STABILITY OF PERIODIC WAVES FOR NLS-Type Equations

Mariana Haragus

Institut FEMTO-ST

Université de Franche-Comté, Besançon, France

Stability of periodic waves

a asymptotic behaviour of solutions for initial data close to a periodic wave

Stability of periodic waves

\sum

a asymptotic behaviour of solutions for initial data close to a periodic wave

 \blacksquare co-periodic perturbations [period τ of the wave]

SAAC

■ subharmonic perturbations [period NT , $N \in \mathbb{N}$]

■ localized perturbations

I Nonlinear stability for localized/bounded perturbations:

- periodic wave trains in reaction-diffusion systems
- Taylor vortices in infinite cylinders
- viscous roll waves
- periodic traveling-wave solutions of viscous conservation laws
- . . .

[Schneider; 1996-98] [Doelman, Sandstede, Scheel, Schneider; 2009] [Sandstede, Scheel, Schneider, Uecker; 2012] [Johnson, Noble, Rodrigues, Zumbrun; 2010-14] [. . .]

Dispersive PDEs

KdV. NLS equations and similar:

- nonlinear stability for co-periodic perturbations
- spectral stability for localized/bounded/subharmonic perturbations
- use integrability: orbital stability for subharmonic perturbations / linear stability for localized perturbations

[Gallay, H., Lombardi, Scheel, Angulo, Bona, Scialom, Bronski, Rapti, Deconinck, Kapitula, Pelinovski, Geyer, Hur, Johnson, Rodrigues, Natali, Pastor, . . . ; since 2005]

 \Box Nonlinear stability for localized/bounded perturbations?

$$
iU_t(x,t) + U_{xx}(x,t) - |U(x,t)|^2 U(x,t) = 0
$$

The orbital stability for co-periodic perturbations: use the general theory [Grillakis, Shatah, Strauss; 1990]:

 \blacksquare a two-parameter family of periodic waves: $\frac{1}{1}$

 $U_{J,E}(x,t) = e^{-it}e^{ipx} Q_{J,E}(x)$, $x, t \in \mathbb{R}$

 $^1 J=$ angular momentum, $\it E=$ energy in the steady equation

$$
iU_t(x,t) + U_{xx}(x,t) - |U(x,t)|^2 U(x,t) = 0
$$

orbital stability for co-periodic perturbations: use the general theory [Grillakis, Shatah, Strauss; 1990]:

 \blacksquare a two-parameter family of periodic waves: $\frac{1}{1}$

 $U_{J,E}(x,t) = e^{-it}e^{ipx} Q_{J,E}(x)$, $x, t \in \mathbb{R}$

- \Box Q_{LE} is a degenerate saddle point of a modified energy with one unstable and two neutral directions
- conserved quantities: charge N and momentum M
- \Box Q_{IF} is a local minimum of the modified energy restricted to the codimension two manifold

$$
\Sigma_{J,E} = \left\{ Q \in X \, \middle| \, N(Q) = N(Q_{J,E}), \ M(Q) = M(Q_{J,E}) \right\}
$$

[Gallay & H.; 2007]

 $^1 J=$ angular momentum, $\it E=$ energy in the steady equation

$$
iU_t(x,t) + U_{xx}(x,t) - |U(x,t)|^2 U(x,t) = 0
$$

$\frac{1}{2}$ 2N π –periodic perturbations:

- \blacksquare similar analytical set-up but the second variation of the energy has $2N - 1$ negative eigenvalues
- **■** replace the manifolds $\Sigma_{E,J}$ by invariant manifolds of codimension $2n \longrightarrow 2n$ conserved quantities ...?
- **■** integrability: take a higher order energy such that Q_{LE} is a local minimum [Gallay & Pelinovsky; 2015]

$$
iU_t(x,t) + U_{xx}(x,t) - |U(x,t)|^2 U(x,t) = 0
$$

$\frac{1}{2}$ 2N π –periodic perturbations:

- \blacksquare similar analytical set-up but the second variation of the energy has $2N - 1$ negative eigenvalues
- **■** replace the manifolds $\Sigma_{E,J}$ by invariant manifolds of codimension $2n \longrightarrow 2n$ conserved quantities ...?
- **■** integrability: take a higher order energy such that Q_{LE} is a local minimum [Gallay & Pelinovsky; 2015]

I localized perturbations:

- the second variation of the energy has continuous spectrum . . . ?
- How about a damped NLS equation?

