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Navier-Stokes and Euler Equations

∂tu + div (u ⊗ u) +∇p − ν∆u = f

div u = 0

◦ u(t, ·) : T3 → R3, p(t, ·) : T3 → R, f (t, ·) : T3 → R3

◦ NSE - ν > 0, Euler - ν = 0

◦ Focus: Turbulent regime ν → 0

◦ Facts: (1) Anomalous dissipation of energy, (2) 4/5-law, (3) intermittency

◦ Onsager program: Build solutions to the PDEs consistent with experiments and
numerics!
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Main Theorem

Theorem (Giri-Kwon-N., ’23)

For any fixed β < 1/3, there exist weak solutions to the 3D Euler equations

∂tu + div (u ⊗ u) +∇p = 0

div u = 0

which, in addition, dissipate the total kinetic energy 1/2∥u(t)∥2L2 , belong to

C 0
t B

β
3,∞(T3), and satisfy the local energy inequality

∂t

(
1

2
|u|2

)
+ div

(
u

(
1

2
|u|2 + p

))
≤ 0

in the sense of distributions.

◦ Sharpness: If β > 1/3, sol’ns in C 0
t B

β
3,∞ satisfy local energy equality

(Duchon-Robert)

◦ Previous results: C 0
t C

β with β < 1/15 (Isett), β < 1/7 (De Lellis-Kwon)
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Turbulence Basics

◦ Navier-Stokes equations for an incompressible fluid of constant density

∂tu + div (u ⊗ u) =
1

Re
∆u −∇p + f

div u = 0

u is velocity, p is pressure, f is an external force

◦ The Reynolds number

Re =
UL

ν
=

(characteristic velocity) · (characteristic length)

kinematic viscosity

◦ Euler equations correspond to Re = ∞, or ν = 0



Turbulence Basics

What happens as the Reynolds number increases?

4 /111rcllillcr ion 

Fig. IJ. Circular cylinder at I< z: 1.54 ~\an D} ke I 9!CJ. l'hmograrih S. I aneda. 

It i<> easily checked that the left right S)mmctry i~ not consi\lCnt \\ ith 
the Nader Stokes equation. <1lthough it is consistent with the Stokes 
equation. ob tamed by dropping the nonlinear term. Actual!). closer 
inspection of Fig. 1.2 shows that the lefc- right symmetry 1s not exact: 
it is -.lightly broJ..en. This is an effect of the residual nonlint:arity. \\ hich 
\\Ould get e\en weaker if \\e were to let the Re)nolds number become 
much snmller. 

Fig. I.'.\ shows the Otm at R - 1.54. There 1' now a marked left 
right asymmetry. Around R - 5 the flow begins to separate behind 
the cylinder. Although no symmetry-brenkmg occurs. there 1s a change 
in the topolog) of the flow <l'\SOCiated with the formation of recircu­
lating standing cdd1c\, shown in Fig. 1.4 for rnrious values of R from 
9.6 Lo 26. 

Around R - 40 the first true loss of symmetry occurs by an Andronov 
Hopf bifurcation which makes the flow time-periodic: in other words. the 
continuous r-invariance is broken in favor of a discrete 1-invar1ance. The 
How in the immediate neighborhood of the bifurcation point b shown 
in Fig. 1.5. At higher \alues of R. such as shown in fig!>. 1.6. 1.7 and 

Flow behind a cylinder at Re = 1.54



Turbulence Basics

What happens as the Reynolds number increases?
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Flow behind a cylinder at Re = 140



Turbulence Basics

What happens as the Reynolds number increases?
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the 111.m 1.fo.pla)'> a form of spatwl disorder kmmn since Lord Kelvin 

11887 t m. lwmogt•tu'mt,, ;,,otrc>pil rurb11/e11n• be~au-.e its overall aspe~t 

"L'ellls not to change under trnm.lation ... unJ rotations. Thi..,, of couN:. 
:.in onl) be a statistical tutement which "ill be m:1de more preci~e later. 
Fig. 1.13 illustrate .. another a'pect of the homogcncit) .tnd isotropy of 
grid turhulcncc. 

Finall). Fig. 1.14 shOY.'> a turbulent jet .11 R = ~300. It i.., u~c:d to 
1llu .. trate the prc,cncc of eddy-motion at all .calcs, suggc ... 11ng that ... ume 
form of htati .. tical) M.~.11e-invarian<."C m<t) be pn:~nt. 

