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Introduction
The incompressible Euler and Navier–Stokes equations are
among the oldest PDEs, but core questions about their
solutions in three dimensions remain open.

∂tu+ P((u · ∇)u) = 0

∂tu− ν∆u+ P((u · ∇)u) = 0.

Both equations have the incompressibility constraint:

∇ · u = 0.

There has recently been major progress by Elgindi [2021]
on blowup for C1,α solutions of the Euler equation and by
Chen and Hou [2022] for the blowup of smooth solutions of
the Euler equation on the cylinder at the boundary.
The hypoviscous Navier–Stokes equation interpolates
between Euler and Navier–Stokes. For 0 < α < 1:

∂tu+ ν(−∆)αu+ P((u · ∇)u) = 0.

Evan Miller
Finite-time blowup for an Euler and hypodissipative Navier–Stokes model equation on a restricted constraint space
2 / 30



The M-restricted model equations

In this talk, I will discuss the M-restricted Euler and
hypodissipative Navier–Stokes equations, where the
Helmholtz projection is replaced by a projection P̃ onto a
subspace, Hs

M
(
T3
)
⊂ Hs

df

(
T3
)
:

∂tu+ P̃((u · ∇)u) = 0

∂tu+ ν(−∆)αu+ P̃((u · ∇)u) = 0.

This subspace involves restricting the Fourier modes to a
dyadic tree constructed iteratively using permuations.
The amplitudes are also restricted in a way that promotes
singularity formation, but the (u · ∇)u nonlinearity is kept.
This means both the energy equality and the identity for
enstrophy growth are unaffected by the change in
projection.
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Model equations for Euler and Navier–Stokes
Montgomery-Smith [2001] proved finite time blowup for a
scalar model equation where −P∇ · (u⊗ u) is replaced by
(−∆)

1
2

(
u2
)
,

∂tu−∆u = (−∆)
1
2
(
u2
)
.

This was generalized to blowup for a model equation on the
space of divergence free vector fields by Gallagher and
Paicu [2009], and further generalized to a model equation
with an energy equality by Tao [2016].
Tao’s model equation is given by

∂tu− ν∆u+B(u, u) = 0,

where

⟨B(u, u), u⟩ = 0

∥B(u, u)∥L2 ≤ ∥u∥L4∥∇u∥L4 .
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The dyadic model (1/3)

The dyadic Euler and dyadic Navier–Stokes equations were
introduced by Katz and Pavlović [2005] and Friedlander
and Pavlović [2004]. The Dyadic Navier–Stokes equation is
an infinite system of ODEs for {ψn}n∈Z+ :

∂tψn = −νλ2αnψn + λnψ2
n−1 − λn+1ψnψn+1.

Note ψ−1 := 0 by convention, that λ > 1, and that the
dyadic Euler equation is obtained when ν = 0.
FP proved finite-time blowup for the inviscid dyadic model.
KP proved finite-time blowup for the inviscid model and for
dyadic Navier—Stokes when α < 1

4 .
Cheskidov [2008] proved finite-time blowup for the dyadic
model when α < 1

3 , and global regularity when α ≥ 1
2 .
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The dyadic model (2/3)
For sufficiently smooth solutions—meaning decaying
sufficiently fast as n→ +∞—the dyadic Euler equation has
an energy equality

∞∑
n=0

ψn(t)
2 =

∞∑
n=0

ψn(0)
2

An analogous result with dissipation holds for dyadic NS.
We can see using telescoping series that

d

dt

∞∑
n=0

ψn(t)
2 = −2 lim

n→∞
λn+1ψ2

nψn+1.

A sufficient condition for energy conservation is

sup
n∈Z+

λγn|ψn(t)| < +∞,

for some γ > 1
3 . Note that this is Onsager critical.
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The dyadic model (3/3)

If ψn(0) ≥ 0, then for all 0 ≤ t < Tmax, we have ψn(t) ≥ 0

When the ψn are all nonnegative, the dyadic Euler equation
is structured to send energy to higher modes.
For all n ∈ Z+, define En by

En =

∞∑
m=n

ψ2
m.

