Instantaneous gap loss of Sobolev regularity for the 2D incompressible Euler equations.

Wojciech S. Ożański (joint work with D. Córdoba (ICMAT), Luis Martínez-Zoroa (ICMAT))

Jul 27th, 2023

Generalized SQG equation $\alpha \in [0, 2]$

Let us consider a family of PDEs:

$$\partial_t \theta + u \cdot \nabla \theta = 0$$
$$u = \nabla^{\perp} \psi$$
$$\theta = -(-\Delta)^{1 - \frac{\alpha}{2}} \psi,$$

for $(x,t) \in \mathbb{R}^2 \times (0,\infty)$. Here $\alpha \in [0,2]$.

Local well-posedness in spaces of continuous functions

- Gunther (1927), Lichtenstein (1930): LWP of the 2D Euler equations ($\alpha = 0$) for $u \in C^{k,\gamma}$, $k \ge 1$, $\gamma \in (0, 1)$, Constantin-Majda-Tabak (1994): connection of SQG ($\alpha = 1$) to 3D Euler,
- Charney (1940s), Blumen (1978),
- Held-Pierrehumbert-Garner-Swanson (1994) : geophysical origin of SQG,
- Wu (2005): LWP in $C^{k,\gamma} \cap L^p$, $k \ge 1$, $\gamma \in (0,1)$, $p \ge 1$
- Chae-Constantin-Wu (2011) : same for $\alpha \in [0, 1]$,
- Ambrose-Cozzi-Erickson-Kelliher (2022): dropped L^p requirement for SQG ($\alpha = 1$),
- Denisov (2015): double exponential growth of $\|\omega\|_{C^1}$ for a given finite time interval for 2D Euler ($\alpha = 0$),
- Kiselev-Šverak (2014): double exponential growth of $\|\omega\|_{C^1}$ for all times for 2D Euler ($\alpha = 0$) in a disk,

Bourgain-Li (2015): strong ill-posedness for 2D Euler ($\alpha = 0$) for $u \in C^k$, $k \ge 1$,

(local well-posedness for $\theta \in C^k, k \ge 2, \alpha \in [0, 1)$)

Ill-posedness for SQG ($\alpha = 1$)

D. Córdoba and L. Martínez-Zoroa (2021):

Theorem (Strong ill-posedness in C^k for SQG)

For any $\varepsilon > 0$, $k \ge 2$, $t_0 > 0$ there exists $\theta_0 \in H^{k+1/4} \cap C^k$ with $\|\theta_0\|_{C^k} \le \varepsilon$ such that the unique solution $\theta(t) \in H^{k+1/4}$ satisfies

$$\|\theta(t_0)\|_{C^k} \ge \frac{1}{\varepsilon}.$$

Corollary (Non-existence in C^k) Given $\varepsilon > 0$, $t_0 > 0$, $k \in \{2, 3, ...\}$, there exists $\theta_0 \in H^{k+1/8} \cap C^k$ with $\|\theta_0\|_{C^k} \leq \varepsilon$ and the unique solution $\theta(t) \in H^{k+1/8}$ satisfies

$$\|\theta(t)\|_{C^k} = \infty \quad \text{for all } t \in (0, t_0].$$

Local well-posedness in Sobolev spaces

Kato (1972), Kato-Ponce (1988): LWP for $u \in H^s$ for 2D Euler equations, s > 1,

Chae-Constantin-Córdoba-Gancedo-Wu (2012): LWP in H^s ,

 $s>1+\alpha,\,\alpha\in[0,2],$

Chae-Wu (2012): LWP for a log-regularized SQG ($\alpha = 1$) in H^2 , Jolly-Kumar-Martinez (2022): extension to all $\alpha \in [0, 2]$, Kiselev-Nazarov (2012): norm inflation in H^s ($s \ge 11$) in a long

time for SQG ($\alpha = 1$),

Kiselev-Yao-Zlatoš-Ryzhik (2016): LWP and finite time blow-up for patches in \mathbb{R}^2_{\perp} (low regularity),

Bourgain-Li (2015): Strong ill-posedness of 2D Euler ($\alpha = 0$) for $\theta \in H^1$,

Elgindi-Jeong (2017): Different proof,

Jeong (2021): Strong ill-posedness $\theta \in W^{1,p}$ for 2D Euler equations in the Yudovich class $\theta \in L^{\infty}$, for some $p \in (1,2)$, such that $\theta(t)$ loses $W^{1,p(t)}$ regularity continuously in time t. Instantaneous gap loss for 2D Euler ($\alpha = 0$)

D. Córdoba, L. Martínez-Zoroa, W. O. (2022):

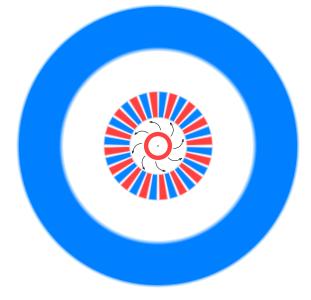
Theorem (Sobolev norm inflation)

For every $\varepsilon > 0$, T > 0, $\beta \in (0,1)$, $\beta' > (2 - \beta)\beta/(2 - \beta^2)$, there exists initial vorticity $\omega_0 \in C_0^{\infty}(\mathbb{R}^2)$ such that $\|\omega_0\|_{H^{\beta}} \leq \varepsilon$ and the unique solution ω to the 2D Euler equations satisfies

$$\|\omega(t)\|_{H^{\beta'}} \ge \frac{1}{\varepsilon} \qquad \text{for all } t \in [1/T, T].$$

Corollary (Gap loss of Sobolev regularity)

For every $\beta \in (0, 1)$, there exists initial vorticity $\omega_0 \in H^{\beta}(\mathbb{R}^2)$ such that $\|\omega_0\|_{H^{\beta}} \leq \varepsilon$ and the unique solution $\omega(t)$ to the 2D Euler equations satisfies **does not belong** to $H^{\beta'}(\mathbb{R}^2)$ for all $\beta' > (2 - \beta)\beta/(2 - \beta^2)$ and all t > 0. Sobolev norm inflation for the 2D Euler equations -Sketch of the initial vorticity $\omega(0) = \omega_{rad}(0) + \omega_{osc}(0)$.



Thank you for your attention.