Finite-time blowup for an Euler and hypodissipative Navier–Stokes model equation on a restricted constraint space

Evan Miller

University of British Columbia Pacific Institute for the Mathematical Sciences

Introduction

• The incompressible Euler and Navier–Stokes equations are among the oldest PDEs, but core questions about their solutions in three dimensions remain open.

$$\partial_t u + \mathbb{P}((u \cdot \nabla)u) = 0$$
$$\partial_t u - \nu \Delta u + \mathbb{P}((u \cdot \nabla)u) = 0.$$

• Both equations have the incompressibility constraint:

$$\nabla \cdot u = 0.$$

- There has recently been major progress by Elgindi [2021] on blowup for $C^{1,\alpha}$ solutions of the Euler equation and by Chen and Hou [2022] for the blowup of smooth solutions of the Euler equation on the cylinder at the boundary.
- The hypoviscous Navier–Stokes equation interpolates between Euler and Navier–Stokes. For $0 < \alpha < 1$:

$$\partial_t u + \nu(-\Delta)^{\alpha} u + \mathbb{P}((u \cdot \nabla)u) = 0.$$

The \mathcal{M} -restricted model equations

• In this talk, I will discuss the \mathcal{M} -restricted Euler and hypodissipative Navier–Stokes equations, where the Helmholtz projection is replaced by a projection $\tilde{\mathbb{P}}$ onto a subspace, $H^s_{\mathcal{M}}(\mathbb{T}^3) \subset H^s_{df}(\mathbb{T}^3)$:

$$\partial_t u + \tilde{\mathbb{P}}((u \cdot \nabla)u) = 0$$
$$\partial_t u + \nu(-\Delta)^{\alpha} u + \tilde{\mathbb{P}}((u \cdot \nabla)u) = 0.$$

- This subspace involves restricting the Fourier modes to a dyadic tree constructed iteratively using permuations.
- The amplitudes are also restricted in a way that promotes singularity formation, but the $(u \cdot \nabla)u$ nonlinearity is kept.
- This means both the energy equality and the identity for enstrophy growth are unaffected by the change in projection.

Model equations for Euler and Navier–Stokes

• Montgomery-Smith [2001] proved finite time blowup for a scalar model equation where $-\mathbb{P}\nabla \cdot (u \otimes u)$ is replaced by $(-\Delta)^{\frac{1}{2}} (u^2)$,

$$\partial_t u - \Delta u = (-\Delta)^{\frac{1}{2}} (u^2).$$

- This was generalized to blowup for a model equation on the space of divergence free vector fields by Gallagher and Paicu [2009], and further generalized to a model equation with an energy equality by Tao [2016].
- Tao's model equation is given by

$$\partial_t u - \nu \Delta u + B(u, u) = 0,$$

where

$$\langle B(u,u),u\rangle = 0$$

 $||B(u,u)||_{L^2} \le ||u||_{L^4} ||\nabla u||_{L^4}.$

The dyadic model (1/3)

• The dyadic Euler and dyadic Navier–Stokes equations were introduced by Katz and Pavlović [2005] and Friedlander and Pavlović [2004]. The Dyadic Navier–Stokes equation is an infinite system of ODEs for $\{\psi_n\}_{n\in\mathbb{Z}^+}$:

$$\partial_t \psi_n = -\nu \lambda^{2\alpha n} \psi_n + \lambda^n \psi_{n-1}^2 - \lambda^{n+1} \psi_n \psi_{n+1}.$$

- Note $\psi_{-1} := 0$ by convention, that $\lambda > 1$, and that the dyadic Euler equation is obtained when $\nu = 0$.
- FP proved finite-time blowup for the inviscid dyadic model.
- KP proved finite-time blowup for the inviscid model and for dyadic Navier—Stokes when $\alpha < \frac{1}{4}$.
- Cheskidov [2008] proved finite-time blowup for the dyadic model when $\alpha < \frac{1}{3}$, and global regularity when $\alpha \ge \frac{1}{2}$.

