STABILITY OF PERIODIC WAVES FOR NLS-Type Equations

Mariana Haragus

Institut FEMTO-ST Université de Franche-Comté, Besançon, France

STABILITY OF PERIODIC WAVES

asymptotic behaviour of solutions for initial data close to a periodic wave

STABILITY OF PERIODIC WAVES

- asymptotic behaviour of solutions for initial data close to a periodic wave
 - co-periodic perturbations [period *T* of the wave]

- \blacksquare subharmonic perturbations $[\mathrm{period}\ \mathit{NT},\ \mathit{N} \in \mathbb{N}]$
 - ~~~~
- localized perturbations

DISSIPATIVE PDES

Nonlinear stability for localized/bounded perturbations:

- periodic wave trains in reaction-diffusion systems
- Taylor vortices in infinite cylinders
- viscous roll waves
- periodic traveling-wave solutions of viscous conservation laws
- **.** . . .

```
[Schneider; 1996-98] [Doelman, Sandstede, Scheel, Schneider; 2009] [Sandstede, Scheel, Schneider, Uecker; 2012] [Johnson, Noble,
```

Rodrigues, Zumbrun; 2010-14] [...]

DISPERSIVE PDES

■ KdV, NLS equations and similar:

- nonlinear stability for co-periodic perturbations
- spectral stability for localized/bounded/subharmonic perturbations
- use integrability: orbital stability for subharmonic perturbations / linear stability for localized perturbations

[Gallay, H., Lombardi, Scheel, Angulo, Bona, Scialom, Bronski, Rapti, Deconinck, Kapitula, Pelinovski, Geyer, Hur, Johnson, Rodrigues, Natali, Pastor, ...; since 2005]

Nonlinear stability for localized/bounded perturbations?

$$iU_t(x,t) + U_{xx}(x,t) - |U(x,t)|^2 U(x,t) = 0$$

- orbital stability for co-periodic perturbations: use the general theory [Grillakis, Shatah, Strauss; 1990]:
 - a two-parameter family of periodic waves: ¹

$$U_{J,E}(x,t) = e^{-it}e^{ipx} Q_{J,E}(x) , \quad x,t \in \mathbb{R}$$

 $^{^{1}}J = \text{angular momentum}, E = \text{energy in the steady equation}$

$$iU_t(x,t) + U_{xx}(x,t) - |U(x,t)|^2 U(x,t) = 0$$

- orbital stability for co-periodic perturbations: use the general theory [Grillakis, Shatah, Strauss; 1990]:
 - a two-parameter family of periodic waves: ¹

$$U_{J,E}(x,t) = e^{-it}e^{ipx} Q_{J,E}(x), \quad x,t \in \mathbb{R}$$

- $lackbox{Q}_{J,E}$ is a degenerate saddle point of a modified energy with one unstable and two neutral directions
- \blacksquare conserved quantities: charge N and momentum M
- Q_{J,E} is a local minimum of the modified energy restricted to the codimension two manifold

$$\Sigma_{J,E} \,=\, \left\{ \left. Q \in X \,\right|\, N(\mathit{Q}) = N(\mathit{Q}_{J,E}) \,,\,\, M(\mathit{Q}) = M(\mathit{Q}_{J,E}) \right\}$$

[Gallay & H.; 2007]

 $^{^{1}}J = \text{angular momentum}, E = \text{energy in the steady equation}$

$$iU_t(x,t) + U_{xx}(x,t) - |U(x,t)|^2 U(x,t) = 0$$

$2N\pi$ -periodic perturbations:

- similar analytical set-up **but** the second variation of the energy has 2N 1 negative eigenvalues
- replace the manifolds $\Sigma_{E,J}$ by invariant manifolds of codimension $2n \longrightarrow 2n$ conserved quantities . . . ?