Let u" surnmari.1e what we ha\e obsened. As the Reynolds number 
is increased, the various symmetries permitted b) the equations (and the 

Flow behind a grid at Re = 1800



Turbulence Basics

◦ Homogeneous isotropic turbulence arises at large Reynolds numbers (or small ν)

◦ What about anomalous dissipation, the 4/5 law, and intermittency?

12 Y. Kaneda and T. Ishihara

Figure 8. (a) Contour plot of vorticity on a plane of turbulent velocity field and (b) Contour plot of dissipation on
the same plane as (a). (c) The same as (b) but the regions where ω > 〈ω〉 + 3σω are shown by black.

Contour plot of dissipation in a
turbulent velocity field
Source: Kaneda-Ishihara ’05



Fact #1: Anomalous Dissipation

∂tu
ν + (uν · ∇)uν = ν∆uν −∇pν , div uν = 0

◦ Pointwise energy balance for smooth solutions

∂t

(
1

2
|uν |2

)
+ div

((
1

2
|uν |2 + pν

)
uν − ν∇|uν |2

2

)
= −ν|∇uν |2

◦ Integrating in T3 and from 0 to T , we have

1

2
∥uν(T , ·)∥2L2(T3) −

1

2
∥uν(0, ·)∥2L2(T3) = −

ˆ T

0

ν∥∇uν(t, ·)∥2L2(T3) dt

◦ Thus smooth Euler solutions conserve energy, and dissipation in smooth
Navier-Stokes solutions is caused by ν∆uν
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Fact #1: Anomalous Dissipation

∂tu
ν + (uν · ∇)uν = ν∆uν −∇pν , div uν = 0

◦ Energy balance for weak solutions (obtained by mollifying and passing to the limit)

∂t

(
1

2
|uν |2

)
+ div

((
1

2
|uν |2 + pν

)
uν − ν∇|uν |2

2

)
+ ν|∇uν |2 + D[uν ] = 0

◦ The nonlinearity contributes the Duchon-Robert measure

D[uν ](t, x) = lim
ℓ→0

1

4

ˆ
T3

∇ϕℓ(z) · (u(t, x + z)− u(t, x)) |u(t, x + z)− u(t, x)|2 dz

◦ Zeroth law of turbulence (no proof exists!)

ε = lim inf
ν→0

〈
ν|∇uν |2 + D[uν ]

〉
︸ ︷︷ ︸

εν

> 0
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Fact #1: Anomalous Dissipation

◦ Caffarelli-Kohn-Nirenberg’s “suitable solutions” to Navier-Stokes satisfy

uν ∈ L∞
t L2

x ∩ L2
tW

1,2
x , D[uν ] ≥ 0

◦ If suitable solutions uν converge in L3
t,x to an Euler solution u, then D[u] ≥ 0

◦ Notice that D[uν ], given by

D[uν ] = lim
ℓ→0

1

4

ˆ
T3

∇ϕℓ(z) · (uν(t, x + z)− uν(t, x)) |uν(t, x + z)− uν(t, x)|2 dz ,

vanishes if uν ∈ L3
tB

α
3,∞,x for α > 1/3 and

∥f ∥Bα
3,∞(T3) = sup

|z|>0

1

|z |α ∥f (·+ z)− f (·)∥L3(T3)

◦ Therefore if u dissipates energy, then uν cannot remain bounded in L3
tB

α
3,∞,x as

ν → 0 for α > 1/3
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Fact #2: Kolmogorov’s 4/5 law

◦ K41 Assumptions: the zeroth law (ε > 0), translation, rotation, and scaling
symmetries for law of uν(t, x + ℓẑ)− uν(t, x) (here ℓ > 0, ẑ ∈ S2)

◦ K41 Claims: longitudinal structure functions satisfy

S∥
p (ℓ) = ⟨((uν(t, x + ℓẑ)− uν(t, x)) · ẑ)p⟩ ≈ (εℓ)

p/3

◦ Regularity: K41-style scaling suggests that for p ∈ [1,∞),

sup
0<z≤1

|z |−
p
3 ∥u(t, ·+ z)− u(t, ·)∥p

Lp(T3)
≈ ε

p/3

︸ ︷︷ ︸
=⇒ u(t,·)∈B

1/3

p,∞

=⇒ u(t, ·) ∈ C
1/3

◦ Local, deterministic 4/5 law (Eyink, ’02)

lim
ℓ→0

1

ℓ
S
∥
3 (ℓ) = lim

ℓ→0

1

ℓ

 
T3

 
S2
[(uν(t, x + ℓẑ)− uν(t, x)) · ẑ]3 dẑ dx

= −4

5
D[uν ]
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= −4

5
D[uν ]



Fact #2: Kolmogorov’s 4/5 law

◦ K41 Assumptions: the zeroth law (ε > 0), translation, rotation, and scaling
symmetries for law of uν(t, x + ℓẑ)− uν(t, x) (here ℓ > 0, ẑ ∈ S2)
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Onsager’s Conjecture and the L∞t C
1/3
x Threshold

