
Stability of Periodic Waves for
NLS-Type Equations

Mariana Haragus

Institut FEMTO-ST
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Stability of periodic waves

asymptotic behaviour of solutions for initial data close to

a periodic wave

■ co-periodic perturbations [period T of the wave]

■ subharmonic perturbations [period NT , N ∈ N]

■ localized perturbations
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Dissipative PDEs

Nonlinear stability for localized/bounded perturbations:

■ periodic wave trains in reaction-diffusion systems

■ Taylor vortices in infinite cylinders

■ viscous roll waves

■ periodic traveling-wave solutions of viscous conservation laws
■ . . .

[Schneider; 1996-98] [Doelman, Sandstede, Scheel, Schneider; 2009]

[Sandstede, Scheel, Schneider, Uecker; 2012] [Johnson, Noble,

Rodrigues, Zumbrun; 2010-14] [. . . ]



Dispersive PDEs

KdV, NLS equations and similar:

■ nonlinear stability for co-periodic perturbations

■ spectral stability for localized/bounded/subharmonic

perturbations

■ use integrability: orbital stability for subharmonic

perturbations / linear stability for localized perturbations

[Gallay, H., Lombardi, Scheel, Angulo, Bona, Scialom, Bronski, Rapti,

Deconinck, Kapitula, Pelinovski, Geyer, Hur, Johnson, Rodrigues, Natali,

Pastor, . . . ; since 2005]

Nonlinear stability for localized/bounded perturbations?



Defocusing NLS

iUt(x, t) + Uxx(x, t) − |U(x, t)|2U(x, t) = 0

orbital stability for co-periodic perturbations: use the

general theory [Grillakis, Shatah, Strauss; 1990]:
■ a two-parameter family of periodic waves: 1

UJ,E (x , t) = e−iteipx QJ,E (x) , x , t ∈ R

■ QJ,E is a degenerate saddle point of a modified energy with

one unstable and two neutral directions

■ conserved quantities: charge N and momentum M

■ QJ,E is a local minimum of the modified energy restricted to

the codimension two manifold

ΣJ,E =
{
Q ∈ X

∣∣∣N(Q) = N(QJ,E ) , M(Q) = M(QJ,E )
}

[Gallay & H.; 2007]

1J = angular momentum, E=energy in the steady equation
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Defocusing NLS

iUt(x, t) + Uxx(x, t) − |U(x, t)|2U(x, t) = 0

2Nπ–periodic perturbations:
■ similar analytical set-up but the second variation of the energy

has 2N − 1 negative eigenvalues

■ replace the manifolds ΣE ,J by invariant manifolds of

codimension 2n −→ 2n conserved quantities . . . ?

■ integrability: take a higher order energy such that QJ,E is a

local minimum [Gallay & Pelinovsky; 2015]

localized perturbations:
■ the second variation of the energy has continuous spectrum

. . . ?

■ How about a damped NLS equation?
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LL equation

[Lugiato & Lefever, 1987]

∂ψ

∂t
= −iβ

∂2ψ

∂x2
− (1 + iα)ψ + iψ |ψ|2 + F

■ ψ(x, t) ∈ C, β, α ∈ R, F ∈ R (but not only)

■ NLS-type equation with damping, detuning, and driving

■ extensively studied in the physics literature [. . . ]

■ few mathematical results . . .



Stability of periodic waves

Localized perturbations

■ spectral stability

[Delcey & H. (2018)]

■ spectral stability implies linear stability

[H., Johnson, Perkins (2021)]

■ linear stability implies nonlinear stability

[H., Johnson, Perkins, & de Rijk (2023)]



Spectral stability

spectrum of the linearized operator A [matrix differential

operator with periodic coefficients]

A = −I + JL

J =

(
0 −1

1 0

)

L =

(
−β∂2x − α+ 3ϕ2r + ϕ2i 2ϕrϕi

2ϕrϕi −β∂2x − α+ ϕ2r + 3ϕ2i

)

ϕ = ϕr + iϕi denotes the T -periodic wave



Spectral stability

spectrum of the linearized operator A [matrix differential

operator with periodic coefficients]

co-periodic

space: L2
per(0,NT )

subharmonic

space: L2
per(0,NT )

localized

space: L2(R)



