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Navier-Stokes and Euler Equations

Oru+diviu®@u)+Vp—vAu="f
divu=20
o u(t,): T —R3 p(t,"): T> =R, f(t,"): T>* > R?
o NSE-v >0, Euler-v=0
o Focus: Turbulent regime v — 0

o Facts: (1) Anomalous dissipation of energy, (2) 4/5>-law, (3) intermittency

o Onsager program: Build solutions to the PDEs consistent with experiments and
numerics!



Main Theorem

Theorem (Giri-Kwon-N., '23)

For any fixed 3 < 1/3, there exist weak solutions to the 3D Euler equations
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C? BQOO(T3), and satisfy the local energy inequality
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in the sense of distributions.
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Main Theorem

Theorem (Giri-Kwon-N., '23)
For any fixed 3 < 1/3, there exist weak solutions to the 3D Euler equations

Oru+diviu®@u)+Vp=0
divu=0

which, in addition, dissipate the total kinetic energy 1/2||u(t)||3,, belong to

C? BQOO(T3), and satisfy the local energy inequality

1 1
O [ Z|u)®) +div (u( Zu+p)) <0
2 2
in the sense of distributions.

o Sharpness: If 8 > 1/3, sol'ns in CfBﬁoo satisfy local energy equality
(Duchon-Robert)

o Previous results: C{C” with 8 < 1/15 (Isett), < 1/7 (De Lellis-Kwon)



Turbulence Basics

o Navier-Stokes equations for an incompressible fluid of constant density
. 1
Oru+div(u®u) = R—eAu— Vp+f
divu=0
u is velocity, p is pressure, f is an external force

o The Reynolds number

Re — UL _ (characteristic velocity) - (characteristic length)

v kinematic viscosity

o Euler equations correspond to Re = 00, or v =0



Turbulence Basics

What happens as the Reynolds number increases?

Flow behind a cylinder at Re = 1.54
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Turbulence Basics

What happens as the Reynolds number increases?

Flow behind a grid at Re = 1800



Turbulence Basics

o Homogeneous isotropic turbulence arises at large Reynolds numbers (or small v/)

o What about anomalous dissipation, the 4/5 law, and intermittency?

Contour plot of dissipation in a
turbulent velocity field
Source: Kaneda-Ishihara '05



Fact #1: Anomalous Dissipation

O’ + (u” - V)u¥ =vAu” —Vp”, divu” =0

o Pointwise energy balance for smooth solutions

1 v H 1 v v v UVZ v
Or <§|u |2> + div ((E\u P+ p )u fuv%) = V"]
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Fact #1: Anomalous Dissipation

O’ + (u” - V)u¥ =vAu” —Vp”, divu” =0
o Pointwise energy balance for smooth solutions
1 v|2 5
Or <%|u"|2> + div ((E\u"|2 +p”) u’ — VV%) = —u|Vu"|?
o Integrating in T® and from 0 to T, we have
1 v 2 1 v 2 T v 2
5”“ (Ta')||L2('J1‘3) - EHU (07')HL2(T3) = - . v[[Vu (ta')HL2(T3) dt

o Thus smooth Euler solutions conserve energy, and dissipation in smooth
Navier-Stokes solutions is caused by vAu”
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Fact #1: Anomalous Dissipation

ord” + (u” - V)u” = vAu” —Vp”, dive” =0

o Energy balance for weak solutions (obtained by mollifying and passing to the limit)

v|2
Or (%\u”f) + div ((%|u”\2 +p") u’ — Z/V‘u2| ) +v|Vu’)P? + D[u’] =0

o The nonlinearity contributes the Duchon-Robert measure

D[u"](t,x) = l!i;no % /11‘3 Ve(z) - (u(t,x + z) — u(t,x)) |u(t,x + z) — u(t,><)|2 dz

o Zeroth law of turbulence (no proof exists!)