- integrability: take a higher order energy such that $Q_{J,E}$ is a local minimum [Gallay & Pelinovsky; 2015]

$$iU_t(x,t) + U_{xx}(x,t) - |U(x,t)|^2 U(x,t) = 0$$

$ightharpoonup 2N\pi$ -periodic perturbations:

- similar analytical set-up **but** the second variation of the energy has 2N 1 negative eigenvalues
- replace the manifolds $\Sigma_{E,J}$ by invariant manifolds of codimension $2n \longrightarrow 2n$ conserved quantities . . . ?
- integrability: take a higher order energy such that $Q_{J,E}$ is a local minimum [Gallay & Pelinovsky; 2015]

localized perturbations:

- the second variation of the energy has continuous spectrum
 ...?
- How about a damped NLS equation?

LL EQUATION

[Lugiato & Lefever, 1987]

$$rac{\partial \psi}{\partial t} = -ieta rac{\partial^2 \psi}{\partial x^2} - (1 + ilpha)\psi + i\psi |\psi|^2 + F$$

- $\psi(x,t) \in \mathbb{C}, \ \beta, \alpha \in \mathbb{R}, \ F \in \mathbb{R} \ (\textit{but not only})$
- NLS-type equation with damping, detuning, and driving
- extensively studied in the physics literature [...]
- few mathematical results . . .

Stability of Periodic Waves

Localized perturbations

■ spectral stability

- [Delcey & H. (2018)]
- spectral stability implies linear stability
 - [H., Johnson, Perkins (2021)]
- linear stability implies nonlinear stability
 - [H., Johnson, Perkins, & de Rijk (2023)]

SPECTRAL STABILITY

spectrum of the linearized operator \mathcal{A} [matrix differential operator with periodic coefficients]

$$A = -I + \mathcal{J}\mathcal{L}$$

$$\mathcal{J} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\mathcal{L} = \begin{pmatrix} -\beta \partial_x^2 - \alpha + 3\phi_r^2 + \phi_i^2 & 2\phi_r \phi_i \\ 2\phi_r \phi_i & -\beta \partial_x^2 - \alpha + \phi_r^2 + 3\phi_i^2 \end{pmatrix}$$

 $\phi = \phi_r + i\phi_i$ denotes the *T*-periodic wave

SPECTRAL STABILITY

spectrum of the linearized operator \mathcal{A} [matrix differential operator with periodic coefficients]

Localized perturbations

a continuous spectrum

LOCALIZED PERTURBATIONS

continuous spectrum

KEY TOOL:

Bloch decomposition

■ Bloch transform representation for $g \in L^2(\mathbb{R})$

$$g(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} e^{i\xi x} \check{g}(\xi, x) d\xi, \quad \check{g}(\xi, x) := \sum_{\ell \in \mathbb{Z}} e^{2\pi i \ell x/T} \hat{g}(\xi + 2\pi \ell/T)$$

- Bloch operator $A_{\xi} := e^{-i\xi x} A e^{i\xi x}$ acting in $L^2(0,T)$
- spectrum

$$\sigma_{L^2(\mathbb{R})}\left(\mathcal{A}
ight) = igcup_{oldsymbol{\xi} \in [-\pi/T, \pi/T)} \sigma_{L^2_{\mathrm{per}}(0,T)}\left(\mathcal{A}_{oldsymbol{\xi}}
ight)$$

Main result

Diffusive spectral stability

lacktriangle the spectrum of the linearized operator $\mathcal A$ acting in $L^2(\mathbb R)$ satisfies

$$\sigma_{L^2(\mathbb{R})}(\mathcal{A})\subset \{\lambda\in\mathbb{C}: \operatorname{Re}(\lambda)<0\}\cup\{0\};$$

there exists $\theta > 0$ such that for any $\xi \in [-\pi/T, \pi/T)$ the real part of the spectrum of the Bloch operator $\mathcal{A}_{\xi} := e^{-i\xi \times} \mathcal{A} e^{i\xi \times}$ acting in $L^2_{\mathrm{per}}(0,T)$ satisfies

$$\operatorname{Re}\left(\sigma_{L_{\operatorname{per}}^2(0,T)}(\mathcal{A}_{\xi})\right) \leq -\theta \xi^2;$$

 $\lambda = 0$ is a simple eigenvalue of A_0 with associated eigenvector ψ (the derivative ϕ' of the periodic wave).

