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STABILITY OF PERIODIC WAVESI

L asymptotic behaviour of solutions for initial data close to
a periodic wave



STABILITY OF PERIODIC WAVESI

L asymptotic behaviour of solutions for initial data close to
a periodic wave

m co-periodic perturbations [period T of the wave]
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® subharmonic perturbations [period NT, N € N]
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® localized perturbations
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DISSIPATIVE PDESI

[@ Nonlinear stability for localized /bounded perturbations:

® periodic wave trains in reaction-diffusion systems
® Taylor vortices in infinite cylinders

viscous roll waves

periodic traveling-wave solutions of viscous conservation laws

[Schneider; 1996-98] [Doelman, Sandstede, Scheel, Schneider; 2009]
[Sandstede, Scheel, Schneider, Uecker; 2012] [Johnson, Noble,
Rodrigues, Zumbrun; 2010-14] [...]



DISPERSIVE PDESI

Lo KdV, NLS equations and similar:
® nonlinear stability for co-periodic perturbations

m spectral stability for localized /bounded/subharmonic
perturbations

® yse integrability: orbital stability for subharmonic
perturbations / linear stability for localized perturbations

[Gallay, H., Lombardi, Scheel, Angulo, Bona, Scialom, Bronski, Rapti,

Deconinck, Kapitula, Pelinovski, Geyer, Hur, Johnson, Rodrigues, Natali,
Pastor, ...; since 2005]

[ Nonlinear stability for localized /bounded perturbations?



DEFOCUSING NLSI

iUe(x, t) + U (x, t) — |U(x, t)|?U(x,t) = 0

LA orbital stability for co-periodic perturbations: use the
general theory [Grillakis, Shatah, Strauss; 1990]:
® a two-parameter family of periodic waves: !

Use(x,t) = e ™ Qe(x), x,teR

1J = angular momentum, E=energy in the steady equation



DEFOCUSING NLSI

iUe(x, t) + U (x, t) — |U(x, t)|?U(x,t) = 0

LA orbital stability for co-periodic perturbations: use the

general theory [Grillakis, Shatah, Strauss; 1990]:

® a two-parameter family of periodic waves: !

Une(x,t) = e ™ Qe(x), x,teR
B Q, r is a degenerate saddle point of a modified energy with
one unstable and two neutral directions

m conserved quantities: charge N and momentum M

B Qe is a local minimum of the modified energy restricted to
the codimension two manifold

Tie = {Q€X|N(Q) = N(Que), M(Q) = M(Qe)}
[Gallay & H.; 2007]

1 J = angular momentum, E=energy in the steady equation



DEFOCUSING NLSI

iUe(x, t) + U (x, t) — |U(x, t)|?U(x,t) = 0

L 2Nn—periodic perturbations:

B similar analytical set-up but the second variation of the energy
has 2N — 1 negative eigenvalues

B replace the manifolds Y. g by invariant manifolds of
codimension 2n — 2n conserved quantities ... 7

W integrability: take a higher order energy such that Q, g is a
local minimum [Gallay & Pelinovsky; 2015]



DEFOCUSING NLSI

iUe(x, t) + U (x, t) — |U(x, t)|?U(x,t) = 0

L 2Nn—periodic perturbations:

B similar analytical set-up but the second variation of the energy
has 2N — 1 negative eigenvalues

B replace the manifolds Y g ; by invariant manifolds of
codimension 2n — 2n conserved quantities ... 7

W integrability: take a higher order energy such that Q, g is a
local minimum [Gallay & Pelinovsky; 2015]

LA localized perturbations:

m the second variation of the energy has continuous spectrum
.7

® How about a damped NLS equation?



LL EQUATIONI

[Lugiato & Lefever, 1987]

oY . 0% . .
o _"Bﬁ — A +ia)y+iy|[yp* +F

mp(x,t) €C, B, € R, F €R (but not only)
m NLS-type equation with damping, detuning, and driving
m extensively studied in the physics literature |. . .]