T v |2 v
e_hlrmgf<y|Vu |+ D[u ]> >0

ev
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o Caffarelli-Kohn-Nirenberg's “suitable solutions” to Navier-Stokes satisfy
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o If suitable solutions u” converge in L} , to an Euler solution u, then D[u] > 0

o Notice that D[u"], given by
D[u"] = I|m / Vu(z) - (u”(t,x + z) — u”(t,x)) |u” (¢, x + z) — u”(t,x)|* dz,
vanishes if v € L?Bffoo,x for & > 1/3 and

HfHBa (T3) = Sup T2l |a (¢ +2) = FC)ll 3

|z|>

o Therefore if u dissipates energy, then u” cannot remain bounded in L?B;oo’x as
v—0fora>1/3



Fact #2: Kolmogorov's 4/5 law

o K41 Assumptions: the zeroth law (¢ > 0), translation, rotation, and scaling
symmetries for law of u”(t,x + £2) — u”(t,x) (here £ > 0,2 € §?)
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Fact #2: Kolmogorov's 4/5 law

o K41 Assumptions: the zeroth law (¢ > 0), translation, rotation, and scaling
symmetries for law of u”(t,x + £2) — u”(t,x) (here £ > 0,2 € §?)

o K41 Claims: longitudinal structure functions satisfy

SO = (((u” (£, x + £2) — u"(t, %)) - 2)°) =~ (e£)™

o Regularity: K41-style scaling suggests that for p € [1, 00),

_p P 1/3
sup (2 Fllu(t, 4 2) — ot Wy = = ule ) € €

= u(tg)EB;/foQ
o Local, deterministic 4/5 law (Eyink ’02)

lim Zs“(e)_ lim [(u”(t,x + £2) — u”(t, x)) - 2] d2 dx



Onsager's Conjecture and the L3° C;/e' Threshold

“It is of some interest to note that in principle, turbulent dissipation as described
could take place just as readily without the final assistance by viscosity. In the
absence of viscosity, the standard proof of the conservation of energy does not
apply, because the velocity field does not remain differentiable!” — Onsager, '49
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o "It is of some interest to note that in principle, turbulent dissipation as described
could take place just as readily without the final assistance by viscosity. In the
absence of viscosity, the standard proof of the conservation of energy does not
apply, because the velocity field does not remain differentiable!” — Onsager, '49

o Recall that
P (%W) (£, x) + div (<%|u|2 +p> u> (£,%)
Voe(2) - (u(t, x + 2) — u(t, x)) [u(t x + 2) — u(t, )2 dz

and conservation of energy follows from D[u] = 0, which holds if u € L?B;foo for
a > 1/3 (Eyink '92, Constantin-E-Titi '94, Duchon-Robert '00)

If @ < 1/3, the kinetic energy of 3D Euler solutions need not be conserved (Isett
'18) and can dissipate (Buckmaster-De Lellis-Székelyhidi-Vicol '19)



Adding to the story: local energy inequality and
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Adding to the story: local energy inequality and
intermittency

o The solutions of Isett and Buckmaster et. al. do not satisfy D[u] > 0, and so
cannot arise as limits of suitable Navier-Stokes solutions

o Solutions satisfying D[u] > 0, also known as the local energy inequality
1 5 . 1 v
O: §|u| + div §|u\ +p|u)=-D[u"] <0,
have only been shown to exist in C/"~ (De Lellis-Kwon 22, following Isett '22)

o Conservation of energy requires only L:fBgfoc for o > 1/3, but dissipative solutions
belong to C{, for a < 1/3 ... is this merely a curiosity concerning function spaces?



Intermittency: Deviations from K41/Onsager
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Intermittency: Deviations from K41/Onsager

reqlecty — = K4l
CRgewm
\ - .
"3 — = (wiermitlent
\ Sto\\iﬂj
p=\" p.—.‘g: p=oa ' >

o Onsager, unpublished work - “[Anomalous scaling for (2] would require a
“spotty” distribution of the regions in which the velocity varies rapidly”

o Kolmogorov ’62 - “I have formulated appropriate modifications to the two
similarity hypotheses that | put forward in 1941 ..."

o Chen, Dhruva, Kurien, Sreenivasan, Taylor 05 - “It is now believed that the
scaling exponents of moments of velocity increments are anomalous ... anomalous
scaling is a genuine result worth of a serious theoretical effort.”

o lyer, Sreenivasan, Yeung '20 - “The 4/s-ths law holds in an intermediate range of
scales and the second-order exponent over the same range of scales is anomalous,
departing from the self-similar value of 2/3.”

o See also - Ishihara-Kaneda-Gotoh, Frisch, Anselmet-Gagne-Hopfinger-Antonia, ...

