
The Semi-random Process
(The DEs method in action)

Paweł Prałat

Updated: 2023/11/29

Department of Mathematics, Toronto Metropolitan University

Definition of the Process

Definition

•

•

•

• •

•

• •

The semi-random graph process is a single player game in
which the player is initially presented the empty graph �0 on
the vertex set [=] := {1, . . . , =}. 2

Definition

•

•

•

• •

•☐u

• •

In each round C ≥ 1, a vertex DC (square) is drawn
independently and u.a.r. (uniformly at random) from [=] and
then presented to the player. 2

Definition

•

I •

• •

•☐ u

• •

The player then adaptively selects a vertex EC (circle), and adds
the edge DCEC to �C−1 to form the graph �C .

2

Definition

•

I •

• •

•☐ u

• •

For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
property with high probability in as few rounds as possible. 2

Definition

•

\ 4) u

• •

•☐

• •

For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
property with high probability in as few rounds as possible. 2

Definition

•

•

• •

For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
property with high probability in as few rounds as possible. 2

Definition

•

•

.

• •

For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
property with high probability in as few rounds as possible. 2

Definition

•

• •

For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
property with high probability in as few rounds as possible. 2

Definition

*

• •

For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
property with high probability in as few rounds as possible. 2

Definition

u •☐

to •

For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
property with high probability in as few rounds as possible. 2

Definition

⇒

HIT u

•

For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
property with high probability in as few rounds as possible. 2

Definition

?_?*

do É
For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
property with high probability in as few rounds as possible. 2

Definition

For a fixed (edge) monotonic graph property P (say, the
existence of a perfect matching), the objective is to satisfy this
property with high probability in as few rounds as possible. 2

Definition

The semi-random process (�C)C≥0 was suggested by Peleg
Michaeli, and formally introduced by Ben-Eliezer, Hefetz,
Kronenberg, Parczyk, Shikhelman, and Stojaković (RSA, 2020).

It may be viewed as a generalization of the Erdős–Rényi
random graph process. (The player chooses EC u.a.r.)

But, in fact, it generalizes many interesting and well-studied
processes.

Our results are asymptotic in nature, that is, we will always
assume that = →∞.

Event E= (E=)=≥1 holds asymptotically almost surely (a.a.s.) if
the probability that E= holds tends to 1 as = →∞.

3

Definition

The semi-random process (�C)C≥0 was suggested by Peleg
Michaeli, and formally introduced by Ben-Eliezer, Hefetz,
Kronenberg, Parczyk, Shikhelman, and Stojaković (RSA, 2020).

It may be viewed as a generalization of the Erdős–Rényi
random graph process. (The player chooses EC u.a.r.)

But, in fact, it generalizes many interesting and well-studied
processes.

Our results are asymptotic in nature, that is, we will always
assume that = →∞.

Event E= (E=)=≥1 holds asymptotically almost surely (a.a.s.) if
the probability that E= holds tends to 1 as = →∞.

3

Definition

The semi-random process (�C)C≥0 was suggested by Peleg
Michaeli, and formally introduced by Ben-Eliezer, Hefetz,
Kronenberg, Parczyk, Shikhelman, and Stojaković (RSA, 2020).

It may be viewed as a generalization of the Erdős–Rényi
random graph process. (The player chooses EC u.a.r.)

But, in fact, it generalizes many interesting and well-studied
processes.

Our results are asymptotic in nature, that is, we will always
assume that = →∞.

Event E= (E=)=≥1 holds asymptotically almost surely (a.a.s.) if
the probability that E= holds tends to 1 as = →∞.

3

Definition

The semi-random process (�C)C≥0 was suggested by Peleg
Michaeli, and formally introduced by Ben-Eliezer, Hefetz,
Kronenberg, Parczyk, Shikhelman, and Stojaković (RSA, 2020).

It may be viewed as a generalization of the Erdős–Rényi
random graph process. (The player chooses EC u.a.r.)

But, in fact, it generalizes many interesting and well-studied
processes.

Our results are asymptotic in nature, that is, we will always
assume that = →∞.

Event E= (E=)=≥1 holds asymptotically almost surely (a.a.s.) if
the probability that E= holds tends to 1 as = →∞.

3

Definition

The semi-random process (�C)C≥0 was suggested by Peleg
Michaeli, and formally introduced by Ben-Eliezer, Hefetz,
Kronenberg, Parczyk, Shikhelman, and Stojaković (RSA, 2020).

It may be viewed as a generalization of the Erdős–Rényi
random graph process. (The player chooses EC u.a.r.)

But, in fact, it generalizes many interesting and well-studied
processes.

Our results are asymptotic in nature, that is, we will always
assume that = →∞.

Event E= (E=)=≥1 holds asymptotically almost surely (a.a.s.) if
the probability that E= holds tends to 1 as = →∞.

3

Definition

Upper Bounds: Show that there exists a strategy Sand a
function � = �(=), such that �S

� satisfies P a.a.s.

(�S
� is the (random) graph on [=] formed after executing S for �

rounds.)

Lower Bounds: Show that there exists a function � = �(=), such
that for any strategy S, �S

� does not satisfy P a.a.s.

Ben-Eliezer et al. (SODA, 2020) showed that if �= is a bounded
degree spanning graph, then there is a strategy which
constructs a copy of �= in a linear number of rounds a.a.s.

Thus, for a specific graph �= (such as a perfect matching, or
Hamiltonian cycle), the goal is to find the optimal (linear-time)
strategy.

4

Definition

Upper Bounds: Show that there exists a strategy Sand a
function � = �(=), such that �S

� satisfies P a.a.s.