®m few mathematical results . ..



STABILITY OF PERIODIC WAVESI

(& Localized perturbations

B spectral stability
[Delcey & H. (2018)]

B spectral stability implies linear stability
[H., Johnson, Perkins (2021)]

B /inear stability implies nonlinear stability
[H., Johnson, Perkins, & de Rijk (2023)]



SPECTRAL STABILITYI

- spectrum of the linearized operator A [matrix differential
operator with periodic coefficients|

A=—-I1+JL
0 -1
j‘(l 0 )
oo ( —BOF — a+ 307 + 7 20,0i
B 20, i —BO2 — a+ ¢% + 342

¢ = ¢, + ip; denotes the T-periodic wave



SPECTRAL STABILITYI

- spectrum of the linearized operator A [matrix differential
operator with periodic coefficients|

co-periodic subharmonic localized

space: L2..(0,NT) space: Lp..(0,NT) space: L*(R)



LOCALIZED PERTURBATIONSI

q continuous spectrum



LOCALIZED PERTURBATIONS I

L continuous spectrum

i
_ Bloch decomposition

m Bloch transform representation for g € L(R)
1o iex o . 2itx/T A
g(x)=— e~ g (&, x)de, (&, x) = Z e g(&+2me/T)
27 /7 ez
m Bloch operator A¢ := e X Ae’®* acting in L?(0, T)

B spectrum
0w (A) = U o1z, (0,7) (Ae)

EE[=m/T,m/T)



MAIN RESULTI

Diffusive spectral stability

" the spectrum of the linearized operator A acting in L2(R) satisfies

U[_z(R)(A) C {/\ eC: Re()\) <0}u {0};

"M there exists 0 > 0 such that for any § € [-w/T,n/T) the real part
of the spectrum of the Bloch operator A¢ := e~'** Ae/** acting in
L2,.(0, T) satisfies

per

e (JL%Cr(O,T)(AE)) < —¢2;

B A=0isa simple eigenvalue of Ay with associated eigenvector 1)
(the derivative ¢’ of the periodic wave).




LINEAR STABILITYI

L decay of the C%-semigroup et



LINEAR STABILITYI

L decay of the C%-semigroup et

m difficulty: no spectral gap

m Bloch decomposition of the semigroup

1 7T/T i
ety(x) / e etety (¢, x)de

- ﬂ -7/ T

Bloch operator Ag := e~"¢¥ Ae/** acting in L2_.(0, T)

per

[Schneider, ..., Johnson, Noble, Rodrigues, Zumbrun]



LINEAR STABILITYI

L Hypotheses

m diffusive spectral stability;

m the operator A generates a C%-semigroup on L?(R) and for
each £ € [-7/T,m/T) the Bloch operators A generate
CO%-semigroups on L2 (0, T);

per

m there exist positive constants g and Gy such that for each
& €[-n/T,w/T) the Bloch resolvent operators satisfy

(i = Ae) Mz, 0.7y < Co, for all |p] > po.

per

checked for LLE: [Delcey, H., 2018], [Stanislavova, Stefanov, 2018]



MAIN RESULTI

B There exists a constant C > 0 such that for any v € L1(R) N L2(R)
and all t > 0 we have ?

le* ]l oy < CA+ VA IVIn@nee-
"B Furthermore, et = sp(t) + 5(t) with
||5p(t)VH1_2(]R) <C(l+ t)_1/4||VHL1(R)7

|5 ... < c+ 0 le@nee:

12(R)

>The decay is lost when v € L?(R), only.