The dyadic model (2/3)

• For sufficiently smooth solutions—meaning decaying sufficiently fast as $n \to +\infty$ —the dyadic Euler equation has an energy equality

$$\sum_{n=0}^{\infty} \psi_n(t)^2 = \sum_{n=0}^{\infty} \psi_n(0)^2$$

- An analogous result with dissipation holds for dyadic NS.
- We can see using telescoping series that

$$\frac{\mathrm{d}}{\mathrm{d}t}\sum_{n=0}^{\infty}\psi_n(t)^2 = -2\lim_{n\to\infty}\lambda^{n+1}\psi_n^2\psi_{n+1}.$$

• A sufficient condition for energy conservation is

$$\sup_{n\in\mathbb{Z}^+}\lambda^{\gamma n}|\psi_n(t)|<+\infty,$$

for some $\gamma > \frac{1}{3}$. Note that this is Onsager critical.

The dyadic model (3/3)

- If $\psi_n(0) \ge 0$, then for all $0 \le t < T_{max}$, we have $\psi_n(t) \ge 0$
- When the ψ_n are all nonnegative, the dyadic Euler equation is structured to send energy to higher modes.
- For all $n \in \mathbb{Z}^+$, define E_n by

$$E_n = \sum_{m=n}^{\infty} \psi_m^2.$$

• It is straightforward to compute that

$$\frac{\mathrm{d}}{\mathrm{d}t}E_n(t) = 2\psi_{n-1}^2\psi_n$$

• When ψ is nonnegative this implies that E_n is non-decreasing. The proof of blowup is based on using this fact to show that energy transfers to arbitrarily high modes in finite-time [FP 2004, KP 2005].

Permutation symmetry

• We will take the permutation of a vector to be the permutation of its entries, $P(v)_i = v_{P(i)}$. For example,

$$P_{12}(v) = (v_2, v_1, v_3).$$

We will define the permutation of a vector field to be given by

$$v^{P}(x) = P(v(P^{-1}x)).$$

- Note that if $\nabla \cdot v = 0$, then $\nabla \cdot v^P = 0$.
- We will say that a vector field is permutation-symmetric if for every permutation P,

$$v^P = v$$

• The space of permutation-symmetric vector fields is preserved by the Euler and Navier–Stokes equations as well as our restricted model equations.

The construction of the constraint Space (1/3)

Let

$$\sigma = \left(\begin{array}{c} 1\\1\\1\end{array}\right).$$

For all $m \in \mathbb{Z}^+$, we will define the frequencies k^m, h^m, j^m by

$$k^{m} = 2^{2m}\sigma + 3^{m} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$
$$h^{m} = 2^{2m+1}\sigma + 3^{m} \begin{pmatrix} 1\\1\\-2 \end{pmatrix}$$
$$j^{m} = 2^{2m+1}\sigma + 3^{m} \begin{pmatrix} 2\\-1\\-1 \end{pmatrix}.$$

甩

The construction of the constraint space (2/3)

• Note that these canonical frequencies are constructed dyadically in terms of permutations.

$$h^{m} = k^{m} + P_{12}(k^{m})$$

 $j^{m} = k^{m} + P_{23}(k^{m})$
 $k^{m+1} = h^{m} + j^{m}$

• When n = 2m, let $\mathcal{M}_n^+ = \mathcal{P}[k^m].$

• When
$$n = 2m + 1$$
, let

$$\mathcal{M}_n^+ = \mathcal{P}[h^m] \cup \mathcal{P}[j^m].$$

• Finally, let

$$\mathcal{M}^{+} = \bigcup_{n=0}^{\infty} \mathcal{M}_{n}^{+}$$
$$\mathcal{M}^{-} = -\mathcal{M}^{+}$$
$$\mathcal{M} = \mathcal{M}^{+} \cup \mathcal{M}^{-} \longrightarrow \mathcal{A}^{+} \to \mathbb{R} \to \mathbb{R} \to \mathbb{R}$$
Evan Miller

The construction of the constraint space (3/3)

We will say that
$$u \in H^s_{\mathcal{M}}(\mathbb{T}^3; \mathbb{R}^3)$$
 if:

