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The semi-random graph process is a single player game in
which the player is initially presented the empty graph �0 on
the vertex set [=] := {1, . . . , =}. 2
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In each round C ≥ 1, a vertex DC (square) is drawn
independently and u.a.r. (uniformly at random) from [=] and
then presented to the player. 2
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The player then adaptively selects a vertex EC (circle), and adds
the edge DCEC to �C−1 to form the graph �C .
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For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
property with high probability in as few rounds as possible. 2
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For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
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For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
property with high probability in as few rounds as possible. 2
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Definition

The semi-random process (�C)C≥0 was suggested by Peleg
Michaeli, and formally introduced by Ben-Eliezer, Hefetz,
Kronenberg, Parczyk, Shikhelman, and Stojaković (RSA, 2020).

It may be viewed as a generalization of the Erdős–Rényi
random graph process. (The player chooses EC u.a.r.)

But, in fact, it generalizes many interesting and well-studied
processes.

Our results are asymptotic in nature, that is, we will always
assume that = →∞.

Event E= (E=)=≥1 holds asymptotically almost surely (a.a.s.) if
the probability that E= holds tends to 1 as = →∞.
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Definition

Upper Bounds: Show that there exists a strategy Sand a
function � = �(=), such that �S

� satisfies P a.a.s.

(�S
� is the (random) graph on [=] formed after executing S for �

rounds.)

Lower Bounds: Show that there exists a function � = �(=), such
that for any strategy S, �S

� does not satisfy P a.a.s.

Ben-Eliezer et al. (SODA, 2020) showed that if �= is a bounded
degree spanning graph, then there is a strategy which
constructs a copy of �= in a linear number of rounds a.a.s.

Thus, for a specific graph �= (such as a perfect matching, or
Hamiltonian cycle), the goal is to find the optimal (linear-time)
strategy.
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Summary of Results



Summary – Perfect Matchings

Perfect Matchings:
– upper bound 1.73576= improved to 1.20524=.
– lower bound 0.69314= improved to 0.93261=.
(Gao, MacRury, Prałat, SIDMA, 2022)
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Summary – Hamilton Cycles

Hamilton Cycles:
– upper bound 3= improved to 2.61135=.
– lower bound 1.21973= improved by &=.
(Gao, Kamiński, MacRury, Prałat, Eur J Comb, 2022)

– upper bound improved to 2.01678=.
– lower bound improved to 1.26575=.
(Gao, MacRury, Prałat, RANDOM 2022, 2022)

– upper bound further improved to 1.84887=.
(Frieze, Sorkin, ArXiv, 2022)

– upper bound further improved to 1.81701=.
(Gao, Frieze, MacRury, Prałat, Sorkin, ArXiv, 2023+)
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Summary – Small Subgraphs

Small Subgraphs:
– construct fixed graph � of degeneracy 3.
– upper bound =(3−1)/3$ (Ben-Eliezer et al., RSA, 2020).
– lower bound =(3−1)/3/$ for  3+1 (Ben-Eliezer et al., RSA, 2020).

– lower bound =(3−1)/3/$ for any graph �.
– generalization to hypergraphs.
– tight results for 1 square and any number of circles
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)
– many open questions are left for at least 2 squares!
(Behague, Prałat, Ruciński, 2023++)

8



Summary – Small Subgraphs

Small Subgraphs:
– construct fixed graph � of degeneracy 3.
– upper bound =(3−1)/3$ (Ben-Eliezer et al., RSA, 2020).
– lower bound =(3−1)/3/$ for  3+1 (Ben-Eliezer et al., RSA, 2020).

– lower bound =(3−1)/3/$ for any graph �.
– generalization to hypergraphs.
– tight results for 1 square and any number of circles
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)
– many open questions are left for at least 2 squares!
(Behague, Prałat, Ruciński, 2023++)

8



Summary – Other Directions

Other Directions:
– sharp thresholds (more general class of processes)
(MacRury, Surya, ArXiv, 2022+)

– :-factors and :-connectivity
(Koerts, MSc. thesis, 2022)

– (large) complete graphs, independent sets, chromatic number
(Gamarnik, Kang, Prałat, ArXiv, 2023+)
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Summary – Generalizations

– Hypergraphs
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)
(Behague, Prałat, Ruciński, 2023++)
(Molloy, Prałat, Sorkin, 2023++)

– select an edge from a random spanning tree of  =
(Burova, Lichev, ArXiv, 2022+)

– vertices presented follow a random permutation
(Gilboa, Hefetz, EuroComb 2021, 2021)

– “power of : choices”
(Prałat, Singh, ArXiv, 2023+)
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Perfect Matchings



Emulating :-out Process

The semi-random process (�C)C≥0 can emulate the well-known
:-out process �(:): each vertex independently connects to :
randomly selected vertices.