LINEAR STABILITY

decay of the C^0 -semigroup e^{At}

LINEAR STABILITY

- decay of the C^0 -semigroup e^{At}
 - difficulty: no spectral gap

Bloch decomposition of the semigroup

$$e^{\mathcal{A}t}v(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} e^{i\xi x} e^{\mathcal{A}_{\xi}t} \check{v}(\xi, x) d\xi$$

Bloch operator $\mathcal{A}_{\xi}:=e^{-i\xi x}\mathcal{A}e^{i\xi x}$ acting in $\mathcal{L}^2_{\mathrm{per}}(0,T)$

[Schneider, ..., Johnson, Noble, Rodrigues, Zumbrun]

LINEAR STABILITY

Hypotheses

- diffusive spectral stability;
- the operator \mathcal{A} generates a C^0 -semigroup on $L^2(\mathbb{R})$ and for each $\xi \in [-\pi/T, \pi/T)$ the Bloch operators \mathcal{A}_{ξ} generate C^0 -semigroups on $L^2_{\mathrm{per}}(0,T)$;
- there exist positive constants μ_0 and C_0 such that for each $\xi \in [-\pi/T, \pi/T)$ the Bloch resolvent operators satisfy

$$\|(i\mu - \mathcal{A}_{\xi})^{-1}\|_{\mathcal{L}(L^2_{\mathrm{per}}(0,T))} \le C_0, \text{ for all } |\mu| > \mu_0.$$

checked for LLE: [Delcey, H., 2018], [Stanislavova, Stefanov, 2018]

Main result

There exists a constant C > 0 such that for any $v \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ and all t > 0 we have ²

$$\|e^{\mathcal{A}t}v\|_{L^2(\mathbb{R})} \le C(1+t)^{-1/4}\|v\|_{L^1(\mathbb{R})\cap L^2(\mathbb{R})}.$$

Furthermore, $e^{At} = s_p(t) + \widetilde{S}(t)$ with

$$\|s_p(t)v\|_{L^2(\mathbb{R})} \leq C(1+t)^{-1/4}\|v\|_{L^1(\mathbb{R})},$$

$$\|\widetilde{S}(t)v\|_{L^2(\mathbb{R})} \le C(1+t)^{-3/4}\|v\|_{L^1(\mathbb{R})\cap L^2(\mathbb{R})}.$$

²The decay is lost when $v \in L^2(\mathbb{R})$, only.

Proof

estimates on Bloch semigroups $e^{\mathcal{A}_{\xi}t}$, $\xi \in [-\pi/T, \pi/T)$

(use: the diffusive spectral stability hypothesis, resolvent estimate, Gearhart-Prüss theorem)

■ For any $\xi_0 \in (0, \pi/T)$, there exist $C_0 > 0$, $\eta_0 > 0$, such that

$$\|e^{\mathcal{A}_{\xi}t}\|_{\mathcal{L}(L^{2}_{-m}(0,T))} \leq C_{0}e^{-\eta_{0}t},$$

for all $t \ge 0$ and all $\xi \in [-\pi/T, \pi/T)$ with $|\xi| > \xi_0$.

■ There exists $\xi_1 \in (0, \pi/T)$ and $C_1 > 0$, $\eta_1 > 0$ such that

$$\left\|e^{\mathcal{A}_{\xi}t}\left(I-\Pi(\xi)\right)\right\|_{\mathcal{L}\left(L^{2}-(0,T)\right)}\leq C_{1}e^{-\eta_{1}t},$$

for all $t \geq 0$ and all $|\xi| < \xi_1$, where $\Pi(\xi)$ is the spectral projection onto the (one-dimensional) eigenspace associated to the eigenvalue $\lambda_c(\xi)$, the continuation for small ξ of the simple eigenvalue 0 of \mathcal{A}_0 .