It is straightforward to compute that

d

dt
En(t) = 2ψ2

n−1ψn

When ψ is nonnegative this implies that En is
non-decreasing. The proof of blowup is based on using this
fact to show that energy transfers to arbitrarily high modes
in finite-time [FP 2004, KP 2005].
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Permutation symmetry
We will take the permutation of a vector to be the
permutation of its entries, P (v)i = vP (i). For example,

P12(v) = (v2, v1, v3).

We will define the permutation of a vector field to be given
by

vP (x) = P (v(P−1x)).

Note that if ∇ · v = 0, then ∇ · vP = 0.
We will say that a vector field is permutation-symmetric if
for every permutation P ,

vP = v.

The space of permutation-symmetric vector fields is
preserved by the Euler and Navier–Stokes equations as well
as our restricted model equations.
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The construction of the constraint Space (1/3)

Let

σ =

 1
1
1

 .

For all m ∈ Z+, we will define the frequencies km, hm, jm by

km = 22mσ + 3m

 1
0
−1


hm = 22m+1σ + 3m

 1
1
−2


jm = 22m+1σ + 3m

 2
−1
−1

 .
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The construction of the constraint space (2/3)
Note that these canonical frequencies are constructed
dyadically in terms of permutations.

hm = km + P12(k
m)

jm = km + P23(k
m)

km+1 = hm + jm

When n = 2m, let
M+

n = P[km].

When n = 2m+ 1, let

M+
n = P[hm] ∪ P[jm].

Finally, let

M+ =

∞⋃
n=0

M+
n

M− = −M+

M = M+ ∪M−.
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The construction of the constraint space (3/3)

We will say that u ∈ Hs
M
(
T3;R3

)
if:

supp û ⊂ M,

and for all k ∈ M,

û(k) ∈ span
{
vk
}
,

where

vk =
P⊥
k (σ)∣∣P⊥
k (σ)

∣∣ .
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The dyadic tree

M+
0 =


 2

1
0

 ,

 2
0
1

 ,

 1
2
0

 ,

 1
0
2

 ,

 0
2
1

 ,

 0
1
2


M+

1 =


 3

3
0

 ,

 3
0
3

 ,

 0
3
3

 ,

 4
1
1

 ,

 1
4
1

 ,

 1
1
4

 ,


M+

2 =


 7

4
1

 , and permutations


M+

3 =


 11

11
2

 ,

 14
5
5

 , and permutations
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Dyadic properties

Proposition

For all k ∈ M+
n , σ · k = 3 ∗ 2n. Furthermore, if k = h+ j, for

some h, j ∈ M+, then h, j ∈ M+
n−1. If k = h− j, for some

h, j ∈ M+, then h ∈ M+
n+1, j ∈ M+

n

Proof.
The first statement is just a vector calculus identity. To finish
the proof, it suffices to observe that for nonnegative integers
m, r, n ∈ Z+: 2m + 2r = 2n if and only if m = r = n− 1, and
2n = 2m − 2r if and only if r = n, and m = n+ 1.
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Local Wellposedness: the inviscid case

Theorem

For all u0 ∈ Hs
M, s > 5

2 , there exists a unique strong solution of
the M-restricted Euler equation, u ∈ C ([0, Tmax);H

s
M), where

Tmax ≥ 1

Cs∥u0∥Hs
.

This solution satisfies the energy equality

∥u(·, t)∥L2 =
∥∥u0∥∥

L2 ,

and the Hs upper bound

∥u(·, t)∥Hs ≤ ∥u0∥Hs

1− Cs∥u0∥Hst
.
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Local Wellposedness: the viscous case
Theorem

For all u0 ∈ Hs
M, s > 5

2 , there exists a unique strong solution of
the M-restricted NS equation, u ∈ C ([0, Tmax);H

s
M), where

Tmax ≥ 1

Cs∥u0∥Hs
.

This solution satisfies the energy equality

1

2
∥u(·, t)∥2L2 + ν

∫ t

0
∥u(·, τ)∥2

Ḣα dτ =
1

2
∥u0∥L2 ,

and the Hs upper bound

∥u(·, t)∥Hs ≤ ∥u0∥Hs

1− Cs∥u0∥Hst
.