[Lugiato & Lefever, 1987]

$$
\frac{\partial \psi}{\partial t} = -i\beta \frac{\partial^2 \psi}{\partial x^2} - (1 + i\alpha)\psi + i\psi |\psi|^2 + F
$$

- $\blacktriangleright \psi(x, t) \in \mathbb{C}, \ \beta, \alpha \in \mathbb{R}, \ F \in \mathbb{R}$ (but not only)
- NLS-type equation with damping, detuning, and driving
- extensively studied in the physics literature [...]
- \blacksquare few mathematical results ...

STABILITY OF PERIODIC WAVES

Localized perturbations

■ spectral stability

[Delcey & H. (2018)]

■ spectral stability implies linear stability

[H., Johnson, Perkins (2021)]

■ linear stability implies nonlinear stability [H., Johnson, Perkins, & de Rijk (2023)] SPECTRAL STABILITY

Exerche spectrum of the linearized operator \mathcal{A} [matrix differential operator with periodic coefficients]

$$
\mathcal{A}=-I+\mathcal{J}\mathcal{L}
$$

$$
\mathcal{J} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
$$

$$
\mathcal{L} = \begin{pmatrix} -\beta \partial_x^2 - \alpha + 3\phi_r^2 + \phi_i^2 & 2\phi_r \phi_i \\ 2\phi_r \phi_i & -\beta \partial_x^2 - \alpha + \phi_r^2 + 3\phi_i^2 \end{pmatrix}
$$

 $\phi = \phi_r + i\phi_i$ denotes the T-periodic wave

SPECTRAL STABILITY

Exerche spectrum of the linearized operator \mathcal{A} [matrix differential operator with periodic coefficients]

LOCALIZED PERTURBATIONS

Localized perturbations

Continuous spectrum

KEY TOOL: Bloch decomposition

■ Bloch transform representation for $g\in L^2(\mathbb{R})$

$$
g(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} e^{i\xi x} \breve{g}(\xi, x) d\xi, \quad \breve{g}(\xi, x) := \sum_{\ell \in \mathbb{Z}} e^{2\pi i \ell x/T} \hat{g}(\xi + 2\pi \ell/T)
$$

- Bloch operator $\mathcal{A}_{\xi} := e^{-i\xi x} \mathcal{A} e^{i\xi x}$ acting in $L^2(0,T)$
- spectrum

$$
\sigma_{L^2(\mathbb{R})}\left(\mathcal{A}\right) = \bigcup_{\xi \in \left[-\pi/\mathcal{T}, \pi/\mathcal{T}\right)} \sigma_{L^2_{\text{per}}(0, \mathcal{T})}\left(\mathcal{A}_{\xi}\right)
$$

Diffusive spectral stability

the spectrum of the linearized operator $\mathcal A$ acting in $L^2(\mathbb R)$ satisfies $\sigma_{L^2(\mathbb{R})}(\mathcal{A}) \subset {\lambda \in \mathbb{C} : \text{Re}(\lambda) < 0} \cup {\{0\}};$

there exists $\theta > 0$ such that for any $\xi \in [-\pi/T, \pi/T)$ the real part of the spectrum of the Bloch operator $A_{\xi} := e^{-i\xi x} A e^{i\xi x}$ acting in $L^2_{\text{per}}(0, T)$ satisfies

$$
\mathrm{Re}\left(\sigma_{\mathcal{L}^2_{\mathrm{per}}(0,\mathcal{T})}(\mathcal{A}_{\xi})\right)\leq -\theta\xi^2;
$$

 \Box $\lambda = 0$ is a simple eigenvalue of \mathcal{A}_0 with associated eigenvector ψ (the derivative ϕ' of the periodic wave).