decompose the semigroup $e^{\mathcal{A}t}$ (use: the representation formula for the semigroup and a smooth cut-off function with $\rho(\xi) = 1$ for $|\xi| < \xi_1/2$ and $\rho(\xi) = 0$ for $|\xi| > \xi_1$)

$$e^{\mathcal{A}t}v(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi)e^{i\xi x}e^{\mathcal{A}_{\xi}t}\check{v}(\xi,x)d\xi$$
$$+ \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} (1 - \rho(\xi))e^{i\xi x}e^{\mathcal{A}_{\xi}t}\check{v}(\xi,x)d\xi$$
$$=: S_{lf}(t)v(x) + S_{hf}(t)v(x)$$

and show that

$$\|S_{hf}(t)v\|_{L^{2}(\mathbb{R})} \lesssim e^{-\eta t} \|v\|_{L^{2}(\mathbb{R})}$$

decompose $S_{lf}(t)v(x)$ (use the diffusive spectral stability hypothesis)

$$S_{lf}(t)v(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi)e^{i\xi x}e^{\mathcal{A}_{\xi}t}\Pi(\xi)\check{v}(\xi,x)d\xi$$
$$+\frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi)e^{i\xi x}e^{\mathcal{A}_{\xi}t}(1-\Pi(\xi))\check{v}(\xi,x)d\xi$$
$$=: S_{c}(t)v(x) + \widetilde{S}_{lf}(t)v(x)$$

and show that

$$\left\|\widetilde{S}_{hf}(t)v\right\|_{L^2(\mathbb{R})} \lesssim e^{-\eta t}\|v\|_{L^2(\mathbb{R})}$$

decompose $S_c(t)v(x)$ (use formula for $\Pi(\xi)$)

$$S_{c}(t)v(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi)e^{i\xi x}e^{\mathcal{A}_{\xi}t}\Pi(0)\check{v}(\xi,x)d\xi$$
$$+\frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi)e^{i\xi x}e^{\mathcal{A}_{\xi}t}(\Pi(0) - \Pi(\xi))\check{v}(\xi,x)d\xi$$
$$=: s_{p}(t)v(x) + \widetilde{S}_{c}(t)v(x)$$

and show that³

$$\begin{split} & \left\| \widetilde{S}_c(t) v \right\|_{L^2(\mathbb{R})} \lesssim \| \xi e^{-d\xi^2 t} \|_{L^2_{\xi}(\mathbb{R})} \| v \|_{L^1(\mathbb{R})} \lesssim (1+t)^{-3/4} \| v \|_{L^1(\mathbb{R})} \\ & \left\| s_p(t) v \right\|_{L^2(\mathbb{R})} \lesssim \| e^{-d\xi^2 t} \|_{L^2_{\xi}(\mathbb{R})} \| v \|_{L^1(\mathbb{R})} \lesssim (1+t)^{-1/4} \| v \|_{L^1(\mathbb{R})} \end{split}$$

³The decay is lost when $v \in L^2(\mathbb{R})$, only.