◦ “It is of some interest to note that in principle, turbulent dissipation as described
could take place just as readily without the final assistance by viscosity. In the
absence of viscosity, the standard proof of the conservation of energy does not
apply, because the velocity field does not remain differentiable!” – Onsager, ’49

◦ Recall that

∂t

(
1

2
|u|2

)
(t, x) + div

((
1

2
|u|2 + p

)
u

)
(t, x)

= − lim
ℓ→0

1

4

ˆ
T3

∇ϕℓ(z) · (u(t, x + z)− u(t, x)) |u(t, x + z)− u(t, x)|2 dz

and conservation of energy follows from D[u] = 0, which holds if u ∈ L3
tB

α
3,∞ for

α > 1/3 (Eyink ’92, Constantin-E-Titi ’94, Duchon-Robert ’00)

◦ If α < 1/3, the kinetic energy of 3D Euler solutions need not be conserved (Isett
’18) and can dissipate (Buckmaster-De Lellis-Székelyhidi-Vicol ’19)
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Adding to the story: local energy inequality and
intermittency

◦ The solutions of Isett and Buckmaster et. al. do not satisfy D[u] ≥ 0, and so
cannot arise as limits of suitable Navier-Stokes solutions

◦ Solutions satisfying D[u] ≥ 0, also known as the local energy inequality

∂t

(
1

2
|u|2

)
+ div

((
1

2
|u|2 + p

)
u

)
= −D[uν ] ≤ 0 ,

have only been shown to exist in C
1/7− (De Lellis-Kwon ’22, following Isett ’22)

◦ Conservation of energy requires only L3
tB

α
3,∞ for α > 1/3, but dissipative solutions

belong to Cα
t,x for α < 1/3 ... is this merely a curiosity concerning function spaces?
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Intermittency: Deviations from K41/Onsager

◦ Onsager, unpublished work - “[Anomalous scaling for ζ2] would require a
“spotty” distribution of the regions in which the velocity varies rapidly”

◦ Kolmogorov ’62 - “I have formulated appropriate modifications to the two
similarity hypotheses that I put forward in 1941 ...”

◦ Chen, Dhruva, Kurien, Sreenivasan, Taylor ’05 - “It is now believed that the
scaling exponents of moments of velocity increments are anomalous ... anomalous
scaling is a genuine result worth of a serious theoretical effort.”

◦ Iyer, Sreenivasan, Yeung ’20 - “The 4/5-ths law holds in an intermediate range of
scales and the second-order exponent over the same range of scales is anomalous,
departing from the self-similar value of 2/3.”

◦ See also - Ishihara-Kaneda-Gotoh, Frisch, Anselmet-Gagne-Hopfinger-Antonia, ...

Takeaway: B
1/3
3,∞ ∩ L∞ may be the correct space
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Intermittency: Deviations from K41/Onsager

◦ Symmetry assumptions: Turbulence is isotropic, homogeneous, but not purely
self-similar ... fewer eddies of higher intensity!

◦ Dissipativity assumption: Dissipation occurs even in the absence of viscosity

◦ Implications for regularity: Cantor function, Heaviside function (B
1/p
p,∞)
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Strong Onsager Conjectures

Consider weak solutions u to the Euler equations, with the local energy balance
∂tu + div (u ⊗ u) +∇p = 0

div u = 0

∂t

(
1
2
|u|2

)
+ div

((
1
2
|u|2 + p

)
u
)
+ D[u] = 0 .

Conjecture (Strong L3 Onsager Conjecture)

For any α < 1/3, there exist weak solutions u ∈ L∞
t Bα

3,∞ of 3D Euler for which D[u] ≥ 0
and d

dt
∥u∥2L2 < 0.