 $\operatorname{supp} \hat{u} \subset \mathcal{M},$

and for all $k \in \mathcal{M}$,

$$\hat{u}(k) \in \operatorname{span}\left\{v^k\right\},$$

where

$$v^k = \frac{P_k^{\perp}(\sigma)}{\left|P_k^{\perp}(\sigma)\right|}.$$

$$\mathcal{M}_{0}^{+} = \left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\2 \end{pmatrix}, \begin{pmatrix} 0\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix} \right\}$$
$$\mathcal{M}_{1}^{+} = \left\{ \begin{pmatrix} 3\\3\\0 \end{pmatrix}, \begin{pmatrix} 3\\0\\3 \end{pmatrix}, \begin{pmatrix} 0\\3\\3 \end{pmatrix}, \begin{pmatrix} 0\\3\\3 \end{pmatrix}, \begin{pmatrix} 4\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\4\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\4 \end{pmatrix}, \begin{pmatrix} 1\\1\\4 \end{pmatrix}, \right\}$$
$$\mathcal{M}_{2}^{+} = \left\{ \begin{pmatrix} 7\\4\\1 \end{pmatrix}, \text{ and permutations} \right\}$$
$$\mathcal{M}_{3}^{+} = \left\{ \begin{pmatrix} 11\\1\\2 \end{pmatrix}, \begin{pmatrix} 14\\5\\5 \end{pmatrix}, \text{ and permutations} \right\}$$

夏

-∢≣≯

Proposition

For all $k \in \mathcal{M}_n^+$, $\sigma \cdot k = 3 * 2^n$. Furthermore, if k = h + j, for some $h, j \in \mathcal{M}^+$, then $h, j \in \mathcal{M}_{n-1}^+$. If k = h - j, for some $h, j \in \mathcal{M}^+$, then $h \in \mathcal{M}_{n+1}^+, j \in \mathcal{M}_n^+$

Proof.

The first statement is just a vector calculus identity. To finish the proof, it suffices to observe that for nonnegative integers $m, r, n \in \mathbb{Z}^+$: $2^m + 2^r = 2^n$ if and only if m = r = n - 1, and $2^n = 2^m - 2^r$ if and only if r = n, and m = n + 1.

Local Wellposedness: the inviscid case

Theorem

For all $u^0 \in H^s_{\mathcal{M}}$, $s > \frac{5}{2}$, there exists a unique strong solution of the \mathcal{M} -restricted Euler equation, $u \in C([0, T_{max}); H^s_{\mathcal{M}})$, where

$$T_{max} \ge \frac{1}{C_s \|u^0\|_{H^s}}$$

This solution satisfies the energy equality

$$||u(\cdot,t)||_{L^2} = ||u^0||_{L^2},$$

and the H^s upper bound

$$\|u(\cdot,t)\|_{H^s} \le \frac{\|u^0\|_{H^s}}{1-C_s\|u^0\|_{H^s}t}$$

Local Wellposedness: the viscous case

Theorem

For all $u^0 \in H^s_{\mathcal{M}}$, $s > \frac{5}{2}$, there exists a unique strong solution of the \mathcal{M} -restricted NS equation, $u \in C([0, T_{max}); H^s_{\mathcal{M}})$, where

$$T_{max} \ge \frac{1}{C_s \|u^0\|_{H^s}}.$$

This solution satisfies the energy equality

$$\frac{1}{2} \|u(\cdot,t)\|_{L^2}^2 + \nu \int_0^t \|u(\cdot,\tau)\|_{\dot{H}^{\alpha}}^2 \,\mathrm{d}\tau = \frac{1}{2} \|u^0\|_{L^2},$$

and the H^s upper bound

$$\|u(\cdot,t)\|_{H^s} \le \frac{\|u^0\|_{H^s}}{1-C_s\|u^0\|_{H^s}t}$$

We also have higher regularity, $u \in C^{\infty}((0, T_{max}) \times \mathbb{T}^3))$.