Formally, we want �(:) to be a subgraph of �C for some value
of C ≥ :=, usually close to each other.

(If �(:) has some monotone property P, then �C has it too.)

There exists a strategy such that a.a.s. �(:) ⊆ �:=+$.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

K =3

•€•☐7
•
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Perfect Matchings: Upper Bounds

A.a.s. :-out process has a perfect matching when : ≥ 2.
(Frieze, JCTB, 1986)

Implication: a.a.s. there exists a strategy to create a perfect
matching in (2 + >(1))= rounds.

The semi-random process (�C)C≥0 can emulate the 1 + 2/4-out
bipartite process:
– start with the bipartite version of the 1-out process,
– unpopular vertices (chosen by at most one vertex) chose
another out-neighbour.

A.a.s. 1 + 2/4-out bipartite process has a perfect matching.
(Karoński, Overman, Pittel, JCTB, 2020).
Implication: a.a.s. there exists a strategy to create a perfect
matching in (1 + 2/4 + >(1))= < 1.73576= rounds.
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Perfect Matchings: Upper Bounds

A.a.s. there exists a strategy to create a perfect matching in
(� + 10−5)= ≤ 1.20524= rounds, where � is derived from a
system of differential equations.
(Gao, MacRury, Prałat, SIDMA, 2022)

– Fully adaptive algorithm
– Our randomized algorithm (giving an upper bound of 1.28=)
keeps building the matching greedily whenever possible but
also keeps one random extension for future augmentations
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– Fully adaptive algorithm
– Our randomized algorithm (giving an upper bound of 1.28=)
keeps building the matching greedily whenever possible but
also keeps one random extension for future augmentations
– Our deterministic algorithm keeps all extensions, has :
deterministic greedy phases for : ≥ 1100, and concludes by
executing the randomized algorithm.
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Analysing the Randomized Algorithm

We use the differential equation (DE) method of Nick Wormald
for analysis.

Given C ≥ 0, let -(C) denote the number of matched vertices,
and let '(C) denote the number of red vertices.

Let �C := (-(8), '(8))0≤8≤C . Note that �C does not encompass the
full history of random graph process at time C (i.e., �0 , . . . , �C)

We condition on less information so that the circle placements
amongst the unsaturated vertices remain u.a.r.
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Deriving the Differential Equations

E[-(C + 1) − -(C) | �C] =
2(= − -(C) + '(C))

=
+ $(1/=),

E['(C + 1) − '(C) | �C] =
= − -(C)

=
· −2'(C)
= − -(C)

+'(C)
=

(
−1 − 2('(C) − 1)

= − -(C)

)
+-(C) − 2'(C)

=
+ $(1/=).

By writing G(B) = -(B=)/= and A(B) = '(B=)/= for B ∈ [0,∞), we
have that

G′ = 2(1 − G + A),

A′ =
−2A
1 − G (1 − G + A) − A + G − 2A,

with the initial conditions G(0) = A(0) = 0.
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Applying the DE Method

By DE method, a.a.s. -(C) = G(C/=) · = + >(=) for all C ≥ 0.

Numerical DE solver shows that G(B) = 1 for B ≥ 1.28, so
-(C) = = − >(=) for C ≥ 1.28=.

The remaining >(=) unsaturated vertices are matched via a
clean-up algorithm which is analysed by a (lossy) elementary
analysis.
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Perfect Matchings: Lower Bounds

Trivial observation: no strategy can create a perfect matching in
less than =/2 rounds.

There are two obvious necessary conditions, both giving
exactly the same lower bound:
– the graph has the minimum degree at least 1,
– there are at least =/2 vertices with at least one square.

A.a.s. no strategy can create a perfect matching in less than
(ln(2) + >(1))= ≥ 0.69314= rounds.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)
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Perfect Matchings: Lower Bounds

Let
 = inf{1 ≥ 0 : 6(1) ≥ 1/2},

where

6(1) := 1 + 1 − 21
2 exp(−1) − (1 + 1) exp(−21) − 1

2 exp(−31).

Then, a.a.s. no strategy can create a perfect matching in less
than ( + >(1))= ≥ 0.93261= rounds.
(Gao, MacRury, Prałat, SIDMA, 2022)

We again use the DE method, though we must restrict to
“well-behaved” strategies.
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Perfect Matchings: Lower Bounds

Annoying issue: the player may put more than $ =
√
= circles

on one vertex or create multi-edges.

It is clearly a suboptimal strategy but we cannot prevent the
player from doing it.

Solution: We offer a deal the player will gladly accept:
– Put at most 2$ circles on one vertex.
– Create a matching consisting of =/2 − =/$ edges in at most =
rounds.
– Never create multi-edges.
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Perfect Matchings: Lower Bounds

-(C): the number of vertices with at least one square at time C.

A.a.s. -(C) = (1 + >(1))=(1 − 4−C/=).