Takeaway: B;/Zo M L*° may be the correct space
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Intermittency: Deviations from K41/Onsager

o Symmetry assumptions: Turbulence is isotropic, homogeneous, but not purely
self-similar ... fewer eddies of higher intensity!
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Intermittency: Deviations from K41/Onsager

o Symmetry assumptions: Turbulence is isotropic, homogeneous, but not purely
self-similar ... fewer eddies of higher intensity!

o Dissipativity assumption: Dissipation occurs even in the absence of viscosity

o Implications for regularity: Cantor function, Heaviside function (B:,(Z,c)

A
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Strong Onsager Conjectures

Consider weak solutions v to the Euler equations, with the local energy balance
Oru+div(iu®@u)+Vp=0
divu=20
Oe (31u®) +div ((3]ul® + p) u) + Dlu] = 0.
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Strong Onsager Conjectures

Consider weak solutions v to the Euler equations, with the local energy balance
Oru+div(iu®@u)+Vp=0
divu=0
O (3|ul?) +div ((3|u* + p) u) + D[u] = 0.

Conjecture (Strong L3 Onsager Conjecture)

For any a < 1/3, there exist weak solutions u € L° B3, of 3D Euler for which D[u] > 0
and 2|lul|7. < 0.

Conjecture (Strong L3 Onsager Conjecture in the Inviscid Limit)

There exist sequences of suitable solutions {u"}jen to Navier-Stokes with viscosity
v; — 0 which are uniformly bounded in Lt° B3, converging to the 3D Euler solutions
described above.




The Strong L3 Onsager Theorem (and its antecedents)

Theorem (Buckmaster-Masmoudi-N.-Vicol, '21)

There exist solutions to 3D Euler which have decreasing kinetic energy and belong to
L H/ (intermittent, but no 4/s law or local energy inequality)
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The Strong L3 Onsager Theorem (and its antecedents)

Theorem (Buckmaster-Masmoudi-N.-Vicol, '21)

There exist solutions to 3D Euler which have decreasing kinetic energy and belong to
L H/ (intermittent, but no 4/s law or local energy inequality)

Theorem (N.-Vicol, '22)

There exist solutions to 3D Euler which have decreasing kinetic energy and belong to
L (H;/k NLE™ N B;/;) (intermittent, 4/5 law, but no local energy inequality)

o Giri-Kwon-N., '23a - Reprove the results in NV '22 using a “wavelet-inspired”
scheme, along with further improvements

Theorem (Giri-Kwon-N., '23b)

There exist solutions to 3D Euler which have decreasing kinetic energy, belong to
L (Li"_ N B;/;) and satisfy D[u] > O (intermittent, */s law, local energy inequality)
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L (L~ N BY%) via Nash iteration
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A bird's-eye view of our construction

Basic Strategy: Construct a weak solution u = limg_o g in
L (L~ N BY%) via Nash iteration

o Wavelet-inspired scheme: Replace partial Fourier sums ug of solution u (i.e. pure
frequency decompositions), with partial wavelet decompositions ug (mixed
space-time and frequency decompositions)

o L3 iteration: Replace Nash iterations formulated in L? or L>°-based Sobolev
spaces with an L3-based framework

o Intermittent pressure m,: Control uq (and any other important functions) in
terms of mq, and propagate scaling laws comparing different terms in the wavelet
expansion of mq

Two questions: How to set up the induction, and how to propagate
the inductive assumptions?



Wavelet-inspired, 81/3_

300 [1L7°7 inductive set-up

o Assume the existence of (uq, pq, Rq, @q, 7q) satisfying
Orug + div (ug ® ug) + Vpg = divx (Ry — mqld), divug =0
—_——
—0as g—oo

2 2
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——

—0 as g—oo




Wavelet-inspired, B/ M L*°~ inductive set-up

o Assume the existence of (uq, pq, Rq, @q, 7q) satisfying
Orug + div (ug ® ug) + Vpg = divx (Ry — mqld), divug =0
—_——
—0as g—oo

2 2
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o Heuristics:
o Let \g = af 59 quantify the inverse of the diameter of an oscillation, and Agrq
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Wavelet-inspired, B/ M L*°~ inductive set-up

o Assume the existence of (uq, pq, Rq, @q, 7q) satisfying
Orug + div (ug ® ug) + Vpg = divx (Ry — mqld), divug =0
—_——
—0as g—oo

