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New results on global bifurcation oftraveling periodic water waves

Basics

The differential equations

Sketch

𝑋

𝑌

𝐿

ℎ
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𝑆

water

air

. . .. . .

u −𝑔e2

▶ 2𝐷
▶ free boundary problem

▶ Ω water domain

▶ 𝑆 free surface

▶ water inviscid,

incompressible

▶ constant density

▶ Ω (and all appearing

functions) 𝐿-periodic

in 𝑋
▶ flat bed 𝑌 = 0

▶ presence of gravity and

(possibly) surface

tension

⇝ constants 𝑔 > 0,

𝜎 ≥ 0

▶ Euler equations in Ω
▶ kinematic boundary condition on 𝑆 and 𝑌 = 0

▶ dynamic boundary equation on 𝑆
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Basics

The differential equations

Equations

Time-dependent

▶ Euler equation in Ω(𝑡):
𝐷u
𝐷𝑡
B u𝑡 + (u · ∇)u = −∇(𝑝 + 𝑔𝑌)

▶ incompressibility in Ω(𝑡):
∇ · u = 0

▶ kinematic boundary condition on

𝜕Ω(𝑡) loc.
= {𝐹 = 0}:

𝐷𝐹
𝐷𝑡

= 0

▶ dynamic boundary equation on

𝑆(𝑡):
𝑝 = 𝑝atm − 𝜎𝜅

(𝜅 mean curvature)

constant speed 𝑐
of propagation

in e1-direction

−→−→−→
change to

moving frame

−→−→−→
𝑋 − 𝑐𝑡⇝ 𝑋
u − 𝑐e1⇝ u

Steady

▶ Euler equation in Ω:

(u · ∇)u = −∇(𝑝 + 𝑔𝑌)
▶ incompressibility in Ω:

∇ · u = 0

▶ kinematic boundary condition

on 𝑆 and 𝑌 = 0:

u · n = 0

▶ dynamic boundary equation on

𝑆:

𝑝 = 𝑝atm − 𝜎𝜅
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Basics

The differential equations

Vorticity, stream function

▶ vorticity 𝜔
𝜔 = ∇ × u = 𝜕𝑋u2 − 𝜕𝑌u1

▶ vorticity equation (2𝐷!)

(u · ∇)𝜔 = 0 (1)

▶ stream function 𝜓

∇ · u = 0 ⇒ ∃𝜓 : u = ∇⊥𝜓 = (𝜓𝑌 ,−𝜓𝑋 )
⇒ (u · ∇)𝜓 = 0 (2)

▶ (in non-degenerate cases:) (1) and (2) imply a functional relation

𝜔 = 𝛾(𝜓)
▶ this gives

Δ𝜓 = −∇ × ∇⊥𝜓 = −∇ × u = −𝜔 = −𝛾(𝜓)
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Basics

The differential equations

Boundary conditions

▶ kinematic boundary condition:

∇⊥𝜓 · n = u · n = 0 ⇒ 𝜓 locally constant on boundary

▶ 𝜓 determined up to constant⇝ consider

𝜓 = 0 on 𝑆, 𝜓 = −𝑚 on 𝑌 = 0 (𝑚 ∈ R)
▶ Bernoulli’s law: hydraulic head

𝐸 =
|u|2
2

+ 𝑝 + 𝑔𝑌 +
∫ 𝜓

0

𝛾(𝑠) 𝑑𝑠 = |∇𝜓 |2
2

+ 𝑝 + 𝑔𝑌 +
∫ 𝜓

0

𝛾(𝑠) 𝑑𝑠

constant in Ω:

∇𝐸 = (u · ∇)u − 𝜔u⊥ + ∇(𝑝 + 𝑔𝑌) + 𝛾(𝜓)∇𝜓 = 0

▶ dynamic boundary condition:

𝑝 = 𝑝atm − 𝜎𝜅 ⇒ |∇𝜓 |2
2

− 𝜎𝜅 + 𝑔(𝑌 − ℎ) = 𝑄,

𝑄 B 𝐸 − 𝑝atm − 𝑔ℎ −
∫ 𝜓

0

𝛾(𝑠) 𝑑𝑠 constant on 𝑆
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Basics

The differential equations

Summary

original steady equations stream formulation

incompressible Euler

equation in Ω
(u · ∇)u = −∇(𝑝 + 𝑔𝑌)

∇ · u = 0

Δ𝜓 = −𝛾(𝜓)

kinematic boundary condition u · n = 0 on 𝑆 and 𝑌 = 0

𝜓 = 0 on 𝑆

𝜓 = −𝑚 on 𝑌 = 0

dynamic boundary

condition on 𝑆 𝑝 = 𝑝atm − 𝜎𝜅
|∇𝜓 |2

2

− 𝜎𝜅 + 𝑔(𝑌 − ℎ) = 𝑄
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Basics

History

History

Irrotational (𝛾 = 0)
▶ Stokes mid 1800’s: formal expansions, conjecture about wave of greatest height