(�S
� is the (random) graph on [=] formed after executing S for �

rounds.)

Lower Bounds: Show that there exists a function � = �(=), such
that for any strategy S, �S

� does not satisfy P a.a.s.

Ben-Eliezer et al. (SODA, 2020) showed that if �= is a bounded
degree spanning graph, then there is a strategy which
constructs a copy of �= in a linear number of rounds a.a.s.

Thus, for a specific graph �= (such as a perfect matching, or
Hamiltonian cycle), the goal is to find the optimal (linear-time)
strategy.

4

Definition

Upper Bounds: Show that there exists a strategy Sand a
function � = �(=), such that �S

� satisfies P a.a.s.

(�S
� is the (random) graph on [=] formed after executing S for �

rounds.)

Lower Bounds: Show that there exists a function � = �(=), such
that for any strategy S, �S

� does not satisfy P a.a.s.

Ben-Eliezer et al. (SODA, 2020) showed that if �= is a bounded
degree spanning graph, then there is a strategy which
constructs a copy of �= in a linear number of rounds a.a.s.

Thus, for a specific graph �= (such as a perfect matching, or
Hamiltonian cycle), the goal is to find the optimal (linear-time)
strategy.

4

Definition

Upper Bounds: Show that there exists a strategy Sand a
function � = �(=), such that �S

� satisfies P a.a.s.

(�S
� is the (random) graph on [=] formed after executing S for �

rounds.)

Lower Bounds: Show that there exists a function � = �(=), such
that for any strategy S, �S

� does not satisfy P a.a.s.

Ben-Eliezer et al. (SODA, 2020) showed that if �= is a bounded
degree spanning graph, then there is a strategy which
constructs a copy of �= in a linear number of rounds a.a.s.

Thus, for a specific graph �= (such as a perfect matching, or
Hamiltonian cycle), the goal is to find the optimal (linear-time)
strategy.

4

Summary of Results

Summary – Perfect Matchings

Perfect Matchings:
– upper bound 1.73576= improved to 1.20524=.
– lower bound 0.69314= improved to 0.93261=.
(Gao, MacRury, Prałat, SIDMA, 2022)

6

Summary – Hamilton Cycles

Hamilton Cycles:
– upper bound 3= improved to 2.61135=.
– lower bound 1.21973= improved by &=.
(Gao, Kamiński, MacRury, Prałat, Eur J Comb, 2022)

– upper bound improved to 2.01678=.
– lower bound improved to 1.26575=.
(Gao, MacRury, Prałat, RANDOM 2022, 2022)

– upper bound further improved to 1.84887=.
(Frieze, Sorkin, ArXiv, 2022)

– upper bound further improved to 1.81701=.
(Gao, Frieze, MacRury, Prałat, Sorkin, ArXiv, 2023+)

7

Summary – Hamilton Cycles

Hamilton Cycles:
– upper bound 3= improved to 2.61135=.
– lower bound 1.21973= improved by &=.
(Gao, Kamiński, MacRury, Prałat, Eur J Comb, 2022)

– upper bound improved to 2.01678=.
– lower bound improved to 1.26575=.
(Gao, MacRury, Prałat, RANDOM 2022, 2022)

– upper bound further improved to 1.84887=.
(Frieze, Sorkin, ArXiv, 2022)

– upper bound further improved to 1.81701=.
(Gao, Frieze, MacRury, Prałat, Sorkin, ArXiv, 2023+)

7

Summary – Hamilton Cycles

Hamilton Cycles:
– upper bound 3= improved to 2.61135=.
– lower bound 1.21973= improved by &=.
(Gao, Kamiński, MacRury, Prałat, Eur J Comb, 2022)

– upper bound improved to 2.01678=.
– lower bound improved to 1.26575=.
(Gao, MacRury, Prałat, RANDOM 2022, 2022)

– upper bound further improved to 1.84887=.
(Frieze, Sorkin, ArXiv, 2022)

– upper bound further improved to 1.81701=.
(Gao, Frieze, MacRury, Prałat, Sorkin, ArXiv, 2023+)

7

Summary – Hamilton Cycles

Hamilton Cycles:
– upper bound 3= improved to 2.61135=.
– lower bound 1.21973= improved by &=.
(Gao, Kamiński, MacRury, Prałat, Eur J Comb, 2022)

– upper bound improved to 2.01678=.
– lower bound improved to 1.26575=.
(Gao, MacRury, Prałat, RANDOM 2022, 2022)

– upper bound further improved to 1.84887=.
(Frieze, Sorkin, ArXiv, 2022)

– upper bound further improved to 1.81701=.
(Gao, Frieze, MacRury, Prałat, Sorkin, ArXiv, 2023+)

7

Summary – Small Subgraphs

Small Subgraphs:
– construct fixed graph � of degeneracy 3.
– upper bound =(3−1)/3$ (Ben-Eliezer et al., RSA, 2020).
– lower bound =(3−1)/3/$ for 3+1 (Ben-Eliezer et al., RSA, 2020).

– lower bound =(3−1)/3/$ for any graph �.
– generalization to hypergraphs.
– tight results for 1 square and any number of circles
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)
– many open questions are left for at least 2 squares!
(Behague, Prałat, Ruciński, 2023++)

8

Summary – Small Subgraphs

Small Subgraphs:
– construct fixed graph � of degeneracy 3.
– upper bound =(3−1)/3$ (Ben-Eliezer et al., RSA, 2020).
– lower bound =(3−1)/3/$ for 3+1 (Ben-Eliezer et al., RSA, 2020).