2 2
Ot (|UZ| ) + div (('LI;' +pq) UQ> < divex Pq
——

—0 as g—oo

o Heuristics:
o Let \g = af 59 quantify the inverse of the diameter of an oscillation, and Agrq
for ry < 1 quantify the inverse of the distance between oscillations

@ @ @ 1= X
= Ayrs

@ @ @

O Ug =), <4 Wy, Where w, has oscillations of size A ', distance (Agrg) !
between oscillations, and frequency support [Aqrg, Aq] (not necessarily
disjoint from [Agrryr, Agr]!)
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. . 1/3— . .
Wavelet-inspired, 83/00 M L*°~ inductive set-up
o Assume the existence of (uq, pq, Rq, @q, Tq) satisfying
Orug + div (ug ® ug) + Vpg = divx (Ry — mqld), divug =0
—_——
—0as g—oo

2 2
Ot (%) + div (('u;‘ +pq) UQ) < divex Pq
——

—0 as g—oo

o Heuristics:
o Let A\g ~ a®) quantify the inverse of the width of an oscillation, and A4rq for

rq < 1 describe the inverse of the distance between oscillations

O Ug =) ., Wy, Where wy has oscillations of size A1, distance (Agrg) !
between oscillations, and frequency support [Agrq, Aq]

o “Wavelet parameter” A quantifies the exchange between space-time and
frequency support:

supp, Wwo Nwgr =0 if ¢ —q"| <@
SUpPe Wyr N W = (0 if g —q"'|>n
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o Assume the existence of (uq, pq, Rq, @q, Tq) satisfying
Orug + div (ug ® ug) + Vpg = divx (Ry — mqld),
—_——
—0as g—oo
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——
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o Heuristics:

divug =0

o Use parameters \q, rq, and i to describe ug as a “partial wavelet sum”

o Inductive bounds:

o Assume bounds for ||mg||s, [|7g|lco (which depend on their frequency)

o All other bounds are “pointwise in terms of 7," e.g.

)Dqu +‘DNRq < Al
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300 [1L7°7 inductive set-up

o Assume the existence of (ug, pq, Rq, @q, Tq) satisfying
Orug + div (ug ® ug) + Vpg = divx (Ry — mgld) , divug =0
—_——
—0as g—oo

2 2
9, (@) 4 div (('“;‘ +pq) uq> < dives @,
——

—0 as g—oo

o Heuristics:
o Use parameters Aq, rq, and i to decompose uq into a “partial wavelet sum”

o Inductive bounds:
o Assume bounds for ||mg||s, [|7g|lco (which depend on their frequency)

o All other bounds are “in terms of 7w," e.g.

)Dqu +‘DNRq < Al

o Scaling law: Mollifying high-freq. «'s gives rescaled low-freq. 7's
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9, (@) 4 div (('“;‘ +pq) uq> < dives @,
——

—0 as g—oo

o Heuristics:
o Use parameters Aq, rq, and i to decompose uq into a “partial wavelet sum”

o Inductive bounds:
o Assume bounds for ||mg||s, [|7g|lco (which depend on their frequency)

o All other bounds are “in terms of 7w," e.g.

)Dqu +‘DNRq < Al

o Scaling law: Mollifying high-freq. n's gives rescaled low-freq. 7's
)\ 3
o qﬁ)\_1 * Mg = i Tq, )\q < )\q/
q /\q’




How to propagate spatial support properties (multi-scale
pipe flows)

q q( a9
o Uy = E Wg = E E aj(t,x) B/ (®})
e <a K ~— __/. . \_v_/
low-frequency amplitudes, Intermittent Mikado bundle
partition spacetime (8t+uq_1~V)¢Z:0

- - S(pnu-
o suppaj(t,x)BJ(®]) Nsuppal,(t,x) B}, (®},) =10

o Either suppwg N suppwy = 0 or suppwg N suppwy
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How to propagate spatial support properties (multi-scale
pipe flows)

o Uy = Z wg = Z Z aj(t,x) B (®¥)

q<q’ q<q’ k v .. . v
- - low-frequency partition Intermittent Mikado bundle
of unity in time and space (Ot +ug—1-V)®[=0

o Intermittent Mikado bundle B} = B/ high]BZ low is @ multi-scale, intermittent shear
flow
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How to propagate spatial support properties (multi-scale
pipe flows)

o Uy = Z wg = Z Z aj(t,x) B (®¥)

q<q’ q<q’ k N " : N
- - low-frequency partition Intermittent Mikado bundle
of unity in time and space (Brtug_1-V)d]=0

o Intermittent Mikado bundle B} =B}, /B], | is a multi-scale, intermittent shear
flow with flexibility in the support
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How to propagate spatial support properties (multi-scale
pipe flows)

o Need to choose the support of B = B] |, , B] /= to dodge any other bundles (for
other k" or g') which have overlapping frequency support

e old bundles

o \Very =\4
bundles

e Curvumnt
bundle s
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Oscillation error and the choice of rqyq

o Simple example, ignoring local energy inequality:

R—7 0 0
Ry—mgld— | 0 0 0|, wei=&(—R+m)"Bgilx,x)
0 00 —

freq's
[Ag+1rg+1,Aq+1]

o Add wgy1 to the equation and collect leftovers



Oscillation error and the choice of rqyq

o Simple example, ignoring local energy inequality:

R—7 0 0
Ry—mgld— | 0 0 0|, wei=&(—R+m)"Bgilx,x)
0 00 —

freq's
[Ag+1rg+1,Aq+1]

o Add wgy1 to the equation and collect leftovers

o Set £, B%.; = 1, use stationarity of &Bgy1, and rewrite

div (R = m)(e1 @ e1) + Was1 & wen) = &0, ((R = m)(1— Bua))

= &0« (R—m) (]i —Id) (BZ,1)



Oscillation error and the choice of rqyq

o

Simple example, ignoring local energy inequality:

R—7 0 0
Ry—mgld— | 0 0 0|, wei=&(—R+m)"Bgilx,x)
0 00 —

freq's
[Ag+1rg+1,Aq+1]

o Add wgy1 to the equation and collect leftovers

o

Set £, B3,1 = 1, use stationarity of &Bg.1, and rewrite

div (R = m)(e1 @ e1) + Was1 & wen) = &0, ((R = m)(1— Bua))

= &0« (R—m) (]i —Id) (BZ,1)

o Put this vector field in divergence form and estimate in L”?; prefers rg+1 = 1 since
| Bgt1ll3 grows as rgp1 — 0



Linear errors and the choice of rg;4

o Recall that
Wgi1 = €(—R+ ) & Bg+1(x2, x3) ,
————

freq's
[Ag+1rg+1,Aq+1]

and consider the (linear) Nash error

RN = div (wgs1 - Vig) = Wai1 - Vig = div (RqNﬁh)
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o Since it is linear, and Bg4: is L?-normalized, it prefers more intermittency, so that
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Linear errors and the choice of rg;4

o Recall that
Wgi1 = €(—R+ ) & Bg+1(x2, x3) ,
————

freq's
[Ag+1rg+1,Aq+1]

and consider the (linear) Nash error

RN = div (g s1 - Vug) — Was1 - Vg = div (Rqui“)

o Since it is linear, and Bg4: is L?-normalized, it prefers more intermittency, so that
||Bq+1

s —0 as rg+1 — 0

o Recall that the nonlinear error preferred less intermittency, i.e. rg41 =1



Linear errors and the choice of rg;4

Recall that

o

w1 = é(—R + 7T)1/2 Bat1(x2, x3)
N————

freq's
[Ag+1rg+1,Aq+1]

and consider the (linear) Nash error

RN = div (wgs1 - Vig) = Wai1 - Vig = div (RqNﬁh)

o

Since it is linear, and Bg4;: is L?-normalized, it prefers more intermittency, so that
B+

v —0 as rg+1 — 0

o Recall that the nonlinear error preferred less intermittency, i.e. rg41 =1
o Heuristic estimates of this choice dictate a single acceptable choice

Goldilocks _ freq. of R g
a max. freq. of Bgy1
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o Construct wild solutions to 2D Euler with Lebesgue integrable
vorticity (preferably for p as large as possible!)



Open problems

o

(Dream Theorem) Construct a sequence of suitable solutions to
, . o T V-
Navier-Stokes converging to a dissipative Euler solution in 83/20

(Partial progress) Construct solutions to Navier-Stokes in H? for
non-negligible

(o]

@]

Construct wild solutions to 2D Euler with Lebesgue integrable
vorticity (preferably for p as large as possible!)

Construct wiId solutions to 3D Euler with well-defined helicity
Jpsu-(V x u)

o



Thanks for your attention!