linear stability implies nonlinear stability

linear stability implies nonlinear stability

- semigroup with slow decay $(1+t)^{-1/4}$
- C^0 -semigroup

First difficulty: semigroup with slow decay $(1+t)^{-1/4}$

■ no decay for the (unmodulated) perturbation

$$\tilde{v}(x,t) = \psi(x,t) - \phi(x)$$

satisfying (Duhamel formulation)

$$\widetilde{v}(t) = e^{\mathcal{A}t}v_0 + \int_0^t e^{\mathcal{A}(t-s)}\widetilde{\mathcal{N}}(\widetilde{v}(s)) ds$$

First difficulty: semigroup with slow decay $(1+t)^{-1/4}$

■ no decay for the (unmodulated) perturbation

$$\tilde{v}(x,t) = \psi(x,t) - \phi(x)$$

satisfying (Duhamel formulation)

$$\widetilde{v}(t) = e^{\mathcal{A}t}v_0 + \int_0^t e^{\mathcal{A}(t-s)}\widetilde{\mathcal{N}}(\widetilde{v}(s)) ds$$

define a modulated perturbation

$$v(x,t) = \psi(x-\gamma(x,t),t) - \phi(x)$$

[Schneider, Doelman, Sandstede, Scheel, Uecker, ... Johnson, Noble, Rodrigues, Zumbrun]

modulated perturbation

$$v(x,t) = \psi(x-\gamma(x,t),t) - \phi(x)$$

$$\rightsquigarrow$$
 satisfies $(\partial_t - \mathcal{A})(v + \gamma \phi') = \mathcal{N}(v, \gamma, \partial_t \gamma) + (\partial_t - \mathcal{A})(\gamma_x v)$

modulated perturbation

$$v(x,t) = \psi(x - \gamma(x,t), t) - \phi(x)$$

$$\longrightarrow$$
 satisfies $(\partial_t - \mathcal{A})(v + \gamma \phi') = \mathcal{N}(v, \gamma, \partial_t \gamma) + (\partial_t - \mathcal{A})(\gamma_x v)$

$$\longrightarrow$$
 use Duhamel formulation and $\left| e^{\mathcal{A}t} = s_p(t) + \widetilde{S}(t) \right|$ to:

 \blacksquare define the **phase modulation** $\gamma(x, t)$

$$\gamma(t) = s_p(t)v_0 + \int_0^t s_p(t-s)\mathcal{N}(v(s),\gamma(s),\partial_t\gamma(s))\,ds$$

(such that it captures the slowest decay rate $(1+t)^{-1/4}$)

 \blacksquare obtain a formula for v(x, t)

$$\mathbf{v(t)} = \widetilde{S}(t)v_0 + \int_0^t \widetilde{S}(t-s)\mathcal{N}(\mathbf{v(s)}, \gamma(s), \partial_t \gamma(s)) ds + \gamma_{\mathsf{x}}(t)\mathbf{v(t)}$$

(stronger decay rate $(1+t)^{-3/4}$; enough to conclude ...)

Second difficulty: C⁰-semigroup

■ no control of derivatives of the modulated perturbation

$$\mathbf{v}(\mathbf{x},t) = \psi(\mathbf{x} - \gamma(\mathbf{x},t),t) - \phi(\mathbf{x})$$

appearing in the nonlinear terms $\mathcal{N}(v(s), \gamma(s), \partial_t \gamma(s))$

■ Second difficulty: C⁰-semigroup

■ no control of derivatives of the modulated perturbation

$$v(x,t) = \psi(x-\gamma(x,t),t) - \phi(x)$$

appearing in the nonlinear terms $\mathcal{N}(v(s), \gamma(s), \partial_t \gamma(s))$

First approach

[H., Johnson, Perkins, & de Rijk (2023)]

• use integration by parts to gain derivatives and decay in the formula for the phase modulation $\gamma(x, t)$

$$\gamma(t) = s_p(t)v_0 + \int_0^t s_p(t-s)\mathcal{N}(v(s),\gamma(s),\partial_t\gamma(s)) ds$$

NONLINEAR STABILITY

Second difficulty: C⁰-semigroup

■ no control of derivatives of the modulated perturbation

$$v(x,t) = \psi(x - \gamma(x,t), t) - \phi(x)$$

appearing in the nonlinear terms $\mathcal{N}(v(s), \gamma(s), \partial_t \gamma(s))$

First approach

[H., Johnson, Perkins, & de Rijk (2023)]

- use integration by parts to gain derivatives and decay in the formula for the phase modulation $\gamma(x, t)$
- also use the unmodulated perturbation

$$\tilde{\mathbf{v}}(\mathbf{x},\mathbf{t}) = \psi(\mathbf{x},\mathbf{t}) - \phi(\mathbf{x})$$

(slow decay but no loss of derivatives)