– lower bound =(3−1)/3/$ for any graph �.
– generalization to hypergraphs.
– tight results for 1 square and any number of circles
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)
– many open questions are left for at least 2 squares!
(Behague, Prałat, Ruciński, 2023++)

8

Summary – Other Directions

Other Directions:
– sharp thresholds (more general class of processes)
(MacRury, Surya, ArXiv, 2022+)

– :-factors and :-connectivity
(Koerts, MSc. thesis, 2022)

– (large) complete graphs, independent sets, chromatic number
(Gamarnik, Kang, Prałat, ArXiv, 2023+)

9

Summary – Other Directions

Other Directions:
– sharp thresholds (more general class of processes)
(MacRury, Surya, ArXiv, 2022+)

– :-factors and :-connectivity
(Koerts, MSc. thesis, 2022)

– (large) complete graphs, independent sets, chromatic number
(Gamarnik, Kang, Prałat, ArXiv, 2023+)

9

Summary – Other Directions

Other Directions:
– sharp thresholds (more general class of processes)
(MacRury, Surya, ArXiv, 2022+)

– :-factors and :-connectivity
(Koerts, MSc. thesis, 2022)

– (large) complete graphs, independent sets, chromatic number
(Gamarnik, Kang, Prałat, ArXiv, 2023+)

9

Summary – Generalizations

– Hypergraphs
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)
(Behague, Prałat, Ruciński, 2023++)
(Molloy, Prałat, Sorkin, 2023++)

– select an edge from a random spanning tree of =
(Burova, Lichev, ArXiv, 2022+)

– vertices presented follow a random permutation
(Gilboa, Hefetz, EuroComb 2021, 2021)

– “power of : choices”
(Prałat, Singh, ArXiv, 2023+)

10

Summary – Generalizations

– Hypergraphs
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)
(Behague, Prałat, Ruciński, 2023++)
(Molloy, Prałat, Sorkin, 2023++)

– select an edge from a random spanning tree of =
(Burova, Lichev, ArXiv, 2022+)

– vertices presented follow a random permutation
(Gilboa, Hefetz, EuroComb 2021, 2021)

– “power of : choices”
(Prałat, Singh, ArXiv, 2023+)

10

Summary – Generalizations

– Hypergraphs
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)
(Behague, Prałat, Ruciński, 2023++)
(Molloy, Prałat, Sorkin, 2023++)

– select an edge from a random spanning tree of =
(Burova, Lichev, ArXiv, 2022+)

– vertices presented follow a random permutation
(Gilboa, Hefetz, EuroComb 2021, 2021)

– “power of : choices”
(Prałat, Singh, ArXiv, 2023+)

10

Summary – Generalizations

– Hypergraphs
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)
(Behague, Prałat, Ruciński, 2023++)
(Molloy, Prałat, Sorkin, 2023++)

– select an edge from a random spanning tree of =
(Burova, Lichev, ArXiv, 2022+)

– vertices presented follow a random permutation
(Gilboa, Hefetz, EuroComb 2021, 2021)

– “power of : choices”
(Prałat, Singh, ArXiv, 2023+)

10

Perfect Matchings

Emulating :-out Process

The semi-random process (�C)C≥0 can emulate the well-known
:-out process �(:): each vertex independently connects to :
randomly selected vertices.

Formally, we want �(:) to be a subgraph of �C for some value
of C ≥ :=, usually close to each other.

(If �(:) has some monotone property P, then �C has it too.)

There exists a strategy such that a.a.s. �(:) ⊆ �:=+$.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

K =3

•€•☐7
•

12

Emulating :-out Process

The semi-random process (�C)C≥0 can emulate the well-known
:-out process �(:): each vertex independently connects to :
randomly selected vertices.

Formally, we want �(:) to be a subgraph of �C for some value
of C ≥ :=, usually close to each other.

(If �(:) has some monotone property P, then �C has it too.)

There exists a strategy such that a.a.s. �(:) ⊆ �:=+$.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

K =3

•€•☐7
•

12

Emulating :-out Process

The semi-random process (�C)C≥0 can emulate the well-known
:-out process �(:): each vertex independently connects to :
randomly selected vertices.

Formally, we want �(:) to be a subgraph of �C for some value
of C ≥ :=, usually close to each other.

(If �(:) has some monotone property P, then �C has it too.)

There exists a strategy such that a.a.s. �(:) ⊆ �:=+$.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

K =3

•€•☐7
•

12

Emulating :-out Process

The semi-random process (�C)C≥0 can emulate the well-known
:-out process �(:): each vertex independently connects to :
randomly selected vertices.

Formally, we want �(:) to be a subgraph of �C for some value
of C ≥ :=, usually close to each other.

(If �(:) has some monotone property P, then �C has it too.)

There exists a strategy such that a.a.s. �(:) ⊆ �:=+$.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

K =3

•€•☐7
•

12

Perfect Matchings: Upper Bounds

A.a.s. :-out process has a perfect matching when : ≥ 2.
(Frieze, JCTB, 1986)

Implication: a.a.s. there exists a strategy to create a perfect
matching in (2 + >(1))= rounds.

The semi-random process (�C)C≥0 can emulate the 1 + 2/4-out
bipartite process:
– start with the bipartite version of the 1-out process,
– unpopular vertices (chosen by at most one vertex) chose
another out-neighbour.

A.a.s. 1 + 2/4-out bipartite process has a perfect matching.
(Karoński, Overman, Pittel, JCTB, 2020).
Implication: a.a.s. there exists a strategy to create a perfect
matching in (1 + 2/4 + >(1))= < 1.73576= rounds.

