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Kinetic Theory

In many situations of physical interest, one has a very
large number of interacting particles/agents/entities, each
obeying a microscopic/individual law.

A large part of the theory of applied PDE (statistical
physics) is dedicated to modeling such systems with
continuum equations on the observable local quantities:
population density, field strength, average fluid velocity,
deformation, etc.
Kinetic theory takes something of a “middle road”,
operating on three scales: the macroscopic scale where
things are largely observable, the microscopic encoding
the interaction of particles, and the mesoscopic scale in
between, which adds subtler structure while retaining the
statistical nature.
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Boltzmann Equation

The behavior of a gas of particles interacting via local
“collisions” is modeled by a time-varying distribution in space
and velocity f : R+ × R3 × R3 → R which satisfies{

∂t f + v · ∇x f = Q(f , f ) in [0,∞)× R3 × R3

f |t=0 = f0 in R3 × R3 (B1)

where f0 is the initial distribution and

Q(f ,g) :=
∫
Rd

∫
Sd−1

B(|v−w |, θ)
(
f (w ′)g(v ′)− f (w)g(v)

)
dσdw .

(B2)
B gives the statistical likelihood for collisions over the angles
and relative velocities.
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Boltzmann Equation

The microscopic scale is seen in the interaction kernel Q, which
belongs to a family that conserves kinetic energy and
momentum after collision. For power-law forces, we have

B(r , θ) = rγθ−2−2sb(θ), γ ∈ (−3,1), s ∈ (0,1).

The mesoscopic scale is seen in the velocity part of the
distribution. At every point, there is a possibly quite complicated
velocity structure which is driven by microscopic interactions.
The macroscopic scale is in the space part of the distribution.
Notably in observable quantities like density, average
momentum, kinetic energy, and entropy. The interaction is
primarily through velocity transport.
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Known Results

Early local well-posedness results [AMUXY 2010, ‘11, ‘13]
commonly require Gaussian decay and initial data in a Sobolev
space of order at least 4. [Morimoto-Yang 2015] was the
previous state-of-the-art, then [Henderson-Snelson-T, 2020]
extended the range of parameters and reduced the
assumptions on the initial data.

When f0 is sufficiently close to the steady state c1 exp(−c2|v |2),
global well-posedness (and convergence to equilibrium) is
known [Gressman-Strain 2011, He-Jiang 2017,
Alonso-Morimoto-Sun-Yang 2018]. However, in weighted L∞

x ,v ,
the previous state-of-the-art was [Silvestre 22], which only
treated γ + 2s ∈ [0,2].
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Known Results

When f0 is independent of x , so is f . For homogeneous
Boltzmann, many more results are known [Villani 1998,
Desvillettes-Mouhot 2005, ‘09]. Even so, global well-posedness
is only known for γ + 2s ≥ 0.

Weak (renormalized) solutions with defect measure are
constructed in [Alexandre-Villani 2002, ‘04].

The existence of near-vacuum global solutions was proved by
[Chaturvedi 2021] (in a tenth-order Sobolev space with
Gaussian weight), building off a similar result [Luk 2019] for the
Landau equation.
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Regularity Program (state of the art)

Three observable macroscopic quantities are very significant
for the evolution of the solution:

Mass Density: M(t , x) :=
∫

f (t , x , v)dv

Energy Density: E(t , x) :=
∫

|v |2f (t , x , v)dv

Entropy Density: H(t , x) :=
∫

f (t , x , v) log(f (t , x , v))dv

The long conditional regularity program of Imbert, Mouhot, and
Silvestre has concluded that, in the physical regime
γ + 2s ∈ [0,2], solutions to (B1) exist, are unique, and are
smooth provided:

m0 ≤ M(t , x) ≤ M0 , E(t , x) ≤ E0 , H(t , x) ≤ H0 (CHQ)
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Carleman Decomposition

For most of the analysis, we write Q = Qs + Qns, where

Qs(g, f ) =
∫∫

(f (v ′)− f (v))g(w ′)B dσdw

Qns(g, f ) = f (v)
∫∫

(g(w ′)− g(w))B dσdw

This can be rewritten as

Qs(g, f ) =
∫

Kg(v , v ′)(f (v ′)− f (v))dv ′

Kg(v , v ′) =
1

|v − v ′|3+2s

∫
(v ′−v)⊥

g(v + w)|w |γ+2s+1b̃(θ)dw

Qns(g, f ) ≈ f (v) (g ∗ | · |γ) from the “Cancellation Lemma”

The nonsingular term is generally well-behaved, and the
singular term behaves almost like a fractional Laplacian (of
order 2s).
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Carleman: Cone of Non-Degeneracy

The continuation criterion fundamentally requires a coercivity
estimate on Qs.