▶ Levi-Civita, Struik, Nekrasov ’20s, Jones & Toland ’80s: small-amplitude waves

▶ Krasovskii ’61, Keady & Norbury ’78: large-amplitude waves

▶ Amick, Fraenkel & Toland ’82, Plotnikov ’82: proof of Stokes’ conjecture

Rotational (𝛾 ≠ 0)
▶ Gerstner 1802, Crapper ’57, Kinnersley ’76: explicit solutions

▶ Dubreil-Jacotin ’34: small-amplitude, small 𝛾

▶ Goyon ’54, Zeidler ’73: general 𝛾

▶ Constantin & Strauss ’04: large amplitude, general 𝛾

▶ ’04–: Ambrose, Constantin, Ehrnström, Escher, Groves, Henry, Hur, Kozlov, Kuznetsov,

Lokharu, Martin, Matioc, Matioc, Strauss, Varholm, Vărvărucă, Wahlén, Walsh, Weiss,

Wheeler, Wright, . . .
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Basics

Motivation

Motivation

■ semi-hodograph transform 𝑞 = 𝑋, 𝑝 = −𝜓
■ conformal change of variables

■ naive: scaling the height on each vertical ray

surface
tension

crit. layers/
stagn. pts. vorticity global bifurcation overhanging

profile

Constantin &

Strauss ’04 ■
✗ ✗ general

Healey–Simpson

degree

✗

Constantin &

Vărvărucă ’11 ■
✗ ✓ constant ✗ ✓

Martin ’13 ■ ✓ ✓ constant ✗ ✓

Constantin, Strauss &

Vărvărucă ’16 ■
✗ ✓ constant analytic ✓

Haziot &

Wheeler ’21 ■ 1
✗ ✓ constant analytic ✓

Henry & Matioc ’14 ■ ✓ ✓ monotone identity + compact ✗

Varholm ’20 ■ ✗ ✓ general analytic ✗

Try to allow for all properties in full generality!
strategy: use conformal change of variables, rewrite equations as “identity plus compact”

1solitary case
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Basics

Motivation

Do overhanging waves exist (without surface tension)?

▶ no, if flow is irrotational (Spielvogel ’70; Amick ’87)

▶ no, in case of constant vorticity for downstream flows (Constantin, Strauss & Vărvărucă ’21)

▶ yes, numerical evidence in case of constant vorticity for upstream flows (e.g., Simmen &

Saffman ’85; Dyachenko & Hur ’19)

Simmen & Saffman Dyachenko & Hur

▶ yes, rigorous results for small gravity and constant vorticity (Hur & Wheeler ’21)
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Basics

Motivation

Why “identity plus compact”?

Or, how to obtain a global bifurcation result?

▶ degree methods especially useful in connection with semi-hodograph transform; requires

assumptions (properness, Fredholmness, spectral properties) at all points, not only at

solutions

▶ analytic methods: requires assumptions only at solutions, therefore easier to check; but

analyticity is a strong condition

▶ identity plus compact: requires work to reformulate the equations, but saves some work

later; is it even possible to reformulate the equations in this way?
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Reformulation

Laminar flow solutions

Laminar flow solutions

𝑋

𝑌

𝐿

ℎ

. . .. . .

𝛾 = 0

𝑋

𝑌

𝐿

ℎ

. . .. . .

𝛾 = const. ≠ 0

𝑋

𝑌

𝐿

ℎ

. . .. . .

𝛾 arbitrary
▶ we rather work with shifted

𝜓𝜆 = 𝜓(· + ℎ)
▶ equations for 𝜓𝜆

:

𝜓𝜆
𝑦𝑦 = −𝛾(𝜓𝜆) on [−ℎ, 0],

𝜓𝜆(0) = 0, 𝜓𝜆
𝑦 (0) = 𝜆

▶ assume 𝛾 ∈ 𝐶2,1
loc

(R), ∥𝛾′∥∞ < ∞
▶ 𝜆 ∈ R bifurcation parameter,

𝜆 ≡ horizontal velocity at surface

▶ 𝑚 B 𝑚(𝜆) B −𝜓𝜆(−ℎ)
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Reformulation

Conformal change of variables

Conformal change of variables (see Constantin & Vărvărucă ’11)

𝑋

𝑌

𝐿

ℎ

Ω

𝑆

. . .. . .

𝑥

𝑦

𝐿

−ℎ

Ωℎ

. . .. . .