Localized perturbations

continuous spectrum

Key tool:
Bloch decomposition

■ Bloch transform representation for g ∈ L2(R)

g(x) =
1

2π

∫ π/T

−π/T

e iξx ǧ(ξ, x)dξ, ǧ(ξ, x) :=
∑
ℓ∈Z

e2πiℓx/T ĝ(ξ+2πℓ/T )

■ Bloch operator Aξ := e−iξxAe iξx acting in L2(0,T )

■ spectrum
σL2(R) (A) =

⋃
ξ∈[−π/T ,π/T )

σL2per(0,T ) (Aξ)
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Main result

Diffusive spectral stability

the spectrum of the linearized operator A acting in L2(R) satisfies

σL2(R)(A) ⊂ {λ ∈ C : Re(λ) < 0} ∪ {0};

there exists θ > 0 such that for any ξ ∈ [−π/T , π/T ) the real part

of the spectrum of the Bloch operator Aξ := e−iξxAe iξx acting in

L2per(0,T ) satisfies

Re
(
σL2

per(0,T )(Aξ)
)
≤ −θξ2;

λ = 0 is a simple eigenvalue of A0 with associated eigenvector ψ

(the derivative ϕ′ of the periodic wave).



Linear stability

decay of the C 0-semigroup eAt

■ difficulty: no spectral gap

■ Bloch decomposition of the semigroup

eAtv(x) =
1

2π

∫ π/T

−π/T

e iξxeAξt v̌(ξ, x)dξ

Bloch operator Aξ := e−iξxAe iξx acting in L2per(0,T )

[Schneider, . . . , Johnson, Noble, Rodrigues, Zumbrun]
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Linear stability

Hypotheses

■ diffusive spectral stability;

■ the operator A generates a C 0-semigroup on L2(R) and for

each ξ ∈ [−π/T , π/T ) the Bloch operators Aξ generate

C 0-semigroups on L2per(0,T );

■ there exist positive constants µ0 and C0 such that for each

ξ ∈ [−π/T , π/T ) the Bloch resolvent operators satisfy

∥(iµ−Aξ)
−1∥L(L2

per(0,T )) ≤ C0, for all |µ| > µ0.

checked for LLE: [Delcey, H., 2018], [Stanislavova, Stefanov, 2018]



Main result

There exists a constant C > 0 such that for any v ∈ L1(R) ∩ L2(R)
and all t > 0 we have 2∥∥eAtv

∥∥
L2(R) ≤ C (1 + t)−1/4∥v∥L1(R)∩L2(R).

Furthermore, eAt = sp(t) + S̃(t) with

∥sp(t)v∥L2(R) ≤ C (1 + t)−1/4∥v∥L1(R),∥∥∥S̃(t)v∥∥∥
L2(R)

≤ C (1 + t)−3/4∥v∥L1(R)∩L2(R).

2The decay is lost when v ∈ L2(R), only.



Proof

estimates on Bloch semigroups eAξt , ξ ∈ [−π/T , π/T )

(use: the diffusive spectral stability hypothesis, resolvent estimate,

Gearhart-Prüss theorem)

■ For any ξ0 ∈ (0, π/T ), there exist C0 > 0, η0 > 0, such that∥∥eAξt
∥∥
L(L2

per(0,T ))
≤ C0e

−η0t ,

for all t ≥ 0 and all ξ ∈ [−π/T , π/T ) with |ξ| > ξ0.
■ There exists ξ1 ∈ (0, π/T ) and C1 > 0, η1 > 0 such that∥∥eAξt (I − Π(ξ))

∥∥
L(L2

per(0,T ))
≤ C1e

−η1t ,

for all t ≥ 0 and all |ξ| < ξ1, where Π(ξ) is the spectral

projection onto the (one-dimensional) eigenspace associated to

the eigenvalue λc(ξ), the continuation for small ξ of the simple

eigenvalue 0 of A0.