We also have higher regularity, u ∈ C∞ ((0, Tmax)× T3)
)
.
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Ansatz for singularity formation

We will say that a vector field v ∈ Hs
M is odd, permutation

symmetric, with hj-parity, if

u(x) = −2

+∞∑
m=0

(
ψ2m

∑
k∈P[km]

vk sin (2πk · x)

+ψ2m+1

 ∑
h∈P[hm]

vh sin (2πh · x) +
∑

j∈P[jm]

vj sin (2πj · x)

).
This class of vector fields is preserved by the dynamics of
the inviscid and viscous restricted model equations.
We will use this Ansatz to prove finite-time blowup by a
reduction to the dyadic model.
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Reduction to the dyadic model

∂tψn = −(12π2)αµαnν
(√

3
)2α̃n

ψn +
√
2πβn−1

(√
3
)n
ψ2
n−1

−
√
2πβn

(√
3
)n+1

ψnψn+1,

where ν = 0 for the inviscid equation and

α̃ =
2 log(2)

log(3)
α

βn =
1(

1 + 1
2

(
3
4

)n) 1
2

µn =
1(

1 + 2
3

(
3
4

)n) 1
2

and by convention
ψ−1, β−1 := 0.
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Positivity of the Fourier coefficients

We will say that an odd, permutation-symmetric, hj-parity
vector field u ∈ Hs

M is coefficient positive if for all n ∈ Z+,

ψn ≥ 0,

and u is not identically zero.
That is, all of the coefficients must be nonnegative, and at
least one must be positive.
It is straightforward to observe that positivity is also
preserved by the dynamics of both the M-restricted Euler
and hypoviscous Navier–Stokes equations.
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Finite-time blowup for the inviscid model equation

Theorem

Suppose u0 ∈ Hs
M, s > 5

2 is odd, permutation-symmetric, with
hj-parity, and is coefficient positive. Then the solution of the
M-restricted Euler equation blows up in finite-time, with

Tmax ≤ inf
1
3
<r<

√
2√

2+3
2

√
r

√
2E0π

(√
2−

(√
2 + 3

2

)
r
) √

3r√
3r − 1

,

where
E0 =

1

12

∥∥u0∥∥2
L2 .
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Finite-time blowup for the hypoviscous model equation

Theorem

Suppose u0 ∈ Hs
M, s > 5

2 is odd, permutation-symmetric, with
hj-parity, and is coefficient positive, and that α < log(3)

6 log(2) .
If for some 0 < γ < 1− 3α̃, the Lyapunov functional satisfies

Hγ(0) := rγ

+∞∑
n=0

(√
3
)2γn

ψn(0)
2 +

+∞∑
n=0

(√
3
)2γn

ψn(0)ψn+1(0)

≥
C2
γ,α̃ν

2
(
rγ +

1
2 + 1

2(3γ)

)
(
1−

(√
3
)−ϵ
)
π2

,

then the solution blows up in finite-time

Tmax ≤ 1

κ
√
Hγ(0)

.
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Global Regularity with sufficient dissipation

Theorem

Suppose u0 ∈ Hs
M, s > 5

2 is odd, permutation-symmetric, with
hj-parity, and that α ≥ log(3)

4 log(2) . Then there is a global smooth
solution of the M-restricted, hypodissipative Navier–Stokes
equation, u ∈ C ([0,+∞);Hs

M). Furthermore, this solutions has
the upper bound

∥u(·, t)∥2
Ḣs ≤

(
5

3

)s ∥∥u0∥∥2
Ḣs exp

(
2
√
2π(3s̃ − 1)t

1
2

(
1

ν

∥∥ψ0
∥∥2
Hα̃ +

C ′
αt

ν2
∥∥ψ0

∥∥4
Hα̃ exp

(
2Cα

ν2
∥∥u0∥∥2

L2

)) 1
2

)
,

where s̃ = 2 log(2)
log(3) s.
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Relationship to the dyadic model

Note that we have proven finite-time blowup when α̃ < 1
3

and global regularity when α̃ ≥ 1
2 .