𝐻 = 𝑈 + 𝑖𝑉

𝐻−1

▶ 𝐻 = 𝑈 + 𝑖𝑉 : Ωℎ → Ω conformal

▶ 𝐻 : Ωℎ → Ω homeomorphism

▶ “surface to surface, bottom to bottom”

▶ 𝑈(𝑥 + 𝐿, 𝑦) = 𝑈(𝑥, 𝑦) + 𝐿,

𝑉(𝑥 + 𝐿, 𝑦) = 𝑉(𝑥, 𝑦)
▶ ℎ unique (fixed in the following)

▶ 𝐻 unique up to translations in 𝑥
▶ 𝑆 of class 𝐶1,𝛽

, 𝛽 > 0

⇒ |𝑑𝐻/𝑑𝑧 | = |∇𝑉 | ≠ 0 in Ωℎ

▶ 𝑉 = 𝑉[𝑤 + ℎ] uniquely determined by

𝑤 = 𝑉(·, 0) − ℎ via

Δ𝑉 = 0 in Ωℎ ,

𝑉 = 𝑤 + ℎ on 𝑦 = 0,

𝑉 = 0 on 𝑦 = −ℎ
▶ 𝑈 harmonic conjugate of −𝑉
▶ surface 𝑆 parameterized by

𝑆 =
{(
𝑥 + (𝒞𝐿

ℎ𝑤)(𝑥), 𝑤(𝑥) + ℎ
)

: 𝑥 ∈ R
}
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Reformulation

Conformal change of variables

New equations

▶ 𝒞𝐿
ℎ Fourier multiplier with symbol −𝑖 coth(𝑘𝜈ℎ), 𝜈 B 2𝜋/𝐿 (↭ assume ⟨𝑤⟩ = 0)

▶ after suitable translation 𝑈(𝑥, 0) = 𝑥 + (𝒞𝐿
ℎ𝑤)(𝑥)

▶ mean curvature

𝜅 = 𝜅[𝑤](𝑥) =

(
1 + (𝒞𝐿

ℎ𝑤
′)(𝑥)

)
𝑤′′(𝑥) − 𝑤′(𝑥)(𝒞𝐿

ℎ𝑤
′′)(𝑥)(

(1 + (𝒞𝐿
ℎ𝑤

′)(𝑥))2 + 𝑤′(𝑥)2
)

3/2

▶ we work with the unknown (𝑞, 𝑤, 𝜙), where

𝜓 = (𝜙 + 𝜓𝜆) ◦ 𝐻−1 , 𝑄 =
𝜆2

2

+ 𝑞

▶ natural assumptions: 𝑤 > −ℎ on R, 𝑥 ↦→
(
𝑥 + (𝒞𝐿

ℎ𝑤)(𝑥), 𝑤(𝑥) + ℎ
)

injective on R

▶ new equations:

Δ𝜙 = −𝛾(𝜙 + 𝜓𝜆)|∇𝑉 |2 + 𝛾(𝜓𝜆) in Ωℎ ,

𝜙 = 0 on 𝑦 = 0 and 𝑦 = −ℎ,
and ((𝒮 𝑓 )(𝑥) B 𝑓 (𝑥, 0))

(𝒮𝜙𝑦 + 𝜆)2

2

(
(1 + 𝒞𝐿

ℎ𝑤
′)2 + 𝑤′2

)
�����������
−𝜎 (1 + 𝒞𝐿

ℎ𝑤
′)𝑤′′ − 𝑤′𝒞𝐿

ℎ𝑤
′′(

(1 + 𝒞𝐿
ℎ𝑤

′)2 + 𝑤′2
)

3/2

+ 𝑔𝑤 = 𝑄 on R
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Reformulation

Identity plus compact

Identity plus compact

▶ focus now on the case 𝜎 = 0

▶ try to rewrite equations as

(𝑞, 𝑤, 𝜙) = ℳ(𝜆, 𝑞, 𝑤, 𝜙)
with ℳ compact

▶ easy: compactness in 𝜙: ℳ3 B 𝒜, where 𝒜 = 𝒜(𝜆, 𝑤, 𝜙) solves

Δ𝒜 = −𝛾(𝜙 + 𝜓𝜆)|∇𝑉 |2 + 𝛾(𝜓𝜆) in Ωℎ ,

𝒜 = 0 on 𝑦 = 0 and 𝑦 = −ℎ
▶ harder: compactness in 𝑤
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Reformulation

Identity plus compact

Compactness in 𝑤

Lemma

Under suitable regularity assumptions and if 𝜙 = 𝒜(𝜆, 𝑤, 𝜙),

(𝒮𝜙𝑦 + 𝜆)2

2

(
(1 + 𝒞𝐿

ℎ𝑤
′)2 + 𝑤′2

) + 𝑔𝑤 = 𝑄

is equivalent to 〈
𝑅 cos

(
(𝒞𝐿

ℎ )−1𝒫(ln𝑅)
)〉

= 1,

𝑤′ = 𝑅 sin

(
(𝒞𝐿

ℎ )−1𝒫(ln𝑅)
)
,

where

𝑅(𝜆, 𝑞, 𝑤, 𝜙) B |𝒮𝜕𝑦𝒜(𝜆, 𝑤, 𝜙) + 𝜆|√
2(𝑄 − 𝑔𝑤)