13

Perfect Matchings: Upper Bounds

A.a.s. :-out process has a perfect matching when : ≥ 2.
(Frieze, JCTB, 1986)
Implication: a.a.s. there exists a strategy to create a perfect
matching in (2 + >(1))= rounds.

The semi-random process (�C)C≥0 can emulate the 1 + 2/4-out
bipartite process:
– start with the bipartite version of the 1-out process,
– unpopular vertices (chosen by at most one vertex) chose
another out-neighbour.

A.a.s. 1 + 2/4-out bipartite process has a perfect matching.
(Karoński, Overman, Pittel, JCTB, 2020).
Implication: a.a.s. there exists a strategy to create a perfect
matching in (1 + 2/4 + >(1))= < 1.73576= rounds.

13

Perfect Matchings: Upper Bounds

A.a.s. :-out process has a perfect matching when : ≥ 2.
(Frieze, JCTB, 1986)
Implication: a.a.s. there exists a strategy to create a perfect
matching in (2 + >(1))= rounds.

The semi-random process (�C)C≥0 can emulate the 1 + 2/4-out
bipartite process:

– start with the bipartite version of the 1-out process,
– unpopular vertices (chosen by at most one vertex) chose
another out-neighbour.

A.a.s. 1 + 2/4-out bipartite process has a perfect matching.
(Karoński, Overman, Pittel, JCTB, 2020).
Implication: a.a.s. there exists a strategy to create a perfect
matching in (1 + 2/4 + >(1))= < 1.73576= rounds.

13

Perfect Matchings: Upper Bounds

A.a.s. :-out process has a perfect matching when : ≥ 2.
(Frieze, JCTB, 1986)
Implication: a.a.s. there exists a strategy to create a perfect
matching in (2 + >(1))= rounds.

The semi-random process (�C)C≥0 can emulate the 1 + 2/4-out
bipartite process:
– start with the bipartite version of the 1-out process,

nla vertices Q••Q•Q ⑨ ⑨ & ⑦ ⑨ ③

• • • ! L.a ☒ ☒ L☒ I ☒☒ ☒
h /2 vertices

– unpopular vertices (chosen by at most one vertex) chose
another out-neighbour.

A.a.s. 1 + 2/4-out bipartite process has a perfect matching.
(Karoński, Overman, Pittel, JCTB, 2020).
Implication: a.a.s. there exists a strategy to create a perfect
matching in (1 + 2/4 + >(1))= < 1.73576= rounds.

13

Perfect Matchings: Upper Bounds

A.a.s. :-out process has a perfect matching when : ≥ 2.
(Frieze, JCTB, 1986)
Implication: a.a.s. there exists a strategy to create a perfect
matching in (2 + >(1))= rounds.

The semi-random process (�C)C≥0 can emulate the 1 + 2/4-out
bipartite process:
– start with the bipartite version of the 1-out process,
– unpopular vertices (chosen by at most one vertex) chose
another out-neighbour.

A.a.s. 1 + 2/4-out bipartite process has a perfect matching.
(Karoński, Overman, Pittel, JCTB, 2020).
Implication: a.a.s. there exists a strategy to create a perfect
matching in (1 + 2/4 + >(1))= < 1.73576= rounds.

13

Perfect Matchings: Upper Bounds

A.a.s. :-out process has a perfect matching when : ≥ 2.
(Frieze, JCTB, 1986)
Implication: a.a.s. there exists a strategy to create a perfect
matching in (2 + >(1))= rounds.

The semi-random process (�C)C≥0 can emulate the 1 + 2/4-out
bipartite process:
– start with the bipartite version of the 1-out process,
– unpopular vertices (chosen by at most one vertex) chose
another out-neighbour.

A.a.s. 1 + 2/4-out bipartite process has a perfect matching.
(Karoński, Overman, Pittel, JCTB, 2020).

Implication: a.a.s. there exists a strategy to create a perfect
matching in (1 + 2/4 + >(1))= < 1.73576= rounds.

13

Perfect Matchings: Upper Bounds

A.a.s. :-out process has a perfect matching when : ≥ 2.
(Frieze, JCTB, 1986)
Implication: a.a.s. there exists a strategy to create a perfect
matching in (2 + >(1))= rounds.

The semi-random process (�C)C≥0 can emulate the 1 + 2/4-out
bipartite process:
– start with the bipartite version of the 1-out process,
– unpopular vertices (chosen by at most one vertex) chose
another out-neighbour.

A.a.s. 1 + 2/4-out bipartite process has a perfect matching.
(Karoński, Overman, Pittel, JCTB, 2020).
Implication: a.a.s. there exists a strategy to create a perfect
matching in (1 + 2/4 + >(1))= < 1.73576= rounds.

13

Perfect Matchings: Upper Bounds

A.a.s. there exists a strategy to create a perfect matching in
(� + 10−5)= ≤ 1.20524= rounds, where � is derived from a
system of differential equations.
(Gao, MacRury, Prałat, SIDMA, 2022)

– Fully adaptive algorithm
– Our randomized algorithm (giving an upper bound of 1.28=)
keeps building the matching greedily whenever possible but
also keeps one random extension for future augmentations

14

Perfect Matchings: Upper Bounds

A.a.s. there exists a strategy to create a perfect matching in
(� + 10−5)= ≤ 1.20524= rounds, where � is derived from a
system of differential equations.
(Gao, MacRury, Prałat, SIDMA, 2022)

– Fully adaptive algorithm

– Our randomized algorithm (giving an upper bound of 1.28=)
keeps building the matching greedily whenever possible but
also keeps one random extension for future augmentations