- for the unmodulated perturbation $\tilde{v}(x,t)$ and the modulated perturbation v(x,t)
 - obtain the decay rate $(1+t)^{-3/4}$ for the modulated perturbation ⁴

$$oldsymbol{v(t)} = \widetilde{S}(t) v_0 + \int_0^t \widetilde{S}(t-s) \mathcal{N}(v(s), \gamma(s), \partial_t \gamma(s)) \, ds + \gamma_{\scriptscriptstyle X}(t) v(t)$$

■ obtain the needed regularity for the unmodulated perturbation

$$\widetilde{\mathbf{v}}(t) = e^{\mathcal{A}t} v_0 + \int_0^t e^{\mathcal{A}(t-s)} \widetilde{\mathcal{N}}(\widetilde{\mathbf{v}}(s)) ds$$

• use mean value inequalities to connect $\tilde{v}(x,t)$ and v(x,t)

⁴Recall the decay rates in the decomposition $e^{\mathcal{A}t} = s_p(t) + \widetilde{S}(t)$

NONLINEAR STABILITY

Second approach

[Zumbrun (2023)]

■ define a forward-modulated perturbation

$$\mathring{\mathbf{v}}(\mathbf{x},t) = \psi(\mathbf{x},t) - \phi(\mathbf{x} + \gamma(\mathbf{x},t))$$

- use the energy to obtain a nonlinear damping estimate for the forward-modulated perturbation
- use mean value inequalities to connect $\mathring{v}(x,t)$ and v(x,t)
- Advantage: requires less regularity for the initial data (H² instead of H⁴)

Main result

There exist constants ε , M>0 such that, whenever the initial perturbation $v_0 \in L^1(\mathbb{R}) \cap H^4(\mathbb{R})$ satisfies $E_0 := ||v_0||_{L^1 \cap H^4} < \varepsilon$, there exist functions

$$\tilde{\mathbf{v}}, \gamma \in C([0,\infty), H^4(\mathbb{R})) \cap C^1([0,\infty), H^2(\mathbb{R})),$$

with $\tilde{v}(0) = v_0$ and $\gamma(0) = 0$ such that $\psi(t) = \phi + \tilde{v}(t)$ is the unique global solution of LLE with initial condition $\psi(0) = \phi + v_0$.

The inequalities

$$\|\psi(t) - \phi\|_{L^2}, \ \|\gamma(t)\|_{L^2} \le ME_0(1+t)^{-\frac{1}{4}},$$
 $\|\psi(\cdot - \gamma(\cdot, t), t) - \phi\|_{L^2}, \le ME_0(1+t)^{-\frac{3}{4}},$

hold for all t > 0.

A RELATED PROBLEM

- **Subharmonic perturbations (***NT***-periodic):** stability results are not uniform in *N*
 - the size of initial data tends to 0 as $N \to \infty$
 - for LLE: the exponential decay rate tends to 0 as $N \to \infty$
- **Ч** Stability result uniform in *N*?

A RELATED PROBLEM

- **Subharmonic perturbations (***NT***-periodic):** stability results are not uniform in *N*
 - the size of initial data tends to 0 as $N \to \infty$
 - for LLE: the exponential decay rate tends to 0 as $N \to \infty$

■ Stability result uniform in N?

Yes, provided stability for localized perturbations holds:

- adapt the stability proofs used for localized perturbations
- the uniform decay rate is the same as the one for localized perturbations
- improved nonuniform subharmonic stability result: provides an *N*-independent ball of initial perturbations which eventually exhibit exponential decay at an *N*-dependent rate

Uniform subharmonic stability

There exist $\varepsilon, M > 0$ such that, for each $N \in \mathbb{N}$, whenever $v_0 \in H^2_{\mathrm{per}}(0, NT)$ satisfies $E_0 := \|v_0\|_{L^1 \cap H^2} < \varepsilon$, there exist a constant $\sigma_{\mathbf{nl}} \in \mathbb{R}$, a modulation function

$$\gamma_{\mathbf{nl}} \in C\big([0,\infty), H^4_{\mathrm{per}}(0,NT)\big) \cap C^1\big([0,\infty), H^2_{\mathrm{per}}(0,NT)\big),$$

and a global classical solution

$$\boldsymbol{\psi} \in C\big([0,\infty), H^2_{\mathrm{per}}(0,NT)\big) \cap C^1\big([0,\infty), L^2_{\mathrm{per}}(0,NT)\big),$$

of LLE with initial condition $\psi(0) = \phi + v_0$.