Specifically, we need that for any R > 0, there exist λ, µ > 0
such that for all v ∈ BR(0), there exists a symmetric
A(v) ⊂ ∂B1(0) such that |A| > µ and Kf (v ,w) ≥ λ|v − w |−3−2s

whenever (v − w)/|v − w | ∈ A.

This “cone” of non-degeneracy is established in [Silvestre 2016]
using (CHQ). It is the only time the entropy bound is needed,
and gives a control on ∥f∥L∞ .

With a better (i.e. Gaussian) lower bound on f , one can get the
cone without the entropy condition in (CHQ), yielding
∥f (t , ·, ·)∥L∞ ≲ 1 + t−3/(2s).
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Self-Generating Lower Bounds

For physical reasons, one expects “entropy maximizing”
statistical collisions to spread mass to all points in space (and
velocity) instantaneously. We prove this quantitatively.

A function g : R3 × R3 → [0,∞) has mass if g ≥ δχBr (x0)×Br (v0).

Such a g is (R, δ, r)-well-distributed if for every x ∈ R3 there is
xm ∈ BR(x) and vm ∈ BR(0) such that g ≥ δχBr (xm)×Br (vm).

Theorem 1 (Henderson-Snelson-T. 2020)

Let γ ∈ (−3,1) and s ∈ (0,1). If f solves (B1) with M(t , x) and
E(t , x) bounded above for t ∈ [0,T ] and initially has mass, then

f (t , x , v) ≥ µ(t , x)e−η(t ,x)|v |2

with µ and η locally uniformly positive. If f is initially
well-distributed, µ and η are independent of x.
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New Continuation Criteria
Since Theorem 1 proves that mass is bounded below instantly
for positive times, we can pare it with a local existence theory to
remove the mass lower bound from the continuation criteria.

We also eliminate the need for the entropy bound, in most
cases.

Theorem 2 (Henderson-Snelson-T. 2020)

Let f solve (B1) and γ + 2s ∈ [0,2] on [0,T ]× T3 × R3.
(a) If f0 is C∞ and Schwartz in v and f has mass and energy
density bounded above for t ∈ [0,T ], then

∥(1 + |v |q)Dk f∥L∞([ϵ,T ]) ≤ Cq,k ,ϵ,T

(b) If γ < 0 and (1+ |v |)qDk f initially belongs to L∞ for all q and
k, the solution can be continued for as long as M(t , x) and
E(t , x) remain bounded above.
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Proof Outline

For mass spreading, alternate between controlling the strength
of collisions from above and below:

We have a mass core at (0, x0, v0); we want to move it to (t1, x1, v1).

Propagate lower bound to small positive times with a barrier argument.

Spread mass from velocities near v0 to all velocities, for small times and x ≈ x0;
this adapts a strategy of [Imbert-Mouhot-Silvestre 2020], making it work for
non-uniform (in x) lower bounds.

Propagate lower bound to (t1, x1,
x1−x0

t1
) with similar barrier argument; some

mass is transported along characteristics.

Spread mass to all velocities, reaching in particular (t1, x1, v1).

For continuation, it is mostly a corollary, but the entropy bound
is eliminated (when γ < 0) because our mass lower bound is
robust enough to provide coercivity estimates for the collision
operator (geometric kernel estimates).
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Existence

Prior results for existence of classical solutions must take f0 in
velocity-weighted Sobolev spaces of order at least four.