14

Perfect Matchings: Upper Bounds

A.a.s. there exists a strategy to create a perfect matching in
(� + 10−5)= ≤ 1.20524= rounds, where � is derived from a
system of differential equations.
(Gao, MacRury, Prałat, SIDMA, 2022)

– Fully adaptive algorithm
– Our randomized algorithm (giving an upper bound of 1.28=)
keeps building the matching greedily whenever possible but
also keeps one random extension for future augmentations

14

Perfect Matchings: Upper Bounds

A.a.s. there exists a strategy to create a perfect matching in
(� + 10−5)= ≤ 1.20524= rounds, where � is derived from a
system of differential equations.
(Gao, MacRury, Prałat, SIDMA, 2022)

– Fully adaptive algorithm
– Our randomized algorithm (giving an upper bound of 1.28=)
keeps building the matching greedily whenever possible but
also keeps one random extension for future augmentations

•- • •_• •_•

• • • 0 •

14

Perfect Matchings: Upper Bounds

A.a.s. there exists a strategy to create a perfect matching in
(� + 10−5)= ≤ 1.20524= rounds, where � is derived from a
system of differential equations.
(Gao, MacRury, Prałat, SIDMA, 2022)

– Fully adaptive algorithm
– Our randomized algorithm (giving an upper bound of 1.28=)
keeps building the matching greedily whenever possible but
also keeps one random extension for future augmentations

•- • • •-

• • • o •

14

Perfect Matchings: Upper Bounds

A.a.s. there exists a strategy to create a perfect matching in
(� + 10−5)= ≤ 1.20524= rounds, where � is derived from a
system of differential equations.
(Gao, MacRury, Prałat, SIDMA, 2022)

– Fully adaptive algorithm
– Our randomized algorithm (giving an upper bound of 1.28=)
keeps building the matching greedily whenever possible but
also keeps one random extension for future augmentations

•- •

µ
. •-

•

÷
. • .

14

Perfect Matchings: Upper Bounds

A.a.s. there exists a strategy to create a perfect matching in
(� + 10−5)= ≤ 1.20524= rounds, where � is derived from a
system of differential equations.
(Gao, MacRury, Prałat, SIDMA, 2022)

– Fully adaptive algorithm
– Our randomized algorithm (giving an upper bound of 1.28=)
keeps building the matching greedily whenever possible but
also keeps one random extension for future augmentations

•- •

Yei
.-

• ⑨ • o •

14

Perfect Matchings: Upper Bounds

A.a.s. there exists a strategy to create a perfect matching in
(� + 10−5)= ≤ 1.20524= rounds, where � is derived from a
system of differential equations.
(Gao, MacRury, Prałat, SIDMA, 2022)

– Fully adaptive algorithm
– Our randomized algorithm (giving an upper bound of 1.28=)
keeps building the matching greedily whenever possible but
also keeps one random extension for future augmentations

•- • KEY •-

•

old
.

. .

14

Perfect Matchings: Upper Bounds

A.a.s. there exists a strategy to create a perfect matching in
(� + 10−5)= ≤ 1.20524= rounds, where � is derived from a
system of differential equations.
(Gao, MacRury, Prałat, SIDMA, 2022)

– Fully adaptive algorithm
– Our randomized algorithm (giving an upper bound of 1.28=)
keeps building the matching greedily whenever possible but
also keeps one random extension for future augmentations

14

Perfect Matchings: Upper Bounds

A.a.s. there exists a strategy to create a perfect matching in
(� + 10−5)= ≤ 1.20524= rounds, where � is derived from a
system of differential equations.
(Gao, MacRury, Prałat, SIDMA, 2022)

– Fully adaptive algorithm
– Our randomized algorithm (giving an upper bound of 1.28=)
keeps building the matching greedily whenever possible but
also keeps one random extension for future augmentations
– Our deterministic algorithm keeps all extensions, has :
deterministic greedy phases for : ≥ 1100, and concludes by
executing the randomized algorithm.

14

Analysing the Randomized Algorithm

We use the differential equation (DE) method of Nick Wormald
for analysis.

Given C ≥ 0, let -(C) denote the number of matched vertices,
and let '(C) denote the number of red vertices.

Let �C := (-(8), '(8))0≤8≤C . Note that �C does not encompass the
full history of random graph process at time C (i.e., �0 , . . . , �C)

We condition on less information so that the circle placements
amongst the unsaturated vertices remain u.a.r.

15

Analysing the Randomized Algorithm

We use the differential equation (DE) method of Nick Wormald
for analysis.

Given C ≥ 0, let -(C) denote the number of matched vertices,
and let '(C) denote the number of red vertices.

Let �C := (-(8), '(8))0≤8≤C . Note that �C does not encompass the
full history of random graph process at time C (i.e., �0 , . . . , �C)

We condition on less information so that the circle placements
amongst the unsaturated vertices remain u.a.r.

15

Analysing the Randomized Algorithm

We use the differential equation (DE) method of Nick Wormald
for analysis.

Given C ≥ 0, let -(C) denote the number of matched vertices,
and let '(C) denote the number of red vertices.

Let �C := (-(8), '(8))0≤8≤C . Note that �C does not encompass the
full history of random graph process at time C (i.e., �0 , . . . , �C)

We condition on less information so that the circle placements
amongst the unsaturated vertices remain u.a.r.

15

Analysing the Randomized Algorithm

We use the differential equation (DE) method of Nick Wormald
for analysis.

Given C ≥ 0, let -(C) denote the number of matched vertices,
and let '(C) denote the number of red vertices.