Uniform Subharmonic Stability

The inequalities

$$\begin{split} \|\psi(\cdot,t)-\phi\|_{H^2_{\mathrm{per}(0,NT)}} &\leq \mathit{ME}_0, \\ \left\|\psi(\cdot,t)-\phi(\cdot+\frac{1}{N}\sigma_{\mathrm{nl}})\right\|_{L^2_{\mathrm{per}(0,NT)}} &\leq \mathit{ME}_0(1+t)^{-\frac{1}{4}}, \\ \left\|\psi(\cdot,t)-\phi(\cdot+\gamma_{\mathrm{nl}}(\cdot,t))\right\|_{L^2_{\mathrm{per}(0,NT)}} &\leq \mathit{ME}_0(1+t)^{-\frac{3}{4}}, \\ \left|\sigma_{\mathrm{nl}}\right| &\leq \mathit{ME}_0, \quad \left\|\gamma_{\mathrm{nl}}(\cdot,t)-\frac{1}{N}\sigma_{\mathrm{nl}}\right\|_{L^2_{\mathrm{per}(0,NT)}} &\leq \mathit{ME}_0(1+t)^{-\frac{1}{4}}, \end{split}$$

hold for all $t \geq 0$.

COROLLARY

For each $N \in \mathbb{N}$, there exists $\delta_N > 0$ such that for any $\delta \in (0, \delta_N)$, there exist constants $T_\delta \geq 0$ and $M_\delta > 0$ with

$$\left\|\psi(\cdot,t) - \phi(\cdot + \frac{1}{N}\sigma_{\mathrm{nl}})\right\|_{H^1} \leq \begin{cases} \mathsf{ME}_0(1+t)^{-\frac{1}{4}}, & 0 < t \leq T_{\delta}, \\ \mathsf{M}_{\delta}\mathsf{E}_0e^{-\delta t}, & t > T_{\delta}. \end{cases}$$

Furthermore, $T_{\delta} \to \infty$ as $N \to \infty$.

Semigroup decomposition

$$e^{\mathcal{A}[\phi]t}v = \mathcal{P}_{0,N}v + \phi' s_{p,N}(t)v + \widetilde{S}_{N}(t)v,$$

- constant term $\mathcal{P}_{0,N} = \phi'(\widetilde{\Phi}_0, \cdot)_{L^2_N}/N$ (spectral projection onto the one-dimensional kernel of $\mathcal{A}[\phi]$)
- component with $(1+t)^{-1/4}$ -decay
- component with $(1+t)^{-3/4}$ -decay

Proof

Semigroup decomposition

$$e^{\mathcal{A}[\phi]t}v = \mathcal{P}_{0,N}v + \phi' s_{p,N}(t)v + \widetilde{S}_{N}(t)v,$$

- constant term $\mathcal{P}_{0,N} = \phi'\langle \widetilde{\Phi}_0, \cdot \rangle_{L^2_N}/N$ (spectral projection onto the one-dimensional kernel of $\mathcal{A}[\phi]$)
- component with $(1+t)^{-1/4}$ -decay
- component with $(1+t)^{-3/4}$ -decay

Define the *inverse-modulated perturbation*

$$v(x,t) = \psi(x - \gamma_{\rm nl}(x,t), t) - \phi(x),$$

the forward-modulated perturbation

$$\mathring{v}(x,t) = \psi(x,t) - \phi(x + \gamma_{\rm nl}(x,t)).$$

and $\gamma_{\rm nl}(x,t) = \frac{1}{N}\sigma(t) + \gamma(x,t)$, with

$$\begin{split} & \sigma(t) = \left\langle \widetilde{\Phi}_0, v_0 \right\rangle_{L_N^2} + \int_0^t \left\langle \widetilde{\Phi}_0, \mathcal{N}(v, \gamma, \partial_s \gamma, \partial_s \sigma)(s) \right\rangle_{L_N^2} \mathrm{d}s, \\ & \gamma(t) = s_{\rho, N}(t) v_0 + \int_0^t s_{\rho, N}(t - s) \mathcal{N}(v, \gamma, \partial_s \gamma, \partial_s \sigma)(s) \mathrm{d}s. \end{split}$$

Define the *template function*:

$$\begin{split} \eta(t) &= \sup_{0 \leq s \leq t} \left[(1+s)^{\frac{3}{4}} \left(\|\mathring{v}(s)\|_{H_N^2} + \|\partial_x \gamma(s)\|_{H_N^3} + \|\partial_s \gamma(s)\|_{H_N^2} \right) \right. \\ &+ (1+s)^{\frac{1}{4}} \left\| \gamma(s)\|_{L_N^2} + (1+s)^{\frac{3}{2}} \left| \partial_s \sigma(s) \right| + \left| \sigma(s) \right| \right] \end{split}$$

(continuous, positive and monotonically increasing).

