bigr) \to 0$ along a sequence of solutions;

- (v) *self-intersection of the surface profile occurs;*
- (vi) *intersection of the surface profile with the flat bed occurs.*

[Global bifurcation](#page-15-0)

[General conclusions](#page-15-0)

Remarks

- ▶ if sup $\gamma' < \pi^2/h^2$, unboundedness of λ implies unboundedness of the relative mass flux $m(\lambda)$
- \triangleright the norm in the unboundedness alternative for w is quite weak; in fact, this alternative can even be removed in case of downstream flows
- instead, $1/\min_{\mathbb{R}} \left((1 + C_h^L w')^2 + w'^2 \right)$ can be thought of as a "part of the norm of w" in an unboundedness alternative
- ▶ analytic global bifurcation (requiring Fredholmness at solutions and a certain compactness property of the solution set), which provides stronger conclusions, can also be immediately applied in case ν is real-analytic

[Nodal properties](#page-18-0)

Nodal properties

maximum principles can be applied to the function $-\psi_X = \mathbf{u}_2$ and the linearized elliptic operator

$$
-\Delta-\gamma'(\psi),
$$

after changing to the flattened domain (similarly to Constantin, Strauss & Vărvărucă '16)

however, some spectral assumption is needed; sufficient:

$$
\sup \gamma' < \frac{\pi^2}{h^2}
$$

(typical) results:

- \blacktriangleright no intersection with the flat bed
- ▶ surface elevation strictly monotone from crest to trough
- ▶ self-intersection of the surface can only happen exactly above a trough
- ▶ looping back to a trivial solution cannot appear in many cases; e.g., if

$$
\sup \gamma' < \frac{\pi^2}{4h^2} \quad \text{and} \quad \lambda_0 \gamma'' \ge 0
$$

Thank you for your attention!

K ロ K K 레 K K B K K B K X B K V K C K B K D K C K