[l estimates on Bloch semigroups e¢t, ¢ € [—n/T,7/T)
(use: the diffusive spectral stability hypothesis, resolvent estimate,
Gearhart-Priiss theorem)

m For any & € (0,7/T), there exist Cy > 0, o > 0, such that

el

forall t >0andall { € [-n/T,n/T) with |£| > &.
B There exists & € (0,7/T) and C; > 0, 1 > 0 such that

< Cye Pt
(2..(0,7) = -0 )

At I—

He < Ge ™,

N ewz.0m)

per

for all t > 0 and all [¢| < &, where 1(€) is the spectral
projection onto the (one-dimensional) eigenspace associated to
the eigenvalue A\.(€), the continuation for small £ of the simple
eigenvalue 0 of Ajy.




L decompose the semigroup et (use: the representation
formula for the semigroup and a smooth cut-off function with

p(€) =1 for |€] < &/2 and p(&) = 0 for [€] > &)

1 /T )
i) = o [ plOe et x)dg

- Z —n/T
1 /T ]

+o (1= p(€))e™ e (&, x)d¢
27 —7/T

=: Sir(t)v(x) + Spe(t)v(x)

and show that

1She ()| 2y < € " (VI 2




@ decompose Sj(t)v(x) (use the diffusive spectral stability
hypothesis)

w/T )
Se(Ovx) = 5= [ O (e x)de

B Z —n/T

1 71'/T i
to- [ p(©e et (1= N())¥(E, x)dE
T™J—m/T
=: S (t)v(x) + Si(t)v(x)
and show that
HShf(t)V ®) S e vz




‘@ decompose S.(t)v(x) (use formula for M(¢))

1 [T .
S0 = o [ O nO0(e e
1 [T .
2 |, POETEN) = NE)UE N
=1 5,(t)v(x) + Sc(t)v(x)

and show that3

|

Se(t)v

—de? —3/4
) < ||gem Temlvioes 1+1) v )

— 2 -
Isp(E)V | 2y S e~ Flliz@y vl S (1 +6) vl

3The decay is lost when v € L(R), only.



NONLINEAR STABILITY I

8 linear stability implies nonlinear stability



NONLINEAR STABILITY I

8 linear stability implies nonlinear stability

~~ rely on Duhamel’s formulation and properties of the
semigroup

~~ two main difficulties:
® semigroup with slow decay (1 4 t)~1/*

m C%semigroup



NONLINEAR STABILITY I

@ First difficulty: semigroup with slow decay (1 + t)~ /4

® no decay for the (unmodulated) perturbation

[0(x, 1) = 9(x, 1) — $(x) |

satisfying (Duhamel formulation)

t
9(¢) = eAtvo + / e4t=9) {7(7(s)) ds
0



NONLINEAR STABILITY I

Ll First difficulty: semigroup with slow decay (1 + t)~1/*

® no decay for the (unmodulated) perturbation

[00x, 1) = ¢(x, 1) — p(x)|

satisfying (Duhamel formulation)

t
9(¢) = eAtvo + / e4t=9) {7(7(s)) ds
0

® define a modulated perturbation

[v(x, ) = P(x—7(x, 1), t) — $(x) |

[Schneider, Doelman, Sandstede, Scheel, Uecker,

...Johnson, Noble, Rodrigues, Zumbrun]



NONLINEAR STABILITY I

L& modulated perturbation
[v(x, t) = P(x—y(x, 1), ) — p(x)]|
~~> satisfies (0; — A) (v +7¢') = N (v,7,0ry) + (0 — A) (7xv)




NONLINEAR STABILITY I

L& modulated perturbation

[v(x, ) = P(x—7(x, 1) £) — $(x) |

~~ satisfies (0; — A) (v +v¢') = N (v,7v,0¢y) + (0 — A) (7xv)

~~> use Duhamel formulation and | et = s,(t) + 5(t) | to:

m define the phase modulation ~(x, t)

v(t) = sp(t)vo + /t sp(t = s)N(v(s),7(s), 0e1(s)) ds

0

(such that it captures the slowest decay rate (1 + t)~'/%)

® obtain a formula for v(x, t)

() = 30 + [ 5t~ IN(V(3),7(5). 09(5)) b5+ u((0)

(stronger decay rate (1 4 t)~3/%; enough to conclude .. .)