This corresponds exactly to the results of Cheskidov [2008]
for dyadic Navier–Stokes.
Once the reduction to the dyadic model is accomplished
with our blowup Anstaz, we can essentially follow
Cheskidov’s proof with a some minor technical variations
involving the correction factors βn, µn.
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Dyadic regularity criteria

Theorem

Suppose u ∈ C ([0, Tmax);H
s
M) , s > 5

2 is an odd permutation
symmetric, hj-parity solution of the M-restricted Euler or
hypodissipative Navier–Stokes equation. Then for all
0 ≤ t < Tmax

∥u(·, t)∥2
Ḣs ≤

(
5

3

)s ∥∥u0∥∥2
Ḣs exp

(
2
√
2π(3s̃ − 1)

∫ t

0
sup
n∈Z+

(√
3
)n
ψn(τ) dτ

)
,

where s̃ = 2 log(2)
log(3) s. In particular, if Tmax < +∞, then∫ Tmax

0
sup
n∈Z+

(√
3
)n
ψn(t) dt = +∞.
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Singularity at the origin
Theorem

Suppose u ∈ C
(
[0, Tmax); Ḣ

s
M

)
, s > 5

2 is an odd permutation
symmetric, hj-parity, coefficient positive solution of the
M-restricted Euler or hypodissipative Navier–Stokes equation.
Then for all 0 ≤ t < Tmax,

∇u(⃗0, t) = λ(t)

 0 −1 −1
−1 0 −1
−1 −1 0


λ(t) = 12

√
2π

+∞∑
n=0

ψn(t)

(√
3
)n(

1 + 2
3

(
3
4

)n) 1
2

≥ 0.

Furthermore, if Tmax < +∞, then∫ Tmax

0
λ(t) dt = +∞.
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Singularity at the origin: proof

Proof.
We will see from geometric considerations involving permutation
symmetry that

∇u(⃗0, t) = λ(t)

 0 −1 −1
−1 0 −1
−1 −1 0


λ(t) = 12

√
2π

+∞∑
n=0

ψn(t)

(√
3
)n(

1 + 2
3

(
3
4

)n) 1
2

≥ 0.

We know that ψn(t) ≥ 0, so we can see that

λ(t) = 12
√
2π

+∞∑
n=0

ψn(t)

(√
3
)n(

1 + 2
3

(
3
4

)n) 1
2

≥ C sup
n∈Z+

(√
3
)n
ψn(t)
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Singularity at the origin: discussion

Note that the gradient at the origin is symmetric, with
ω(⃗0, t) = 0 and

S(⃗0, t) = λ(t)

 0 −1 −1
−1 0 −1
−1 −1 0


The strain matrix at the origin has eigenvalues −2λ, λ, λ,
with axial compression along span(σ), and planar
stretching in the plane orthogonal to σ.
This is exactly the structure of singularity formation
predicted by the regularity criteria in terms of λ+2 , the
positive part of the middle eigenvalue [Neustupa-Penel
2001].
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The geometry of permutation symmetric vector fields

Proposition

Suppose u ∈ Hs
df , s >

5
2 is permutation-symmetric. Then for all

1 ≤ i, j ≤ 3, i ̸= j,
∂iuj (⃗0) = ∂1u2(⃗0),

and for all 1 ≤ i ≤ 3,
∂iui(⃗0) = 0.

Therefore

∇u(⃗0) = ∂1u2(⃗0)

 0 1 1
1 0 1
1 1 0

 .

Note that this implies that λ(t) = −∂1u2(⃗0), in the
preceding theorem.
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Fourier mode computation
Proposition

Fix k ∈ Z3, v ∈ R3, such that k · v = 0. Let

u(x) = −
∑
P∈P3

P (v) sin (2πP (k) · x) .

Then u is permutation-symmetric and divergence free, and

−∂1u2(⃗0) = 2π(σ · k)(σ · v)

Proof.

∂1u2(⃗0) = −2π
∑
i ̸=j

kivj − 2π
∑
i

kivi

= −2π
∑
i,j

kivj = −2π(σ · k)(σ · v)
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Open question

Question
Fix initial data

u0 =

 1
−2
−5

 sin

2π

 2
1
0

 · x

+ all permutations.

The M-restricted Euler equation blows up with initial data u0,
as does the M-restricted hypodissipative Navier–Stokes equation
for all α < log(3)

6 log(2) , for sufficiently small viscosity, ν < να.

Do the actual Euler or hypodissipative Navier–Stokes equations
exhibit finite-time blowup with this initial data?
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Thank you

Thanks to the organizers for the chance to be back at MSRI in
person and for the chance to speak.
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