Proof

decompose the semigroup eAt (use: the representation

formula for the semigroup and a smooth cut-off function with

ρ(ξ) = 1 for |ξ| < ξ1/2 and ρ(ξ) = 0 for |ξ| > ξ1)

eAtv(x) =
1

2π

∫ π/T

−π/T

ρ(ξ)e iξxeAξt v̌(ξ, x)dξ

+
1

2π

∫ π/T

−π/T

(1− ρ(ξ))e iξxeAξt v̌(ξ, x)dξ

=: Slf (t)v(x) + Shf (t)v(x)

and show that

∥Shf (t)v∥L2(R) ≲ e−ηt∥v∥L2(R)



Proof

decompose Slf (t)v(x) (use the diffusive spectral stability

hypothesis)

Slf (t)v(x) =
1

2π

∫ π/T

−π/T

ρ(ξ)e iξxeAξtΠ(ξ)v̌(ξ, x)dξ

+
1

2π

∫ π/T

−π/T

ρ(ξ)e iξxeAξt(1− Π(ξ))v̌(ξ, x)dξ

=: Sc(t)v(x) + S̃lf (t)v(x)

and show that ∥∥∥S̃hf (t)v∥∥∥
L2(R)

≲ e−ηt∥v∥L2(R)



Proof

decompose Sc(t)v(x) (use formula for Π(ξ))

Sc(t)v(x) =
1

2π

∫ π/T

−π/T

ρ(ξ)e iξxeAξtΠ(0)v̌(ξ, x)dξ

+
1

2π

∫ π/T

−π/T

ρ(ξ)e iξxeAξt(Π(0)− Π(ξ))v̌(ξ, x)dξ

=: sp(t)v(x) + S̃c(t)v(x)

and show that3∥∥∥S̃c(t)v∥∥∥
L2(R)

≲ ∥ξe−dξ2t∥L2
ξ(R)∥v∥L1(R)≲ (1 + t)−3/4∥v∥L1(R)

∥sp(t)v∥L2(R) ≲ ∥e−dξ2t∥L2
ξ(R)∥v∥L1(R)≲ (1 + t)−1/4∥v∥L1(R)

3The decay is lost when v ∈ L2(R), only.



Nonlinear stability

linear stability implies nonlinear stability

⇝ rely on Duhamel’s formulation and properties of the

semigroup

⇝ two main difficulties:

■ semigroup with slow decay (1 + t)−1/4

■ C 0-semigroup
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Nonlinear stability

First difficulty: semigroup with slow decay (1 + t)−1/4

■ no decay for the (unmodulated) perturbation

ṽ(x, t) = ψ(x, t) − ϕ(x)

satisfying (Duhamel formulation)

ṽ(t) = eAtv0 +

∫ t

0

eA(t−s)Ñ (ṽ(s)) ds

■ define a modulated perturbation

v(x, t) = ψ(x−γ(x, t), t) − ϕ(x)

[Schneider, Doelman, Sandstede, Scheel, Uecker,

. . . Johnson, Noble, Rodrigues, Zumbrun]
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Nonlinear stability

modulated perturbation

v(x, t) = ψ(x−γ(x, t), t) − ϕ(x)

⇝ satisfies (∂t −A) (v + γϕ′) = N (v , γ, ∂tγ) + (∂t −A) (γxv)

⇝ use Duhamel formulation and eAt = sp(t) + S̃(t) to:

■ define the phase modulation γ(x, t)

γ(t) = sp(t)v0 +

∫ t

0

sp(t − s)N (v(s), γ(s), ∂tγ(s)) ds

(such that it captures the slowest decay rate (1 + t)−1/4)

■ obtain a formula for v(x, t)

v(t) = S̃(t)v0 +

∫ t

0

S̃(t − s)N (v(s), γ(s), ∂tγ(s)) ds + γx(t)v(t)

(stronger decay rate (1 + t)−3/4; enough to conclude . . . )
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Nonlinear stability

Second difficulty: C 0-semigroup

■ no control of derivatives of the modulated perturbation

v(x, t) = ψ(x−γ(x, t), t) − ϕ(x)

appearing in the nonlinear terms N (v(s), γ(s), ∂tγ(s))

First approach [H., Johnson, Perkins, & de Rijk (2023)]