NONLINEAR STABILITY I

(& Second difficulty: C°-semigroup
m no control of derivatives of the modulated perturbation
[v(x, ) = Pp(x—7(x, 1), 1) — $(x)]
appearing in the nonlinear terms N (v(s),v(s), 9:v(s))




NONLINEAR STABILITY I

[ Second difficulty: C°-semigroup
® no control of derivatives of the modulated perturbation
[v(x,8) = Pp(x—7(x, 1), 1) — $(x)]
appearing in the nonlinear terms N (v(s),v(s), 9:v(s))

L First approach [H., Johnson, Perkins, & de Rijk (2023)]

B use integration by parts to gain derivatives and decay in the
formula for the phase modulation ~(x, t)

70 = sleh+ [ C5o(t — IN(U(s),1(s). ev(s) ds




NONLINEAR STABILITY I

(& Second difficulty: C°-semigroup
m no control of derivatives of the modulated perturbation
[v(x, ) = Pp(x—7(x, 1), 1) — $(x)]
appearing in the nonlinear terms N (v(s),v(s), 9:v(s))

L First approach [H., Johnson, Perkins, & de Rijk (2023)]

B use integration by parts to gain derivatives and decay in the
formula for the phase modulation v(x, t)

B also use the unmodulated perturbation
[7(x,t) = 9(x, t) — $(x)|

(slow decay but no loss of derivatives)




NONLINEAR STABILITY I

L for the unmodulated perturbation #(x, t) and the modulated
perturbation v(x, t)

®m obtain the decay rate (1 + t)~3/* for the modulated
perturbation #

v(t) = S(t)vo + /Ot 5(t = )N (v(s),7(s), er(s)) ds + (t)v (1)

m obtain the needed regularity for the unmodulated perturbation

i(t) = evo + /t e M IN (7 (s)) ds
0

® use mean value inequalities to connect ¥(x, t) and v(x, t)

“Recall the decay rates in the decomposition et = s,(t) + 5(t)



NONLINEAR STABILITYI

L& Second approach [Zumbrun (2023)]

m define a forward-modulated perturbation

(1) = (x, 1) — dlx+y(x: 1)) |

B use the energy to obtain a nonlinear damping estimate for the
forward-modulated perturbation

® use mean value inequalities to connect v(x, t) and v(x, t)

m Advantage: requires less regularity for the initial data
(H? instead of H*)



MAIN RESULTI

Q There exist constants €, M > 0 such that, whenever the initial
perturbation vy € L'(R) N H*(R) satisfies Ey := ||vol| ;10 < &,
there exist functions

7,y € C([0,00), H*(R)) N C*([0, ), H*(R))

with 7(0) = vo and ¥(0) = 0 such that ¢)(t) = ¢ + V(t) is the
unique global solution of LLE with initial condition 1(0) = ¢ + vo.

LB The inequalities
1
llp(t) — @ll 2, [Iv(E)ll2 < MEo(1 + &)™ 3,

19 (=~ 1), t) — |l 2, < MEo(1 + £) ™7,
hold for all t > 0.




A RELATED PROBLEMI

'8 Subharmonic perturbations (NT-periodic): stability
results are not uniform in N

m the size of initial data tends to 0 as N — oo

m for LLE: the exponential decay rate tends to 0 as N — oo

L Stability result uniform in N?



A RELATED PROBLEMI

'8 Subharmonic perturbations (NT-periodic): stability
results are not uniform in N

m the size of initial data tends to 0 as N — oo

m for LLE: the exponential decay rate tends to 0 as N — oo

L Stability result uniform in N?
Yes, provided stability for localized perturbations holds:

m adapt the stability proofs used for localized perturbations

® the uniform decay rate is the same as the one for
localized perturbations

® improved nonuniform subharmonic stability result:
provides an N-independent ball of initial perturbations which
eventually exhibit exponential decay at an N-dependent rate



UNIFORM SUBHARMONIC STABILITYI

Ll There exist e, M > 0 such that, for each N € N, whenever
vo € H3..(0, NT) satisfies Ey := |[vg|| ;1o < &, there exist a
constant oy € R, a modulation function

i € C([0. 50), Hor(0. NT)) 11 C([0, 00)., H2, (0. NT)),
and a global classical solution
¥ € C([0,00), H2.(0, NT)) N C([0, 00), L2,,(0, NT)),

of LLE with initial condition 1¥(0) = ¢ + vp.