Let �C := (-(8), '(8))0≤8≤C . Note that �C does not encompass the
full history of random graph process at time C (i.e., �0 , . . . , �C)

We condition on less information so that the circle placements
amongst the unsaturated vertices remain u.a.r.

15

Deriving the Differential Equations

E[-(C + 1) − -(C) | �C] =
2(= − -(C) + '(C))

=
+ $(1/=),

E['(C + 1) − '(C) | �C] =
= − -(C)

=
· −2'(C)
= − -(C)

+'(C)
=

(
−1 − 2('(C) − 1)

= − -(C)

)
+-(C) − 2'(C)

=
+ $(1/=).

By writing G(B) = -(B=)/= and A(B) = '(B=)/= for B ∈ [0,∞), we
have that

G′ = 2(1 − G + A),

A′ =
−2A
1 − G (1 − G + A) − A + G − 2A,

with the initial conditions G(0) = A(0) = 0.

16

Deriving the Differential Equations

E[-(C + 1) − -(C) | �C] =
2(= − -(C) + '(C))

=
+ $(1/=),

E['(C + 1) − '(C) | �C] =
= − -(C)

=
· −2'(C)
= − -(C)

+'(C)
=

(
−1 − 2('(C) − 1)

= − -(C)

)
+-(C) − 2'(C)

=
+ $(1/=).

By writing G(B) = -(B=)/= and A(B) = '(B=)/= for B ∈ [0,∞), we
have that

G′ = 2(1 − G + A),

A′ =
−2A
1 − G (1 − G + A) − A + G − 2A,

with the initial conditions G(0) = A(0) = 0.

16

Deriving the Differential Equations

E[-(C + 1) − -(C) | �C] =
2(= − -(C) + '(C))

=
+ $(1/=),

E['(C + 1) − '(C) | �C] =
= − -(C)

=
· −2'(C)
= − -(C)

+'(C)
=

(
−1 − 2('(C) − 1)

= − -(C)

)
+-(C) − 2'(C)

=
+ $(1/=).

By writing G(B) = -(B=)/= and A(B) = '(B=)/= for B ∈ [0,∞), we
have that

G′ = 2(1 − G + A),

A′ =
−2A
1 − G (1 − G + A) − A + G − 2A,

with the initial conditions G(0) = A(0) = 0. 16

Applying the DE Method

By DE method, a.a.s. -(C) = G(C/=) · = + >(=) for all C ≥ 0.

Numerical DE solver shows that G(B) = 1 for B ≥ 1.28, so
-(C) = = − >(=) for C ≥ 1.28=.

The remaining >(=) unsaturated vertices are matched via a
clean-up algorithm which is analysed by a (lossy) elementary
analysis.

17

Applying the DE Method

By DE method, a.a.s. -(C) = G(C/=) · = + >(=) for all C ≥ 0.

Numerical DE solver shows that G(B) = 1 for B ≥ 1.28, so
-(C) = = − >(=) for C ≥ 1.28=.

The remaining >(=) unsaturated vertices are matched via a
clean-up algorithm which is analysed by a (lossy) elementary
analysis.

17

Applying the DE Method

By DE method, a.a.s. -(C) = G(C/=) · = + >(=) for all C ≥ 0.

Numerical DE solver shows that G(B) = 1 for B ≥ 1.28, so
-(C) = = − >(=) for C ≥ 1.28=.

The remaining >(=) unsaturated vertices are matched via a
clean-up algorithm which is analysed by a (lossy) elementary
analysis.

17

Perfect Matchings: Lower Bounds

Trivial observation: no strategy can create a perfect matching in
less than =/2 rounds.

There are two obvious necessary conditions, both giving
exactly the same lower bound:
– the graph has the minimum degree at least 1,
– there are at least =/2 vertices with at least one square.

A.a.s. no strategy can create a perfect matching in less than
(ln(2) + >(1))= ≥ 0.69314= rounds.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

18

Perfect Matchings: Lower Bounds

Trivial observation: no strategy can create a perfect matching in
less than =/2 rounds.

There are two obvious necessary conditions, both giving
exactly the same lower bound:
– the graph has the minimum degree at least 1,

– there are at least =/2 vertices with at least one square.

A.a.s. no strategy can create a perfect matching in less than
(ln(2) + >(1))= ≥ 0.69314= rounds.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

18

Perfect Matchings: Lower Bounds

Trivial observation: no strategy can create a perfect matching in
less than =/2 rounds.

There are two obvious necessary conditions, both giving
exactly the same lower bound:
– the graph has the minimum degree at least 1,
– there are at least =/2 vertices with at least one square.

A.a.s. no strategy can create a perfect matching in less than
(ln(2) + >(1))= ≥ 0.69314= rounds.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

18

Perfect Matchings: Lower Bounds

Trivial observation: no strategy can create a perfect matching in
less than =/2 rounds.

There are two obvious necessary conditions, both giving
exactly the same lower bound:
– the graph has the minimum degree at least 1,
– there are at least =/2 vertices with at least one square.

A.a.s. no strategy can create a perfect matching in less than
(ln(2) + >(1))= ≥ 0.69314= rounds.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

18

Perfect Matchings: Lower Bounds

Let
 = inf{1 ≥ 0 : 6(1) ≥ 1/2},

where

6(1) := 1 + 1 − 21
2 exp(−1) − (1 + 1) exp(−21) − 1

2 exp(−31).

Then, a.a.s. no strategy can create a perfect matching in less
than (+ >(1))= ≥ 0.93261= rounds.
(Gao, MacRury, Prałat, SIDMA, 2022)

We again use the DE method, though we must restrict to
“well-behaved” strategies.