decay of the C^0 -semigroup $e^{{\cal A}t}$

decay of the C^0 -semigroup $e^{{\cal A}t}$

- difficulty: no spectral gap
- Bloch decomposition of the semigroup

$$
e^{\mathcal{A}t}v(x)=\frac{1}{2\pi}\int_{-\pi/T}^{\pi/T}e^{i\xi x}e^{\mathcal{A}_{\xi}t}\breve{v}(\xi,x)d\xi
$$

Bloch operator $\mathcal{A}_{\xi} := e^{-i\xi x} \mathcal{A} e^{i\xi x}$ acting in $L^2_{\text{per}}(0, T)$

[Schneider, . . . , Johnson, Noble, Rodrigues, Zumbrun]

Linear stability

Hypotheses

- diffusive spectral stability;
- \blacksquare the operator ${\mathcal A}$ generates a C^0 -semigroup on $L^2({\mathbb R})$ and for each $\xi \in [-\pi/T, \pi/T)$ the Bloch operators A_{ξ} generate C^0 -semigroups on $L^2_{\text{per}}(0, T)$;
- there exist positive constants μ_0 and C_0 such that for each $\xi \in [-\pi/T, \pi/T]$ the Bloch resolvent operators satisfy

 $\|(\iota\mu-\mathcal{A}_{\xi})^{-1}\|_{\mathcal{L}(L^2_{\text{per}}(0,T))}\leq \mathcal{C}_0, \ \ \text{ for all }|\mu|>\mu_0.$

checked for LLE: [Delcey, H., 2018], [Stanislavova, Stefanov, 2018]

There exists a constant $C > 0$ such that for any $v \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ and all $t > 0$ we have ²

$$
||e^{\mathcal{A}t}v||_{L^2(\mathbb{R})}\leq C(1+t)^{-1/4}||v||_{L^1(\mathbb{R})\cap L^2(\mathbb{R})}.
$$

$$
\begin{aligned}\n\begin{aligned}\n\text{Furthermore, } e^{\mathcal{A}t} &= s_p(t) + \widetilde{S}(t) \text{ with} \\
&\|s_p(t)v\|_{L^2(\mathbb{R})} &\leq C(1+t)^{-1/4} \|v\|_{L^1(\mathbb{R})}, \\
&\|\widetilde{S}(t)v\|_{L^2(\mathbb{R})} &\leq C(1+t)^{-3/4} \|v\|_{L^1(\mathbb{R}) \cap L^2(\mathbb{R})}.\n\end{aligned}\n\end{aligned}
$$

 2 The decay is lost when $v\in L^{2}(\mathbb{R}),$ only.

estimates on Bloch semigroups $e^{\mathcal{A}_\xi t}$, $\xi\in [-\pi/\mathcal{T}, \pi/\mathcal{T})$ (use: the diffusive spectral stability hypothesis, resolvent estimate, Gearhart-Prüss theorem)

■ For any $\xi_0 \in (0, \pi/T)$, there exist $C_0 > 0$, $\eta_0 > 0$, such that

$$
\left\|e^{\mathcal{A}_{\xi}t}\right\|_{\mathcal{L}\left(L^2_{\text{per}}\left(0,T\right)\right)} \leq C_0 e^{-\eta_0 t},
$$

for all $t \geq 0$ and all $\xi \in [-\pi/T, \pi/T)$ with $|\xi| > \xi_0$. ■ There exists ξ_1 ∈ $(0, \pi/T)$ and $C_1 > 0$, $\eta_1 > 0$ such that

$$
\left\|e^{\mathcal{A}_{\xi}t}\left(I-\Pi(\xi)\right)\right\|_{\mathcal{L}\left(L^2_{\rm per}(0,T)\right)}\leq C_1e^{-\eta_1 t},
$$

for all $t \geq 0$ and all $|\xi| < \xi_1$, where $\Pi(\xi)$ is the spectral projection onto the (one-dimensional) eigenspace associated to the eigenvalue $\lambda_c(\xi)$, the continuation for small ξ of the simple eigenvalue 0 of A_0 .