Ansatz for singularity formation

• We will say that a vector field $v \in H^s_{\mathcal{M}}$ is odd, permutation symmetric, with hj-parity, if

$$u(x) = -2\sum_{m=0}^{+\infty} \left(\psi_{2m} \sum_{k \in \mathcal{P}[k^m]} v^k \sin\left(2\pi k \cdot x\right) \right.$$
$$\left. + \psi_{2m+1} \left(\sum_{h \in \mathcal{P}[h^m]} v^h \sin\left(2\pi h \cdot x\right) + \sum_{j \in \mathcal{P}[j^m]} v^j \sin\left(2\pi j \cdot x\right) \right) \right).$$

- This class of vector fields is preserved by the dynamics of the inviscid and viscous restricted model equations.
- We will use this Ansatz to prove finite-time blowup by a reduction to the dyadic model.

Reduction to the dyadic model

$$\partial_t \psi_n = -(12\pi^2)^{\alpha} \mu_n^{\alpha} \nu \left(\sqrt{3}\right)^{2\tilde{\alpha}n} \psi_n + \sqrt{2\pi\beta_{n-1}} \left(\sqrt{3}\right)^n \psi_{n-1}^2 - \sqrt{2\pi\beta_n} \left(\sqrt{3}\right)^{n+1} \psi_n \psi_{n+1},$$

where $\nu = 0$ for the inviscid equation and

$$\tilde{\alpha} = \frac{2\log(2)}{\log(3)} \alpha$$
$$\beta_n = \frac{1}{\left(1 + \frac{1}{2} \left(\frac{3}{4}\right)^n\right)^{\frac{1}{2}}}$$
$$\mu_n = \frac{1}{\left(1 + \frac{2}{3} \left(\frac{3}{4}\right)^n\right)^{\frac{1}{2}}}$$

and by convention

$$\psi_{-1}, \beta_{-1} := 0.$$

夏

-> -< ≣ >

Positivity of the Fourier coefficients

• We will say that an odd, permutation-symmetric, hj-parity vector field $u \in H^s_{\mathcal{M}}$ is coefficient positive if for all $n \in \mathbb{Z}^+$,

$$\psi_n \ge 0,$$

and u is not identically zero.

- That is, all of the coefficients must be nonnegative, and at least one must be positive.
- It is straightforward to observe that positivity is also preserved by the dynamics of both the *M*-restricted Euler and hypoviscous Navier–Stokes equations.

Theorem

Suppose $u^0 \in H^s_{\mathcal{M}}$, $s > \frac{5}{2}$ is odd, permutation-symmetric, with hj-parity, and is coefficient positive. Then the solution of the \mathcal{M} -restricted Euler equation blows up in finite-time, with

$$T_{max} \le \inf_{\frac{1}{3} < r < \frac{\sqrt{2}}{\sqrt{2} + \frac{3}{2}}} \frac{\sqrt{r}}{\sqrt{2E_0}\pi \left(\sqrt{2} - \left(\sqrt{2} + \frac{3}{2}\right)r\right)} \frac{\sqrt{3r}}{\sqrt{3r} - 1},$$

where

$$E_0 = \frac{1}{12} \left\| u^0 \right\|_{L^2}^2.$$

Finite-time blowup for the hypoviscous model equation

Theorem

Suppose $u^0 \in H^s_{\mathcal{M}}$, $s > \frac{5}{2}$ is odd, permutation-symmetric, with hj-parity, and is coefficient positive, and that $\alpha < \frac{\log(3)}{6\log(2)}$. If for some $0 < \gamma < 1 - 3\tilde{\alpha}$, the Lyapunov functional satisfies

$$H_{\gamma}(0) := r_{\gamma} \sum_{n=0}^{+\infty} \left(\sqrt{3}\right)^{2\gamma n} \psi_{n}(0)^{2} + \sum_{n=0}^{+\infty} \left(\sqrt{3}\right)^{2\gamma n} \psi_{n}(0)\psi_{n+1}(0)$$
$$\geq \frac{C_{\gamma,\tilde{\alpha}}^{2}\nu^{2} \left(r_{\gamma} + \frac{1}{2} + \frac{1}{2(3\gamma)}\right)}{\left(1 - \left(\sqrt{3}\right)^{-\epsilon}\right)\pi^{2}},$$