19

Perfect Matchings: Lower Bounds

Let
 = inf{1 ≥ 0 : 6(1) ≥ 1/2},

where

6(1) := 1 + 1 − 21
2 exp(−1) − (1 + 1) exp(−21) − 1

2 exp(−31).

Then, a.a.s. no strategy can create a perfect matching in less
than (+ >(1))= ≥ 0.93261= rounds.
(Gao, MacRury, Prałat, SIDMA, 2022)

We again use the DE method, though we must restrict to
“well-behaved” strategies.

19

Perfect Matchings: Lower Bounds

Annoying issue: the player may put more than $ =
√
= circles

on one vertex or create multi-edges.

It is clearly a suboptimal strategy but we cannot prevent the
player from doing it.

Solution: We offer a deal the player will gladly accept:
– Put at most 2$ circles on one vertex.
– Create a matching consisting of =/2 − =/$ edges in at most =
rounds.
– Never create multi-edges.

20

Perfect Matchings: Lower Bounds

Annoying issue: the player may put more than $ =
√
= circles

on one vertex or create multi-edges.
It is clearly a suboptimal strategy but we cannot prevent the
player from doing it.

Solution: We offer a deal the player will gladly accept:
– Put at most 2$ circles on one vertex.
– Create a matching consisting of =/2 − =/$ edges in at most =
rounds.
– Never create multi-edges.

20

Perfect Matchings: Lower Bounds

Annoying issue: the player may put more than $ =
√
= circles

on one vertex or create multi-edges.
It is clearly a suboptimal strategy but we cannot prevent the
player from doing it.

Solution: We offer a deal the player will gladly accept:

– Put at most 2$ circles on one vertex.
– Create a matching consisting of =/2 − =/$ edges in at most =
rounds.
– Never create multi-edges.

20

Perfect Matchings: Lower Bounds

Annoying issue: the player may put more than $ =
√
= circles

on one vertex or create multi-edges.
It is clearly a suboptimal strategy but we cannot prevent the
player from doing it.

Solution: We offer a deal the player will gladly accept:
– Put at most 2$ circles on one vertex.

– Create a matching consisting of =/2 − =/$ edges in at most =
rounds.
– Never create multi-edges.

20

Perfect Matchings: Lower Bounds

Annoying issue: the player may put more than $ =
√
= circles

on one vertex or create multi-edges.
It is clearly a suboptimal strategy but we cannot prevent the
player from doing it.

Solution: We offer a deal the player will gladly accept:
– Put at most 2$ circles on one vertex.
– Create a matching consisting of =/2 − =/$ edges in at most =
rounds.

– Never create multi-edges.

20

Perfect Matchings: Lower Bounds

Annoying issue: the player may put more than $ =
√
= circles

on one vertex or create multi-edges.
It is clearly a suboptimal strategy but we cannot prevent the
player from doing it.

Solution: We offer a deal the player will gladly accept:
– Put at most 2$ circles on one vertex.
– Create a matching consisting of =/2 − =/$ edges in at most =
rounds.
– Never create multi-edges.

20

Perfect Matchings: Lower Bounds

-(C): the number of vertices with at least one square at time C.

A.a.s. -(C) = (1 + >(1))=(1 − 4−C/=).

Vertex 9 is redundant at time C ≥ 0 if:
– 9 is covered by precisely one square, say DB for B ≤ C,
– circle EB connected to DB by the player is covered by at least
one square, which arrives after round B.

j

'÷-¥?#
*(C): the number of redundant vertices at time C.

*(C) depends only on the placement of the squares, not the
strategy.

21

Perfect Matchings: Lower Bounds

-(C): the number of vertices with at least one square at time C.

A.a.s. -(C) = (1 + >(1))=(1 − 4−C/=).

Vertex 9 is redundant at time C ≥ 0 if:
– 9 is covered by precisely one square, say DB for B ≤ C,
– circle EB connected to DB by the player is covered by at least
one square, which arrives after round B.

j

'÷-¥?#
*(C): the number of redundant vertices at time C.

*(C) depends only on the placement of the squares, not the
strategy.

21

Perfect Matchings: Lower Bounds

-(C): the number of vertices with at least one square at time C.

A.a.s. -(C) = (1 + >(1))=(1 − 4−C/=).

Vertex 9 is redundant at time C ≥ 0 if:
– 9 is covered by precisely one square, say DB for B ≤ C,
– circle EB connected to DB by the player is covered by at least
one square, which arrives after round B.

j

'÷-¥?#

*(C): the number of redundant vertices at time C.

*(C) depends only on the placement of the squares, not the
strategy.

21

Perfect Matchings: Lower Bounds

-(C): the number of vertices with at least one square at time C.

A.a.s. -(C) = (1 + >(1))=(1 − 4−C/=).

Vertex 9 is redundant at time C ≥ 0 if:
– 9 is covered by precisely one square, say DB for B ≤ C,
– circle EB connected to DB by the player is covered by at least
one square, which arrives after round B.

j

'÷-¥?#
*(C): the number of redundant vertices at time C.

*(C) depends only on the placement of the squares, not the
strategy.

21

Perfect Matchings: Lower Bounds

-(C): the number of vertices with at least one square at time C.

A.a.s. -(C) = (1 + >(1))=(1 − 4−C/=).

Vertex 9 is redundant at time C ≥ 0 if:
– 9 is covered by precisely one square, say DB for B ≤ C,
– circle EB connected to DB by the player is covered by at least
one square, which arrives after round B.

j

'÷-¥?#
*(C): the number of redundant vertices at time C.

*(C) depends only on the placement of the squares, not the
strategy. 21

Perfect Matchings: Lower Bounds

Suppose that 9 is redundant at time C thanks to the arrival of the
square DB at time B ≤ C.