decompose the semigroup $e^{\mathcal{A}t}$ (use: the representation formula for the semigroup and a smooth cut-off function with $\rho(\xi) = 1$ for $|\xi| < \xi_1/2$ and $\rho(\xi) = 0$ for $|\xi| > \xi_1$)

$$
e^{\mathcal{A}t}v(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi)e^{i\xi x}e^{\mathcal{A}_{\xi}t}\breve{v}(\xi,x)d\xi
$$

$$
+ \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} (1-\rho(\xi))e^{i\xi x}e^{\mathcal{A}_{\xi}t}\breve{v}(\xi,x)d\xi
$$

$$
=: S_{ff}(t)v(x) + S_{hf}(t)v(x)
$$

and show that

$$
||S_{hf}(t)v||_{L^2(\mathbb{R})}\lesssim e^{-\eta t}||v||_{L^2(\mathbb{R})}
$$

decompose $S_H(t)v(x)$ (use the diffusive spectral stability hypothesis)

$$
S_{lf}(t)v(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi) e^{i\xi x} e^{A_{\xi}t} \Pi(\xi) \breve{v}(\xi, x) d\xi
$$

+
$$
\frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi) e^{i\xi x} e^{A_{\xi}t} (1 - \Pi(\xi)) \breve{v}(\xi, x) d\xi
$$

=:
$$
S_{c}(t)v(x) + \widetilde{S}_{lf}(t)v(x)
$$

and show that

$$
\left\|\widetilde{S}_{hf}(t)v\right\|_{L^2(\mathbb{R})}\lesssim e^{-\eta t}\|v\|_{L^2(\mathbb{R})}
$$

decompose $S_c(t)v(x)$ (use formula for $\Pi(\xi)$)

$$
S_c(t)v(x) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi) e^{i\xi x} e^{A_{\xi}t} \Pi(0)\breve{v}(\xi, x) d\xi
$$

+
$$
\frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} \rho(\xi) e^{i\xi x} e^{A_{\xi}t} (\Pi(0) - \Pi(\xi)) \breve{v}(\xi, x) d\xi
$$

=: $s_p(t)v(x) + \widetilde{S}_c(t)v(x)$

and show that 3

$$
\left\|\tilde{S}_c(t)v\right\|_{L^2(\mathbb{R})} \lesssim \|\xi e^{-d\xi^2 t}\|_{L^2_{\xi}(\mathbb{R})} \|v\|_{L^1(\mathbb{R})} \lesssim (1+t)^{-3/4} \|v\|_{L^1(\mathbb{R})}
$$

$$
\|s_p(t)v\|_{L^2(\mathbb{R})} \lesssim \|e^{-d\xi^2 t}\|_{L^2_{\xi}(\mathbb{R})} \|v\|_{L^1(\mathbb{R})} \lesssim (1+t)^{-1/4} \|v\|_{L^1(\mathbb{R})}
$$

 3 The decay is lost when $v\in L^2(\mathbb{R}),$ only.

linear stability implies nonlinear stability

\Box linear stability implies nonlinear stability

- \leadsto rely on Duhamel's formulation and properties of the semigroup
- \rightsquigarrow two main difficulties:
	- \blacksquare semigroup with slow decay $(1+t)^{-1/4}$
	- \blacksquare C^0 -semigroup

First difficulty: semigroup with slow decay $(1 + t)^{-1/4}$

■ no decay for the (unmodulated) perturbation

$$
\tilde{v}(x,t)=\psi(x,t)-\phi(x)
$$

satisfying (Duhamel formulation)

$$
\tilde{v}(t) = e^{\mathcal{A}t}v_0 + \int_0^t e^{\mathcal{A}(t-s)}\widetilde{\mathcal{N}}(\widetilde{v}(s)) ds
$$

First difficulty: semigroup with slow decay $(1 + t)^{-1/4}$

■ no decay for the (unmodulated) perturbation

$$
\tilde{v}(x,t)=\psi(x,t)-\phi(x)
$$

satisfying (Duhamel formulation)

$$
\tilde{v}(t) = e^{\mathcal{A}t}v_0 + \int_0^t e^{\mathcal{A}(t-s)}\widetilde{\mathcal{N}}(\tilde{v}(s)) ds
$$