Conjecture (Strong L3 Onsager Conjecture in the Inviscid Limit)

There exist sequences of suitable solutions {uνj }j∈N to Navier-Stokes with viscosity
νj → 0 which are uniformly bounded in L∞

t Bα
3,∞ converging to the 3D Euler solutions

described above.
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The Strong L3 Onsager Theorem (and its antecedents)

Theorem (Buckmaster-Masmoudi-N.-Vicol, ’21)

There exist solutions to 3D Euler which have decreasing kinetic energy and belong to
L∞
t H

1/2−
x (intermittent, but no 4/5 law or local energy inequality)

Theorem (N.-Vicol, ’22)

There exist solutions to 3D Euler which have decreasing kinetic energy and belong to

L∞
t

(
H

1/2−
x ∩ L∞−

x ∩ B
1/3−
3,∞

)
(intermittent, 4/5 law, but no local energy inequality)

◦ Giri-Kwon-N., ’23a - Reprove the results in NV ’22 using a “wavelet-inspired”
scheme, along with further improvements

Theorem (Giri-Kwon-N., ’23b)

There exist solutions to 3D Euler which have decreasing kinetic energy, belong to

L∞
t

(
L∞−
x ∩ B

1/3−
3,∞

)
, and satisfy D[u] ≥ 0 (intermittent, 4/5 law, local energy inequality)
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A bird’s-eye view of our construction

Basic Strategy: Construct a weak solution u = limq→∞ uq in

L∞t

(
L∞− ∩ B

1/3−
3,∞

)
via Nash iteration

◦ Wavelet-inspired scheme: Replace partial Fourier sums uq of solution u (i.e. pure
frequency decompositions), with partial wavelet decompositions uq (mixed
space-time and frequency decompositions)

◦ L3 iteration: Replace Nash iterations formulated in L2 or L∞-based Sobolev
spaces with an L3-based framework

◦ Intermittent pressure πq: Control uq (and any other important functions) in
terms of πq, and propagate scaling laws comparing different terms in the wavelet
expansion of πq

Two questions: How to set up the induction, and how to propagate
the inductive assumptions?
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Wavelet-inspired, B
1/3−
3,∞ ∩ L∞− inductive set-up

◦ Assume the existence of (uq, pq,Rq, Φq, πq) satisfying

∂tuq + div (uq ⊗ uq) +∇pq = div x (Rq − πqId)︸ ︷︷ ︸
⇀0 as q→∞

, div uq = 0

∂t

(
|uq|2

2

)
+ div

((
|uq|2

2
+ pq

)
uq

)
≤ div t,x Φq︸ ︷︷ ︸

⇀0 as q→∞

◦ Heuristics:
◦ Let λq = a(b

q) quantify the inverse of the diameter of an oscillation, and λqrq
for rq ≪ 1 quantify the inverse of the distance between oscillations

◦ uq =
∑

q′≤q wq′ , where wq′ has oscillations of size λ−1
q , distance (λqrq)

−1

between oscillations, and frequency support [λqrq, λq] (not necessarily
disjoint from [λq′ rq′ , λq′ ]!)
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Wavelet-inspired, B
1/3−
3,∞ ∩ L∞− inductive set-up

◦ Assume the existence of (uq, pq,Rq, Φq, πq) satisfying

∂tuq + div (uq ⊗ uq) +∇pq = div x (Rq − πqId)︸ ︷︷ ︸
⇀0 as q→∞

, div uq = 0
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(
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)
+ div

((
|uq|2

2
+ pq

)
uq

)
≤ div t,x Φq︸ ︷︷ ︸

⇀0 as q→∞

◦ Heuristics:
◦ Let λq ≈ a(b

q) quantify the inverse of the width of an oscillation, and λqrq for
rq ≪ 1 describe the inverse of the distance between oscillations

◦ uq =
∑

q′≤q wq′ , where wq′ has oscillations of size λ−1
q , distance (λqrq)

−1

between oscillations, and frequency support [λqrq, λq]

◦ “Wavelet parameter” n̄ quantifies the exchange between space-time and
frequency support:

suppt,xwq′ ∩ wq′′ = ∅ if |q′ − q′′| < n̄

suppξŵq′ ∩ ŵq′′ = ∅ if |q′ − q′′| ≥ n̄
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◦ Heuristics:
◦ Use parameters λq, rq, and n̄ to describe uq as a “partial wavelet sum”

◦ Inductive bounds:
◦ Assume bounds for ∥πq∥3/2, ∥πq∥∞ (which depend on their frequency)

◦ All other bounds are “pointwise in terms of π,” e.g.∣∣∣DNπq

∣∣∣+ ∣∣∣DNRq

∣∣∣ ≲ πqλ
N
q
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◦ Heuristics:
◦ Use parameters λq, rq, and n̄ to decompose uq into a “partial wavelet sum”

◦ Inductive bounds:
◦ Assume bounds for ∥πq∥3/2, ∥πq∥∞ (which depend on their frequency)