■ use integration by parts to gain derivatives and decay in the

formula for the phase modulation γ(x, t)

■ also use the unmodulated perturbation

ṽ(x, t) = ψ(x, t) − ϕ(x)

(slow decay but no loss of derivatives)
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Nonlinear stability

for the unmodulated perturbation ṽ(x, t) and the modulated

perturbation v(x, t)

■ obtain the decay rate (1 + t)−3/4 for the modulated

perturbation 4

v(t) = S̃(t)v0 +

∫ t

0

S̃(t − s)N (v(s), γ(s), ∂tγ(s)) ds + γx(t)v(t)

■ obtain the needed regularity for the unmodulated perturbation

ṽ(t) = eAtv0 +

∫ t

0

eA(t−s)Ñ (ṽ(s)) ds

■ use mean value inequalities to connect ṽ(x, t) and v(x, t)

4Recall the decay rates in the decomposition eAt = sp(t) + S̃(t)



Nonlinear stability

Second approach [Zumbrun (2023)]

■ define a forward-modulated perturbation

v̊(x, t) = ψ(x, t) − ϕ(x + γ(x, t))

■ use the energy to obtain a nonlinear damping estimate for the

forward-modulated perturbation

■ use mean value inequalities to connect v̊(x, t) and v(x, t)

■ Advantage: requires less regularity for the initial data

(H2 instead of H4)



Main result

There exist constants ε,M > 0 such that, whenever the initial

perturbation v0 ∈ L1(R) ∩ H4(R) satisfies E0 := ∥v0∥L1∩H4 < ε,

there exist functions

ṽ , γ ∈ C
(
[0,∞),H4(R)

)
∩ C 1

(
[0,∞),H2(R)

)
,

with ṽ(0) = v0 and γ(0) = 0 such that ψ(t) = ϕ+ ṽ(t) is the

unique global solution of LLE with initial condition ψ(0) = ϕ+ v0.

The inequalities

∥ψ(t) − ϕ∥L2 , ∥γ(t)∥L2 ≤ ME0(1 + t)−
1
4 ,

∥ψ (·−γ(·, t), t) − ϕ∥L2 ,≤ ME0(1 + t)−
3
4 ,

hold for all t ≥ 0.



A related problem

Subharmonic perturbations (NT -periodic): stability

results are not uniform in N

■ the size of initial data tends to 0 as N → ∞
■ for LLE: the exponential decay rate tends to 0 as N → ∞

Stability result uniform in N?

Yes, provided stability for localized perturbations holds:

■ adapt the stability proofs used for localized perturbations

■ the uniform decay rate is the same as the one for

localized perturbations

■ improved nonuniform subharmonic stability result:

provides an N-independent ball of initial perturbations which

eventually exhibit exponential decay at an N-dependent rate
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Uniform subharmonic stability

There exist ε,M > 0 such that, for each N ∈ N, whenever
v0 ∈ H2

per(0,NT ) satisfies E0 := ∥v0∥L1∩H2 < ε, there exist a

constant σnl ∈ R, a modulation function

γnl ∈ C
(
[0,∞),H4

per(0,NT )
)
∩ C 1

(
[0,∞),H2

per(0,NT )
)
,

and a global classical solution

ψ ∈ C
(
[0,∞),H2

per(0,NT )
)
∩ C 1

(
[0,∞), L2per(0,NT )

)
,

of LLE with initial condition ψ(0) = ϕ+ v0.



Uniform subharmonic stability

The inequalities

∥ψ(·, t) − ϕ∥
H2

per(0,NT ) ≤ ME0,∥∥∥∥ψ(·, t) − ϕ(·+
1

N
σnl)

∥∥∥∥
L
2
per(0,NT )

≤ ME0(1 + t)−
1
4 ,

∥ψ (·, t) − ϕ(·+ γnl(·, t))∥L2
per(0,NT )

≤ ME0(1 + t)−
3
4 ,

|σnl| ≤ ME0,

∥∥∥∥γnl(·, t)− 1

N
σnl

∥∥∥∥
L2
per(0,NT )

≤ ME0(1 + t)−
1
4 ,

hold for all t ≥ 0.