■ define a **modulated perturbation**

$$
v(x,t) = \psi(x-\gamma(x,t),t) - \phi(x)
$$

[Schneider, Doelman, Sandstede, Scheel, Uecker, . . . Johnson, Noble, Rodrigues, Zumbrun]

Form modulated perturbation

$$
v(x,t) = \psi(x-\gamma(x,t),t) - \phi(x)
$$

 \rightsquigarrow satisfies $(\partial_t - A)(v + \gamma \phi') = \mathcal{N}(v, \gamma, \partial_t \gamma) + (\partial_t - A)(\gamma_x v)$

To modulated perturbation

$$
v(x,t) = \psi(x-\gamma(x,t),t) - \phi(x)
$$

 \rightsquigarrow satisfies $(\partial_t - A)(v + \gamma \phi') = \mathcal{N}(v, \gamma, \partial_t \gamma) + (\partial_t - A)(\gamma_x v)$

 \leftrightarrow use Duhamel formulation and $\boxed{e^{\mathcal{A}t} = s_p(t) + \widetilde{S}(t)}$ to:

E define the **phase modulation** $\gamma(x, t)$

$$
\gamma(t) = s_p(t)v_0 + \int_0^t s_p(t-s) \mathcal{N}(v(s), \gamma(s), \partial_t \gamma(s)) ds
$$

(such that it captures the slowest decay rate $(1+t)^{-1/4})$

obtain a formula for $v(x, t)$

 $v(t) = \widetilde{S}(t)v_0 + \int_0^t$ $\int\limits_0^1 \frac{S(t-s) \mathcal{N}(\nu(s), \gamma(s), \partial_t \gamma(s)) \, ds + \gamma_{\mathsf{x}}(t) \nu(t)}{s}$

(stronger decay rate $(1 + t)^{-3/4}$; enough to conclude ...)

Second difficulty: C^0 -semigroup

■ no control of derivatives of the modulated perturbation

$$
v(x,t) = \psi(x-\gamma(x,t),t) - \phi(x)
$$

appearing in the nonlinear terms $\mathcal{N}(v(s), \gamma(s), \partial_t \gamma(s))$

Second difficulty: C^0 -semigroup

■ no control of derivatives of the modulated perturbation

$$
v(x,t) = \psi(x-\gamma(x,t),t) - \phi(x)
$$

appearing in the nonlinear terms $\mathcal{N}(v(s), \gamma(s), \partial_t \gamma(s))$

First approach [H., Johnson, Perkins, & de Rijk (2023)]

■ use **integration by parts** to gain derivatives and decay in the formula for the phase modulation $\gamma(x, t)$

$$
\boxed{\gamma(t) = s_p(t)v_0 + \int_0^t s_p(t-s) \mathcal{N}(\nu(s), \gamma(s), \partial_t \gamma(s)) \, ds}
$$

Second difficulty: C^0 -semigroup

■ no control of derivatives of the modulated perturbation

$$
v(x,t) = \psi(x-\gamma(x,t),t) - \phi(x)
$$

appearing in the nonlinear terms $\mathcal{N}(v(s), \gamma(s), \partial_t \gamma(s))$

First approach [H., Johnson, Perkins, & de Rijk (2023)]

- use integration by parts to gain derivatives and decay in the formula for the phase modulation $\gamma(x, t)$
- also use the **unmodulated perturbation**

$$
\tilde{v}(x,t)=\psi(x,t)-\phi(x)
$$

(slow decay but no loss of derivatives)

Fo for the unmodulated perturbation $\tilde{v}(x, t)$ and the modulated perturbation $v(x, t)$

■ obtain the decay rate $(1+t)^{-3/4}$ for the modulated perturbation ⁴

$$
\mathbf{v}(t) = \widetilde{S}(t)v_0 + \int_0^t \widetilde{S}(t-s)\mathcal{N}(\mathbf{v}(s),\gamma(s),\partial_t\gamma(s))\,ds + \gamma_x(t)\mathbf{v}(t)
$$