◦ All other bounds are “in terms of π,” e.g.∣∣∣DNπq

∣∣∣+ ∣∣∣DNRq

∣∣∣ ≲ πqλ
N
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◦ Scaling law: Mollifying high-freq. π’s gives rescaled low-freq. π’s

◦ ϕλ−1
q

∗ πq′ =

(
λq

λq′

)2/3

πq , λq < λq′
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How to propagate spatial support properties (multi-scale
pipe flows)

◦ uq′ =
∑
q≤q′

wq =
∑
q≤q′

∑
k

aqk(t, x)︸ ︷︷ ︸
low-frequency amplitudes,

partition spacetime

Bq
k(Φ

q
k)︸ ︷︷ ︸

Intermittent Mikado bundle
(∂t+uq−1·∇)Φ

q
k
=0

◦ supp aqk(t, x)B
q
k(Φ

q
k) ∩ supp aqk′(t, x)B

q
k′(Φ

q
k′) = ∅

◦ Either suppwq ∩ suppwq̃ ≡ 0 or suppŵq ∩ suppŵq̃
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How to propagate spatial support properties (multi-scale
pipe flows)

◦ uq′ =
∑
q≤q′

wq =
∑
q≤q′

∑
k

aqk(t, x)︸ ︷︷ ︸
low-frequency partition

of unity in time and space

Bq
k(Φ

q
k)︸ ︷︷ ︸

Intermittent Mikado bundle
(∂t+uq−1·∇)Φ

q
k
=0

◦ Intermittent Mikado bundle Bq
k = Bq

k,highB
q
k,low is a multi-scale, intermittent shear

flow
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How to propagate spatial support properties (multi-scale
pipe flows)

◦ uq′ =
∑
q≤q′

wq =
∑
q≤q′

∑
k

aqk(t, x)︸ ︷︷ ︸
low-frequency partition

of unity in time and space

Bq
k(Φ

q
k)︸ ︷︷ ︸

Intermittent Mikado bundle
(∂t+uq−1·∇)Φ

q
k
=0

◦ Intermittent Mikado bundle Bq
k = Bq

k,highB
q
k,low is a multi-scale, intermittent shear

flow with flexibility in the support

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael

Michael



How to propagate spatial support properties (multi-scale
pipe flows)

◦ Need to choose the support of Bq
k = Bq

k,highB
q
k,low to dodge any other bundles (for

other k ′ or q′) which have overlapping frequency support
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Oscillation error and the choice of rq+1

◦ Simple example, ignoring local energy inequality:

Rq − πqId →

R − π 0 0
0 0 0
0 0 0

 , wq+1 = e⃗1(−R + π)
1/2 Bq+1(x2, x3)︸ ︷︷ ︸

freq’s
[λq+1rq+1,λq+1]

◦ Add wq+1 to the equation and collect leftovers

◦ Set
ffl
T3 B2

q+1 = 1, use stationarity of e⃗1Bq+1, and rewrite

div ((R − π)(e1 ⊗ e1) + wq+1 ⊗ wq+1) = e⃗1∂x

(
(R − π)(1− B2

q+1)
)

= e⃗1∂x (R − π)

( 
T3

−Id

)
(B2

q+1)

◦ Put this vector field in divergence form and estimate in L
3/2; prefers rq+1 = 1 since

∥Bq+1∥L3 grows as rq+1 → 0
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Linear errors and the choice of rq+1

◦ Recall that
wq+1 = e⃗1(−R + π)

1/2 Bq+1(x2, x3)︸ ︷︷ ︸
freq’s

[λq+1rq+1,λq+1]

,

and consider the (linear) Nash error

RNash
q+1 = div−1(wq+1 · ∇uq) =⇒ wq+1 · ∇uq = div

(
RNash
q+1

)

◦ Since it is linear, and Bq+1 is L2-normalized, it prefers more intermittency, so that

∥Bq+1∥L3/2 → 0 as rq+1 → 0

◦ Recall that the nonlinear error preferred less intermittency, i.e. rq+1 = 1

◦ Heuristic estimates of this choice dictate a single acceptable choice

rGoldilocksq+1 =

(
freq. of R

max. freq. of Bq+1

)1/2
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Open problems

◦ (Dream Theorem) Construct a sequence of suitable solutions to

Navier-Stokes converging to a dissipative Euler solution in B
1/3−
3,∞

◦ (Partial progress) Construct solutions to Navier-Stokes in Hβ for β
non-negligible

◦ Construct wild solutions to 2D Euler with Lebesgue integrable
vorticity (preferably for p as large as possible!)

◦ Construct wild solutions to 3D Euler with well-defined helicity´
T3 u · (∇× u)
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Thanks for your attention!