Theorem 3 (Henderson-Snelson-T. 2023)

For γ ∈ (−3,0), s ∈ (0,1), and q > 2s + 3, suppose
⟨v⟩qf0 ∈ L∞(R6) and f0 has mass. Then a local solution f to
(B1) exists for some time T > 0; f is locally to C2s

l and agrees
with f0 at t = 0 in a weak sense. Better decay for f0 implies
greater classical regularity for f .

Theorem 4 (Henderson-Snelson-T. 2023)

As above, but with q > γ + 2s + 3, a weak solution f to (B1)
exists for some time T > 0. If f0 has mass, then f is locally
Hölder continuous.
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Existence

The naive approach to existence is to use energy methods for a
priori bounds in L2. But bounding the terms from Q(f , f ) then
requires a Sobolev embedding to close the estimate. L∞ is a
natural choice for zero-order existence.

The estimates also lose velocity moments. Decay in v is
propagated with barriers of the form Neβt⟨v⟩−q, valid for
q > γ + 2s + 3. This gives a solution on [0,Tq].

The regularity bootstrap, which provides more derivatives for f ,
loses even more moments. A careful decomposition of the
collision operator can propagate higher moments for the same
time interval.

A somewhat novel change of variables is also needed to adapt
global regularity estimates.
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Uniqueness

Uniqueness is harder because our “dynamic” coercivity for the
collision operator in general vanishes at t = 0.

Theorem 5 (Henderson-Snelson-T. 2023)

For α > 0 and q > 0 sufficiently large, suppose f0 has mass at
every point x ∈ R3, ⟨v⟩qf0 ∈ L∞(R6), and f0 ∈ Cα

l . If f is the
classical solution from Theorem 3 and g is any weak solution
as in Theorem 4, then f = g.

Implements a novel and non-kinetic propagation of Hölder
bounds (in x and v ), then passes them to t . Schauder
estimates then give uniqueness via an energy method.
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Uniqueness

Uniqueness for evolution equations (even those with
smoothing effects) starting from rough initial data is an
interesting topic [Anceschi-Zhu 2021,
Kiselev-Nazarov-Shterenberg 2008].
The standard approach is to let h = f − g and to get a
bound on the growth of a norm of h from the equation

∂th + v · ∇xh = Q(h, f ) + Q(g,h).

Q(h, f ) puts 2s derivatives (in v ) on f . Any 2s-order norm
of f must blow-up as t → 0 since f0 is possibly irregular.
The exact rates are computed explicitly, and show that
∥f∥C2s+α

l
≲ t−µ∥f∥ν

Cα′
l

can only have µ < 1 if α′ > α. Even

in principal, the De Giorgi and Schauder estimates should
not suffice here.
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Uniqueness

If we integrate the equation for h, we can distribute
derivatives between h and f . Since h and g are a priori
weak, it has to be an integral in space and velocity. Known
trilinear estimates for Q then yield

d
dt

∥h∥2
L2 ≲

∫
∥h∥L2

v
∥f∥Hs

v
∥h∥Hs

v
dx + ...

Since g lacks any form of lower bound, we can’t use the
Q(g,h)-term to close the estimate, and we need at least a
uniform-in-x control on h and f in Hs

v . This is far from the
known controlled quantities for (B1).
So we use an L2-based energy estimate pared with a
propagated control on a Hölder norm.
The mass core condition guarantees a dynamic lower
bound [Henderson-Snelson-T. 2020]: f (t , x , v) ≥ µe−ν|v |2

uniformly in t and x . This lets us use the strongest version
of the Schauder estimates.
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Near-Equilibrium

A direct consequence of the more robust existence theory is
the global existence of close-to-equilibrium solutions:

Corollary 6 (Henderson-Snelson-T. 2023)

Let µ(x , v) = Ce−|v |2/2 and q > 5. For initial data with
⟨v⟩q̃f0 ∈ L∞(R6), there is δ > 0 such that if ∥⟨v⟩q(f0 − µ)∥L∞ < δ
then the solution f to (B1) converges to µ as t → ∞ faster than
any polynomial rate.

Based on [Silvestre-Snelson, 2023], but Theorem 3 improves
this in two ways: allows γ + 2s < 0 and allows finite polynomial
decay in f0. For the regime γ + 2s < 0, this is the first result
showing convergence to equilibrium for perturbations in a
zero-order space.
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