■ obtain the needed regularity for the unmodulated perturbation

$$
\hat{v}(t) = e^{\mathcal{A}t}v_0 + \int_0^t e^{\mathcal{A}(t-s)}\widetilde{\mathcal{N}}(\widetilde{v}(s)) ds
$$

■ use **mean value inequalities** to connect $\tilde{v}(x, t)$ and $v(x, t)$

⁴Recall the decay rates in the decomposition $e^{\mathcal{A}t} = s_p(t) + \widetilde{S}(t)$

Second approach [Zumbrun (2023)]

■ define a forward-modulated perturbation

$$
\mathring{v}(x,t)=\psi(x,t)-\phi(x+\gamma(x,t))
$$

- use the energy to obtain a nonlinear damping estimate for the forward-modulated perturbation
- **use mean value inequalities** to connect $\mathbf{v}(x, t)$ and $\mathbf{v}(x, t)$
- Advantage: requires less regularity for the initial data $(H²$ instead of $H⁴$)

There exist constants ε , $M > 0$ such that, whenever the initial perturbation $v_0 \in L^1(\mathbb{R}) \cap H^4(\mathbb{R})$ satisfies $\boldsymbol{E_0} := \|\boldsymbol{v_0}\|_{L^1 \cap H^4} < \varepsilon,$ there exist functions

 $\tilde{\mathbf{v}}, \gamma \in C([0,\infty),H^4(\mathbb{R})) \cap C^1([0,\infty),H^2(\mathbb{R})),$

with $\tilde{v}(0) = v_0$ and $\gamma(0) = 0$ such that $\psi(t) = \phi + \tilde{v}(t)$ is the unique global solution of LLE with initial condition $\psi(0) = \phi + \nu_0$.

 \Box The inequalities

 $\|\psi(t)-\phi\|_{L^2}, \, \|\gamma(t)\|_{L^2} \leq M E_0 (1+t)^{-\frac{1}{4}},$ $\left\|\psi\left(\cdot-\gamma(\cdot,t),t\right)-\phi\right\|_{L^2},\leq \textit{ME}_0(1+t)^{-\frac{3}{4}},$

hold for all $t \geq 0$.

 \Box Subharmonic perturbations (NT-periodic): stability results are not uniform in N

- the size of initial data tends to 0 as $N \rightarrow \infty$
- for LLE: the exponential decay rate tends to 0 as $N \to \infty$

 \Box Stability result uniform in N?

 \Box Subharmonic perturbations (NT-periodic): stability results are not uniform in N

- the size of initial data tends to 0 as $N \rightarrow \infty$
- for LLE: the exponential decay rate tends to 0 as $N \to \infty$
- \Box Stability result uniform in N?

Yes, provided stability for localized perturbations holds:

- adapt the stability proofs used for localized perturbations
- the uniform decay rate is the same as the one for localized perturbations
- improved nonuniform subharmonic stability result: provides an N-independent ball of initial perturbations which eventually exhibit exponential decay at an N-dependent rate

Uniform subharmonic stability

There exist ϵ **,** $M > 0$ **such that, for each** $N \in \mathbb{N}$ **, whenever** $v_0 \in H^2_{\text{per}}(0,NT)$ satisfies $\bm{E_0} := ||\bm{v_0}||_{L^1 \cap H^2} < \varepsilon$, there exist a constant $\sigma_{nl} \in \mathbb{R}$, a modulation function

 $\boldsymbol{\gamma}_{\text{n} \text{l}} \in \mathcal{C}\big([0, \infty), \mathsf{H}_{\text{per}}^4(0, N\mathcal{T})\big) \cap \mathcal{C}^1\big([0, \infty), \mathsf{H}_{\text{per}}^2(0, N\mathcal{T})\big),$

and a global classical solution

 $\psi \in \mathcal{C}\big([0,\infty), \mathit{H}_{\mathrm{per}}^2(0,\mathit{NT})\big) \cap \mathcal{C}^1\big([0,\infty), \mathit{L}_{\mathrm{per}}^2(0,\mathit{NT})\big),$

of LLE with initial condition $\psi(0) = \phi + \nu_0$.