Corollary

For each N ∈ N, there exists δN > 0 such that for any

δ ∈ (0, δN), there exist constants Tδ ≥ 0 and Mδ > 0 with∥∥∥∥ψ(·, t) − ϕ(·+
1

N
σnl)

∥∥∥∥
H1

≤
{
ME0(1 + t)−

1
4 , 0 < t ≤ Tδ,

MδE0e
−δt , t > Tδ.

Furthermore, Tδ → ∞ as N → ∞.



Proof

Semigroup decomposition

eA[ϕ]tv = P0,Nv + ϕ′sp,N(t)v + S̃N(t)v ,

■ constant term P0,N = ϕ′⟨Φ̃0, ·⟩L2
N
/N (spectral projection onto the

one-dimensional kernel of A[ϕ])

■ component with (1 + t)−1/4-decay

■ component with (1 + t)−3/4-decay

Define the inverse-modulated perturbation

v(x , t) = ψ (x − γnl(x , t), t)− ϕ(x),

the forward-modulated perturbation

v̊(x , t) = ψ (x , t)− ϕ (x + γnl(x , t)) .

and γnl(x , t) =
1
N σ(t) + γ(x , t), with

σ(t) =
〈
Φ̃0, v0

〉
L2
N

+

∫ t

0

〈
Φ̃0,N (v , γ, ∂sγ, ∂sσ)(s)

〉
L2
N

ds,

γ(t) = sp,N(t)v0 +

∫ t

0

sp,N(t − s)N (v , γ, ∂sγ, ∂sσ)(s)ds.
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〉
L2
N

ds,

γ(t) = sp,N(t)v0 +

∫ t

0

sp,N(t − s)N (v , γ, ∂sγ, ∂sσ)(s)ds.



Proof

Define the template function:

η(t) = sup
0≤s≤t

[
(1 + s)

3
4

(
∥v̊(s)∥H2

N
+ ∥∂xγ(s)∥H3

N
+ ∥∂sγ(s)∥H2

N

)
+(1 + s)

1
4 ∥γ(s)∥L2

N
+ (1 + s)

3
2 |∂sσ(s)|+ |σ(s)|

]
(continuous, positive and monotonically increasing).

Prove that there exist N- and t-independent constants R > 0 and

C ≥ 1 such that for all t ∈ [0, τmax) if η(t) ≤ R then

η(t) ≤ C
(
E0 + η(t)2

)
and conclude by continuous induction, for sufficiently small E0 and

σnl =
〈
Φ̃0, v0

〉
L2
N

+

∫ ∞

0

〈
Φ̃0,N (v , γ, ∂sγ, ∂sσ)(s)

〉
L2
N

ds.



Proof

Proof of η(t) ≤ C
(
E0 + η(t)2

)
:

■ rely on connection between norms:

∥v(t)∥H2
N
≤ C

(
∥v̊(t)∥H2

N
+ ∥γx(t)∥H1

N

)
, ∥v̊(t)∥L2

N
≤ C

(
∥v(t)∥L2

N
+ ∥γx(t)∥H1

N

)
■ use Duhamel formulations to show that

∥v(s)∥L2
N
, ∥∂ℓ

x∂
j
sγ(s)∥L2

N
≲

E0 + η(s)2

(1 + s)
3
4

, ∥γ(s)∥L2
N
≲

E0 + η(s)2

(1 + s)
1
4

,

|σ(s)| ≲ E0 + η(s)2, |∂tσ(s)| ≲
E0 + η(s)2

(1 + s)
3
2

,

■ use a nonlinear damping estimate

∥v̊(t)∥2
H2
N

≲ e−t∥v0∥2H2
N

+ ∥v̊(t)∥2
L2
N

+
∫ t
0 e−(t−s)

(
∥v̊(s)∥2

L2
N

+ ∥γx (s)∥2
H3
N

+ ∥∂sγ(s)∥2
H2
N

+ |∂sσ(s)|2
)

ds

and show that

∥v̊(s)∥H2
N
≲

E0 + η(s)2

(1 + s)
3
2

■ combine these inequalites and conclude.
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