.
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Global bifurcation

General conclusions

Rabinowitz

Theorem (Rabinowitz)

Assume
▶ 𝑋 Banach space, 𝑈 ⊂ R × 𝑋 open,
▶ 𝐹 ∈ 𝐶(𝑈 ;𝑋) admits the form 𝐹(𝜆, 𝑥) = 𝑥 + 𝑓 (𝜆, 𝑥) with 𝑓 compact,
▶ 𝐹𝑥(·, 0) ∈ 𝐶(R; 𝐿(𝑋, 𝑋)),
▶ 𝐹(𝜆0 , 0) = 0,
▶ 𝐹𝑥(𝜆, 0) has an odd crossing number at 𝜆 = 𝜆0 (satisfied if assumptions of Crandall–Rabinowitz

are met).
Let 𝒮 denote the closure of the set of nontrivial solutions of 𝐹(𝜆, 𝑥) = 0 in R × 𝑋 and 𝒦 denote the
connected component of 𝒮 to which (𝜆0 , 0) belongs. Then one of the following alternatives occurs:

(i) 𝒦 is unbounded;
(ii) 𝒦 contains a point (𝜆1 , 0) with 𝜆1 ≠ 𝜆0;

(iii) 𝒦 contains a point on the boundary of 𝑈 .
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Global bifurcation

General conclusions

Main theorem

Theorem

Assume
▶ there exists 𝜆0 ≠ 0 such that
▶ 0 is not in the Dirichlet spectrum of 𝜕2

𝑦 + 𝛾′(𝜓𝜆
0 ) on [−ℎ, 0],

▶ the dispersion relation 𝑑
(−(𝑘𝜈)2 ,𝜆0

)
= 0 has exactly one solution 𝑘0 ∈ N,

▶ the transversality condition 𝑑𝜆
(−(𝑘0𝜈)2 ,𝜆0

)
≠ 0 holds.

Then one of the following alternatives occurs:

(i) 𝒦 is unbounded: |𝜆| unbounded, or 𝑤 unbounded in 𝐶0,𝛿
per

(R) for any 𝛿 ∈ (5/6, 1], or vorticity
unbounded in 𝐿𝑝(physical domain) for any 𝑝 > 1;

(ii) 𝒦 contains a point (𝜆1 , 0, 0) with 𝜆1 ≠ 𝜆0;
(iii) a wave of greatest height is approached, i.e., 𝑄 − 𝑔 maxR 𝑤 → 0 along a sequence of solutions;

(iv) the conformal map degenerates, i.e., minR

(
(1 + 𝒞𝐿

ℎ𝑤
′)2 + 𝑤′2

)
→ 0 along a sequence of solutions;

(v) self-intersection of the surface profile occurs;
(vi) intersection of the surface profile with the flat bed occurs.
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Global bifurcation

General conclusions

Remarks

▶ if sup 𝛾′ < 𝜋2/ℎ2
, unboundedness of 𝜆 implies unboundedness of the relative mass flux 𝑚(𝜆)

▶ the norm in the unboundedness alternative for 𝑤 is quite weak; in fact, this alternative can

even be removed in case of downstream flows

▶ instead, 1/minR

(
(1 + 𝒞𝐿

ℎ𝑤
′)2 + 𝑤′2

)
can be thought of as a “part of the norm of 𝑤” in an

unboundedness alternative

▶ analytic global bifurcation (requiring Fredholmness at solutions and a certain compactness

property of the solution set), which provides stronger conclusions, can also be immediately

applied in case 𝛾 is real-analytic
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Global bifurcation

Nodal properties

Nodal properties

▶ maximum principles can be applied to the function −𝜓𝑋 = u2 and the linearized elliptic

operator

−Δ − 𝛾′(𝜓),
after changing to the flattened domain (similarly to Constantin, Strauss & Vărvărucă ’16)

▶ however, some spectral assumption is needed; sufficient:

sup 𝛾′ < 𝜋2

ℎ2

▶ (typical) results:

▶ no intersection with the flat bed

▶ surface elevation strictly monotone from crest to trough

▶ self-intersection of the surface can only happen exactly above a trough

▶ looping back to a trivial solution cannot appear in many cases; e.g., if

sup 𝛾′ < 𝜋2

4ℎ2

and 𝜆0𝛾
′′ ≥ 0



New results on global bifurcation oftraveling periodic water waves

Thank you for your attention!
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