Uniform subharmonic stability

 \Box The inequalities

$$
\|\psi(\cdot,t)-\phi\|_{H_{\text{per}}^2(0,NT)} \leq ME_0,
$$

$$
\left\|\psi(\cdot,t)-\phi(\cdot+\frac{1}{N}\sigma_{\text{nl}})\right\|_{L_{\text{per}(0,NT)}^2} \leq ME_0(1+t)^{-\frac{1}{4}},
$$

 $\begin{split} \|\psi\left(\cdot,t\right)-\phi(\cdot+\gamma_{\mathrm{nl}}(\cdot,t))\|_{L^2_{\mathrm{per}(0,NT)}} &\leq \mathsf{ME}_0(1+t)^{-\frac{3}{4}}, \end{split}$

$$
|\sigma_{\mathrm{nl}}| \leq \mathsf{M} E_0, \quad \left\|\gamma_{\mathrm{nl}}(\cdot,t) - \frac{1}{\mathsf{N}}\sigma_{\mathrm{nl}}\right\|_{L^2_{\mathrm{per}(0,\mathsf{N} T)}} \leq \mathsf{M} E_0 (1+t)^{-\frac{1}{4}},
$$

hold for all $t > 0$.

For each
$$
N \in \mathbb{N}
$$
, there exists $\delta_N > 0$ such that for any $\delta \in (0, \delta_N)$, there exist constants $T_{\delta} \geq 0$ and $M_{\delta} > 0$ with

$$
\left\|\psi(\cdot,t)-\phi(\cdot+\frac{1}{N}\sigma_{\mathrm{nl}})\right\|_{H^1}\leq \begin{cases} \mathsf{M}\mathsf{E}_0(1+t)^{-\frac{1}{4}}, & 0\mathsf{T}_\delta. \end{cases}
$$

Furthermore, $T_{\delta} \rightarrow \infty$ as $N \rightarrow \infty$.

Semigroup decomposition

$$
e^{\mathcal{A}[\phi]t}v = \mathcal{P}_{0,N}v + \phi' s_{p,N}(t)v + \widetilde{S}_N(t)v,
$$

- \blacksquare constant term $\mathcal{P}_{0,N} = \phi' \langle \tilde{\Phi}_0, \cdot \rangle_{L^2_N} / N$ (spectral projection onto the one-dimensional kernel of $A[\phi]$)
- \blacksquare component with $(1+t)^{-1/4}$ -decay
- component with $(1+t)^{-3/4}$ -decay

Semigroup decomposition

$$
e^{\mathcal{A}[\phi]t}v=\mathcal{P}_{0,N}v+\phi's_{p,N}(t)v+\widetilde{S}_N(t)v,
$$

- \blacksquare constant term $\mathcal{P}_{0,N} = \phi' \langle \tilde{\Phi}_0, \cdot \rangle_{L^2_N} / N$ (spectral projection onto the one-dimensional kernel of $A[\phi]$)
- \blacksquare component with $(1+t)^{-1/4}$ -decay
- component with $(1+t)^{-3/4}$ -decay

 \Box Define the *inverse-modulated perturbation*

$$
v(x,t) = \psi(x - \gamma_{\rm nl}(x,t),t) - \phi(x),
$$

the forward-modulated perturbation

$$
\mathring{v}(x,t) = \psi(x,t) - \phi(x + \gamma_{\rm nl}(x,t)).
$$

and $\gamma_{\rm nl}(x,t) = \frac{1}{N}\sigma(t) + \gamma(x,t)$, with

$$
\sigma(t) = \left\langle \widetilde{\Phi}_0, v_0 \right\rangle_{L^2_N} + \int_0^t \left\langle \widetilde{\Phi}_0, \mathcal{N}(v, \gamma, \partial_s \gamma, \partial_s \sigma)(s) \right\rangle_{L^2_N} ds,
$$

$$
\gamma(t) = s_{p,N}(t)v_0 + \int_0^t s_{p,N}(t-s) \mathcal{N}(v, \gamma, \partial_s \gamma, \partial_s \sigma)(s) ds.
$$