then the solution blows up in finite-time

$$T_{max} \le \frac{1}{\kappa \sqrt{H_{\gamma}(0)}}.$$

Global Regularity with sufficient dissipation

Theorem

Suppose $u^0 \in H^s_{\mathcal{M}}$, $s > \frac{5}{2}$ is odd, permutation-symmetric, with hj-parity, and that $\alpha \geq \frac{\log(3)}{4\log(2)}$. Then there is a global smooth solution of the \mathcal{M} -restricted, hypodissipative Navier–Stokes equation, $u \in C([0, +\infty); H^s_{\mathcal{M}})$. Furthermore, this solutions has the upper bound

$$\begin{split} \|u(\cdot,t)\|_{\dot{H}^{s}}^{2} &\leq \left(\frac{5}{3}\right)^{s} \|u^{0}\|_{\dot{H}^{s}}^{2} \exp\left(2\sqrt{2}\pi(3^{\tilde{s}}-1)t^{\frac{1}{2}}\right) \\ &\left(\frac{1}{\nu} \|\psi^{0}\|_{\mathcal{H}^{\tilde{\alpha}}}^{2} + \frac{C_{\alpha}'t}{\nu^{2}} \|\psi^{0}\|_{\mathcal{H}^{\tilde{\alpha}}}^{4} \exp\left(\frac{2C_{\alpha}}{\nu^{2}} \|u^{0}\|_{L^{2}}^{2}\right)\right)^{\frac{1}{2}}\right), \\ & \text{where } \tilde{s} = \frac{2\log(2)}{\log(3)}s. \end{split}$$

- Note that we have proven finite-time blowup when $\tilde{\alpha} < \frac{1}{3}$ and global regularity when $\tilde{\alpha} \ge \frac{1}{2}$.
- This corresponds exactly to the results of Cheskidov [2008] for dyadic Navier–Stokes.
- Once the reduction to the dyadic model is accomplished with our blowup Anstaz, we can essentially follow Cheskidov's proof with a some minor technical variations involving the correction factors β_n, μ_n .

Dyadic regularity criteria

Theorem

Suppose $u \in C([0, T_{max}); H^s_{\mathcal{M}})$, $s > \frac{5}{2}$ is an odd permutation symmetric, hj-parity solution of the \mathcal{M} -restricted Euler or hypodissipative Navier–Stokes equation. Then for all $0 \leq t < T_{max}$

$$\|u(\cdot,t)\|_{\dot{H}^{s}}^{2} \leq \left(\frac{5}{3}\right)^{s} \|u^{0}\|_{\dot{H}^{s}}^{2} \exp\left(2\sqrt{2}\pi(3^{\tilde{s}}-1)\right)$$
$$\int_{0}^{t} \sup_{n\in\mathbb{Z}^{+}} \left(\sqrt{3}\right)^{n} \psi_{n}(\tau) \,\mathrm{d}\tau\right),$$

where $\tilde{s} = \frac{2 \log(2)}{\log(3)} s$. In particular, if $T_{max} < +\infty$, then

$$\int_0^{T_{max}} \sup_{n \in \mathbb{Z}^+} \left(\sqrt{3}\right)^n \psi_n(t) \, \mathrm{d}t = +\infty.$$

Singularity at the origin

Theorem

Suppose $u \in C\left([0, T_{max}); \dot{H}^s_{\mathcal{M}}\right), s > \frac{5}{2}$ is an odd permutation symmetric, hj-parity, coefficient positive solution of the \mathcal{M} -restricted Euler or hypodissipative Navier–Stokes equation. Then for all $0 \leq t < T_{max}$,

$$\nabla u(\vec{0},t) = \lambda(t) \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$
$$\lambda(t) = 12\sqrt{2\pi} \sum_{n=0}^{+\infty} \psi_n(t) \frac{(\sqrt{3})^n}{\left(1 + \frac{2}{3} \left(\frac{3}{4}\right)^n\right)^{\frac{1}{2}}} \ge 0.$$

Furthermore, if $T_{max} < +\infty$, then

$$\int_0^{T_{max}} \lambda(t) \, \mathrm{d}t = +\infty.$$

Evan Miller

24/30

innie=innie blowup for an Enter and hypodi

Singularity at the origin: proof

Proof.