UNIFORM SUBHARMONIC STABILITYI

LB The inequalities

1%(5 ) = @z, 0,81y < MEo,

0.0 = 6+ ow)

< MEy(1+ 1) 3,
2

Lper(U,NT)

1% (5 8) = & + (s 1)l 2

per(0,NT

< ME)(1+1)7H,

1

lont| < MEo,  {|Val(-t) — 0l < MEo(1+ )%,

2
Lper(o,NT)

hold for all t > 0.




COROLLARY I

Ll For each N € N, there exists oy > 0 such that for any
9 € (0,6n), there exist constants Ts > 0 and Ms > 0 with

9.0 = b+ o)

_[ME@A+D7E 0<< T,
HT MaE()e_‘st, t> Ts.

Furthermore, Ts — oo as N — oc.




eAldlty, — Ponv+ ¢'spn(t)v + §N(t)v,

L Semigroup decomposition

B constant term Py y = ¢/<$0, ~)L%I/N (spectral projection onto the
one-dimensional kernel of A[¢])

B component with (1 4 t)~%/*-decay

B component with (1 4 t)~3/*-decay



eAldlty, — Ponv + ¢'spn(t)v + §N(t)v,

L Semigroup decomposition

B constant term Py y = ¢' (Do, ~)L%I/N (spectral projection onto the
one-dimensional kernel of A[¢])
B component with (1 4 t)~%/*-decay
B component with (1 4 t)~3/*-decay
Ll Define the inverse-modulated perturbation
v(x,t) = (x = yu(x, t), t) — ¢(x),
the forward-modulated perturbation
\7(X, t) =9 (Xv t) - (b(X + 7n1(X7 t)) :
and yi(x, t) = Lo(t) +v(x, t), with

o(t) = (®o ) , +/Ot<a>o,./\/(v,’y,857,3sa)(s)> ds,

2
LN

S(8) = sy n()vo + / Cson(t — )N (v, 7, B, 0s0)(5)ds.

0



Ll Define the template function:

n(t) = sup {(1+s)%(

0<s<t

+ (149 ()l g, + (1 +5)F D0 (s)] + o (s)]

95, + 197(3) g + 10:7(5) )

(continuous, positive and monotonically increasing).

LB Prove that there exist N- and t-independent constants R > 0 and
C > 1 such that for all t € [0, Tmax) if 7(t) < R then

n(t) < C (Eo +n(t)?)
and conclude by continuous induction, for sufficiently small Ey and

Oonl = <$o, VO>L%I + /0'OO <$0,N(V,77 8577850)(5)>L3V ds.



[ Proof of n(t) < C(E +n(t)?):
® rely on connection between norms:
VBl < € (1901 + (Ol ) > 1)1z, < € (1B, + (), )

® use Duhamel formulations to show that

j Eo 4+ n(s)? Eo + 1(s)?
- 10:% S S——
vz, 10x0v(s)lliz, (119 ()l o
E 2
lo(s)] < Eo +n(s)?,  |0eo(s)] < L"(i)

(1+5)2
B use a nonlinear damping estimate

2

° 2 < ot 2 e 2 't —(t—s) o ~ 2 a9 2 s 2
19012 < el + 1912 + fi e (19612 + (@1 + 101612, +[0:0(a)?) ds

and show that
Eo +n(s)’

(1+s)%

B combine these inequalites and conclude. l

1)l <
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