Prove that there exist *N*- and *t*-independent constants R > 0 and $C \ge 1$ such that for all $t \in [0, \tau_{\text{max}})$ if $\eta(t) \le R$ then

$$\eta(t) \leq C \left(E_0 + \eta(t)^2 \right)$$

and conclude by continuous induction, for sufficiently small $\ensuremath{\textit{E}}_0$ and

$$\sigma_{\rm nl} = \left\langle \widetilde{\Phi}_0, \nu_0 \right\rangle_{L^2_{\mathcal{N}}} + \int_0^\infty \left\langle \widetilde{\Phi}_0, \mathcal{N}(\nu, \gamma, \partial_s \gamma, \partial_s \sigma)(s) \right\rangle_{L^2_{\mathcal{N}}} \mathrm{d}s.$$

Proof

Proof of $\eta(t) \leq C \left(E_0 + \eta(t)^2\right)$:

rely on connection between norms:

$$\|v(t)\|_{H_N^2} \leq C \left(\|\mathring{v}(t)\|_{H_N^2} + \|\gamma_x(t)\|_{H_N^1}\right), \ \|\mathring{v}(t)\|_{L_N^2} \leq C \left(\|v(t)\|_{L_N^2} + \|\gamma_x(t)\|_{H_N^1}\right)$$

use Duhamel formulations to show that

$$\|v(s)\|_{L^2_N}, \ \|\partial_x^\ell \partial_s^j \gamma(s)\|_{L^2_N} \ \lesssim \ \frac{E_0 + \eta(s)^2}{(1+s)^{\frac{3}{4}}}, \ \|\gamma(s)\|_{L^2_N} \lesssim \frac{E_0 + \eta(s)^2}{(1+s)^{\frac{1}{4}}},$$

$$|\sigma(s)| \lesssim E_0 + \eta(s)^2, \quad |\partial_t \sigma(s)| \lesssim \frac{E_0 + \eta(s)^2}{(1+s)^{\frac{3}{2}}},$$

use a nonlinear damping estimate

$$\begin{split} \|\mathring{v}(t)\|_{H_{N}^{2}}^{2} \lesssim \mathrm{e}^{-t} \|v_{0}\|_{H_{N}^{2}}^{2} + \|\mathring{v}(t)\|_{L_{N}^{2}}^{2} + \int_{0}^{t} \mathrm{e}^{-(t-s)} \left(\|\mathring{v}(s)\|_{L_{N}^{2}}^{2} + \|\gamma_{x}(s)\|_{H_{N}^{3}}^{2} + \|\partial_{s}\gamma(s)\|_{H_{N}^{2}}^{2} + |\partial_{s}\sigma(s)|^{2} \right) \mathrm{d}s \\ \text{and show that} \end{split}$$

$$\|\mathring{v}(s)\|_{H^2_{\mathcal{N}}} \; \lesssim \; rac{E_0 + \eta(s)^2}{(1+s)^{rac{3}{2}}}$$

combine these inequalites and conclude.