We will see from geometric considerations involving permutation symmetry that

$$\nabla u(\vec{0},t) = \lambda(t) \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$
$$\lambda(t) = 12\sqrt{2\pi} \sum_{n=0}^{+\infty} \psi_n(t) \frac{\left(\sqrt{3}\right)^n}{\left(1 + \frac{2}{3} \left(\frac{3}{4}\right)^n\right)^{\frac{1}{2}}} \ge 0.$$

We know that $\psi_n(t) \ge 0$, so we can see that

$$\lambda(t) = 12\sqrt{2}\pi \sum_{n=0}^{+\infty} \psi_n(t) \frac{\left(\sqrt{3}\right)^n}{\left(1 + \frac{2}{3}\left(\frac{3}{4}\right)^n\right)^{\frac{1}{2}}} \ge C \sup_{n \in \mathbb{Z}^+} \left(\sqrt{3}\right)^n \psi_n(t)$$

Singularity at the origin: discussion

• Note that the gradient at the origin is symmetric, with $\omega(\vec{0},t)=0$ and

$$S(\vec{0},t) = \lambda(t) \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$

- The strain matrix at the origin has eigenvalues $-2\lambda, \lambda, \lambda$, with axial compression along span(σ), and planar stretching in the plane orthogonal to σ .
- This is exactly the structure of singularity formation predicted by the regularity criteria in terms of λ_2^+ , the positive part of the middle eigenvalue [Neustupa-Penel 2001].

The geometry of permutation symmetric vector fields

Proposition

Suppose $u \in H^s_{df}$, $s > \frac{5}{2}$ is permutation-symmetric. Then for all $1 < i, j < 3, i \neq j.$ $\partial_i u_i(\vec{0}) = \partial_1 u_2(\vec{0}),$ and for all $1 \leq i \leq 3$, $\partial_i u_i(\vec{0}) = 0.$ Therefore $\nabla u(\vec{0}) = \partial_1 u_2(\vec{0}) \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right).$

• Note that this implies that $\lambda(t) = -\partial_1 u_2(\vec{0})$, in the preceding theorem.

Fourier mode computation

Proposition

Fix $k \in \mathbb{Z}^3$, $v \in \mathbb{R}^3$, such that $k \cdot v = 0$. Let

$$u(x) = -\sum_{P \in \mathcal{P}_3} P(v) \sin \left(2\pi P(k) \cdot x\right).$$

Then u is permutation-symmetric and divergence free, and

$$-\partial_1 u_2(\vec{0}) = 2\pi (\sigma \cdot k)(\sigma \cdot v)$$

Proof.

$$\partial_1 u_2(\vec{0}) = -2\pi \sum_{i \neq j} k_i v_j - 2\pi \sum_i k_i v_i$$
$$= -2\pi \sum_{i,j} k_i v_j = -2\pi (\sigma \cdot k) (\sigma \cdot v)$$

Evan Miller

28 / 30

Question

Fix initial data

$$u^{0} = \begin{pmatrix} 1\\ -2\\ -5 \end{pmatrix} \sin \left(2\pi \begin{pmatrix} 2\\ 1\\ 0 \end{pmatrix} \cdot x \right) + all \ permutations.$$

The \mathcal{M} -restricted Euler equation blows up with initial data u^0 , as does the \mathcal{M} -restricted hypodissipative Navier–Stokes equation for all $\alpha < \frac{\log(3)}{6\log(2)}$, for sufficiently small viscosity, $\nu < \nu_{\alpha}$.

Do the actual Euler or hypodissipative Navier–Stokes equations exhibit finite-time blowup with this initial data? Thanks to the organizers for the chance to be back at MSRI in person and for the chance to speak.