\Box Define the *template function:* $\eta(t) = \sup_{0 \leq s \leq t}$ $\Bigl[\bigl(1 + s\bigr)^{\frac{3}{4}}\left(\|\mathring{v}(s)\|_{H^2_N} + \|\partial_{x}\gamma(s)\|_{H^3_N} + \|\partial_{s}\gamma(s)\|_{H^2_N} \Bigr) \Bigr]$ \setminus $+\left(1+s\right)^{\frac{1}{4}}\left\|\gamma(s)\right\|_{L^{2}_{N}}+\left(1+s\right)^{\frac{3}{2}}\left|\partial_{s}\sigma(s)\right|+\left|\sigma(s)\right|\right]$

(continuous, positive and monotonically increasing).

Prove that there exist N- and t-independent constants $R > 0$ **and** $C \geq 1$ such that for all $t \in [0, \tau_{\text{max}})$ if $\eta(t) \leq R$ then $\eta(t) \leq C (E_0 + \eta(t)^2)$

and conclude by continuous induction, for sufficiently small E_0 and

$$
\sigma_{\rm nl}=\left\langle\widetilde{\Phi}_0,v_0\right\rangle_{L_N^2}+\int_0^\infty\left\langle\widetilde{\Phi}_0,\mathcal{N}(v,\gamma,\partial_s\gamma,\partial_s\sigma)(s)\right\rangle_{L_N^2}{\rm d} s.
$$

Proof of $\eta(t) \leq C (E_0 + \eta(t)^2)$:

■ rely on connection between norms:

 $\begin{aligned} \|\mathsf{v}(t)\|_{H^2_N}\leq \mathsf{C}\left(\|\mathring{v}(t)\|_{H^2_N}+\|\gamma_\mathsf{x}(t)\|_{H^1_N}\right),\ \|\mathring{v}(t)\|_{L^2_N}\leq \mathsf{C}\left(\|\mathsf{v}(t)\|_{L^2_N}+\|\gamma_\mathsf{x}(t)\|_{H^1_N}\right) \end{aligned}$ ■ use Duhamel formulations to show that $\|\nu(s)\|_{L^2_N}, \ \|\partial_x^{\ell}\partial_s^j\gamma(s)\|_{L^2_N} \ \lesssim \ \frac{E_0 + \eta(s)^2}{(1+\varepsilon)^{\frac{3}{2}}}$ $\frac{\mathsf{E}_0 + \eta(\mathsf{s})^2}{(1 + s)^{\frac{3}{4}}}, ~\|\gamma(\mathsf{s})\|_{L^2_\mathcal{N}} \lesssim \frac{E_0 + \eta(\mathsf{s})^2}{(1 + s)^{\frac{1}{4}}}$ $\frac{1}{(1+s)^{\frac{1}{4}}},$ $|\sigma(\pmb{s})| \lesssim \pmb{E}_0 + \eta(\pmb{s})^2, \quad |\partial_t \sigma(\pmb{s})| \lesssim \frac{\pmb{E}_0 + \eta(\pmb{s})^2}{\sigma^2}$ $\frac{10+7(5)}{(1+s)^{\frac{3}{2}}},$ ■ use a nonlinear damping estimate

 $\|\tilde{v}(t)\|_{H^2_{\tilde{N}}}^2 \lesssim \mathrm{e}^{-t} \|\mathbf{v}_0\|_{H^2_{\tilde{N}}}^2 + \|\tilde{v}(t)\|_{L^2_{\tilde{N}}}^2 + \int_0^t \mathrm{e}^{-(t-s)} \left(\|\tilde{v}(s)\|_{L^2_{\tilde{N}}}^2 + \|\gamma_\mathbf{x}(s)\|_{H^3_{\tilde{N}}}^2 + \|\partial_s \gamma(s)\|_{H^2_{\tilde{N}}}^2 + |\partial_s \sigma(s)|^2 \right) \mathrm{d}s$ and show that 2

$$
\|\mathring{v}(s)\|_{H^2_{\tilde{N}}} \ \lesssim \ \frac{E_0 + \eta(s)^2}{(1+s)^{\frac{3}{2}}}
$$

combine these inequalites and conclude.