Vertex 9 is redundant at time C ≥ 0 if:
– 9 is covered by precisely one square, say DB for B ≤ C,
– circle EB connected to DB by the player is covered by at least
one square, which arrives after round B.

j

'÷-¥?#
*(C): the number of redundant vertices at time C.

*(C) depends only on the placement of the squares, not the
strategy.
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Perfect Matchings: Lower Bounds

Suppose that 9 is redundant at time C thanks to the arrival of the
square DB at time B ≤ C.

9 is well-positioned, if EB is also redundant at time C.

::÷-o÷i•→
"

,(C): the number of well-positioned redundant vertices at time
C. (Clearly,,(C) ≤ *(C).)

To get the lower bound, we use the following inequality:

-(C) −*(C) +,(C) ≥ =

2 −
3C
$
,

and the DE method of Nick Wormald.
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Hamilton Cycles



Hamilton Cycles: Upper Bounds

A.a.s. :-out process has a Hamilton cycle when : ≥ 3.
(Bohman, Frieze, RSA, 2009)

Implication: a.a.s. there exists a strategy to create a perfect
matching in (3 + >(1))= rounds.

There exists a strategy to create a Hamilton cycle in �= rounds
a.a.s., where � is the result of a high dimensional optimization
problem. Numerical computations indicate that � < 2.61135.
(Gao, Kamiński, MacRury, Prałat, Euro. J. of Comb., 2022)

We recently analysed a fully adaptive greedy augmentation
algorithm to attain an upper bound of 2.01678=.
(Gao, MacRury, Prałat, RANDOM 2022, 2022)

One more trick brings it down to to 1.81696=.
(Gao, Frieze, MacRury, Prałat, Sorkin, 2023+)
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Hamilton Cycles: Lower Bounds

Obvious necessary condition: the graph has the minimum
degree at least 2.

A.a.s. no strategy can create a Hamilton cycle in less than
(ln 2 + ln(1 + ln 2) + >(1))= ≥ 1.21973= rounds.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

A.a.s. no strategy can create a Hamilton cycle in less than
(ln 2 + ln(1 + ln 2) + � + >(1))= rounds for some universal
constant � > 10−8.
(Gao, Kamiński, MacRury, Prałat, Euro. J. of Comb., 2022)

We recently improved this bound to 1.26575= using similar
techniques as in the perfect matching problem.
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Small Subgraphs



Small Subgraphs: Upper Bound

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

A.a.s. there exists a strategy to create � in =(3−1)/3$ rounds,
where $ = $(=) → ∞ as = →∞.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

"•-••-•"•_•

27



Small Subgraphs: Upper Bound

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

A.a.s. there exists a strategy to create � in =(3−1)/3$ rounds,
where $ = $(=) → ∞ as = →∞.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

"•-••-•"•_•

27



Small Subgraphs: Upper Bound

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

A.a.s. there exists a strategy to create � in =(3−1)/3$ rounds,
where $ = $(=) → ∞ as = →∞.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

"•-••-•"•_•

27



Small Subgraphs: Upper Bound

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

A.a.s. there exists a strategy to create � in =(3−1)/3$ rounds,
where $ = $(=) → ∞ as = →∞.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

"•-••-•"•_•

✓
'•←•⑧-•Ñ

☒
• • II • El La • • •

27



Small Subgraphs: Upper Bound

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

A.a.s. there exists a strategy to create � in =(3−1)/3$ rounds,
where $ = $(=) → ∞ as = →∞.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

"•-••-•"•_•

• • •

V4
27



Small Subgraphs: Lower Bounds

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

Conjecture: a.a.s. no strategy can create � in =(3−1)/3/$ rounds,
where $ = $(=) → ∞ as = →∞.
The conjecture is true for � =  3+1.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

The conjecture is true.
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)

The semi-random process can be generalized to hypergraphs
and some results can be transferred. But some questions are
still open, for example, � =  (3)6 and 2 squares (1 circle).
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Small Subgraphs: Lower Bounds

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

Conjecture: a.a.s. no strategy can create � in =(3−1)/3/$ rounds,
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Open Problems



Open Problems

Recall that Ben-Eliezer, Gishboliner, Hefetz and Krivelevich
(SODA, 2020) considered the general problem of constructing a
copy of a spanning graph � of max-degree Δ.

Specifically, they showed that a copy of � can be constructed in
3
2 (Δ + >(Δ))= rounds a.a.s.

The >(Δ) term prevents this result from yielding good bounds
when Δ is constant.

Compute a (small/explicit) universal constant � > 0 such that
for any bounded degree spanning graph �, � can be
constructed in � · Δ rounds a.a.s.

A starting point may be to consider when some additional
structure is assumed to hold on � – i.e., it is vertex transitive, or
at least Δ-regular.
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