9 is well-positioned, if EB is also redundant at time C.

::÷-o÷i•→
"

,(C): the number of well-positioned redundant vertices at time
C. (Clearly,,(C) ≤ *(C).)

To get the lower bound, we use the following inequality:

-(C) −*(C) +,(C) ≥ =

2 −
3C
$
,

and the DE method of Nick Wormald.

22

Perfect Matchings: Lower Bounds

Suppose that 9 is redundant at time C thanks to the arrival of the
square DB at time B ≤ C.
9 is well-positioned, if EB is also redundant at time C.

::÷-o÷i•→
"

,(C): the number of well-positioned redundant vertices at time
C. (Clearly,,(C) ≤ *(C).)

To get the lower bound, we use the following inequality:

-(C) −*(C) +,(C) ≥ =

2 −
3C
$
,

and the DE method of Nick Wormald.

22

Perfect Matchings: Lower Bounds

Suppose that 9 is redundant at time C thanks to the arrival of the
square DB at time B ≤ C.
9 is well-positioned, if EB is also redundant at time C.

::÷-o÷i•→
"

,(C): the number of well-positioned redundant vertices at time
C. (Clearly,,(C) ≤ *(C).)

To get the lower bound, we use the following inequality:

-(C) −*(C) +,(C) ≥ =

2 −
3C
$
,

and the DE method of Nick Wormald.

22

Perfect Matchings: Lower Bounds

Suppose that 9 is redundant at time C thanks to the arrival of the
square DB at time B ≤ C.
9 is well-positioned, if EB is also redundant at time C.

::÷-o÷i•→
"

,(C): the number of well-positioned redundant vertices at time
C. (Clearly,,(C) ≤ *(C).)

To get the lower bound, we use the following inequality:

-(C) −*(C) +,(C) ≥ =

2 −
3C
$
,

and the DE method of Nick Wormald.
22

Hamilton Cycles

Hamilton Cycles: Upper Bounds

A.a.s. :-out process has a Hamilton cycle when : ≥ 3.
(Bohman, Frieze, RSA, 2009)

Implication: a.a.s. there exists a strategy to create a perfect
matching in (3 + >(1))= rounds.

There exists a strategy to create a Hamilton cycle in �= rounds
a.a.s., where � is the result of a high dimensional optimization
problem. Numerical computations indicate that � < 2.61135.
(Gao, Kamiński, MacRury, Prałat, Euro. J. of Comb., 2022)

We recently analysed a fully adaptive greedy augmentation
algorithm to attain an upper bound of 2.01678=.
(Gao, MacRury, Prałat, RANDOM 2022, 2022)

One more trick brings it down to to 1.81696=.
(Gao, Frieze, MacRury, Prałat, Sorkin, 2023+)

24

Hamilton Cycles: Upper Bounds

A.a.s. :-out process has a Hamilton cycle when : ≥ 3.
(Bohman, Frieze, RSA, 2009)
Implication: a.a.s. there exists a strategy to create a perfect
matching in (3 + >(1))= rounds.

There exists a strategy to create a Hamilton cycle in �= rounds
a.a.s., where � is the result of a high dimensional optimization
problem. Numerical computations indicate that � < 2.61135.
(Gao, Kamiński, MacRury, Prałat, Euro. J. of Comb., 2022)

We recently analysed a fully adaptive greedy augmentation
algorithm to attain an upper bound of 2.01678=.
(Gao, MacRury, Prałat, RANDOM 2022, 2022)

One more trick brings it down to to 1.81696=.
(Gao, Frieze, MacRury, Prałat, Sorkin, 2023+)

24

Hamilton Cycles: Upper Bounds

A.a.s. :-out process has a Hamilton cycle when : ≥ 3.
(Bohman, Frieze, RSA, 2009)
Implication: a.a.s. there exists a strategy to create a perfect
matching in (3 + >(1))= rounds.

There exists a strategy to create a Hamilton cycle in �= rounds
a.a.s., where � is the result of a high dimensional optimization
problem. Numerical computations indicate that � < 2.61135.
(Gao, Kamiński, MacRury, Prałat, Euro. J. of Comb., 2022)

We recently analysed a fully adaptive greedy augmentation
algorithm to attain an upper bound of 2.01678=.
(Gao, MacRury, Prałat, RANDOM 2022, 2022)

One more trick brings it down to to 1.81696=.
(Gao, Frieze, MacRury, Prałat, Sorkin, 2023+)

24

Hamilton Cycles: Upper Bounds

A.a.s. :-out process has a Hamilton cycle when : ≥ 3.
(Bohman, Frieze, RSA, 2009)
Implication: a.a.s. there exists a strategy to create a perfect
matching in (3 + >(1))= rounds.

There exists a strategy to create a Hamilton cycle in �= rounds
a.a.s., where � is the result of a high dimensional optimization
problem. Numerical computations indicate that � < 2.61135.
(Gao, Kamiński, MacRury, Prałat, Euro. J. of Comb., 2022)

We recently analysed a fully adaptive greedy augmentation
algorithm to attain an upper bound of 2.01678=.
(Gao, MacRury, Prałat, RANDOM 2022, 2022)

One more trick brings it down to to 1.81696=.
(Gao, Frieze, MacRury, Prałat, Sorkin, 2023+)

24

Hamilton Cycles: Upper Bounds

A.a.s. :-out process has a Hamilton cycle when : ≥ 3.
(Bohman, Frieze, RSA, 2009)
Implication: a.a.s. there exists a strategy to create a perfect
matching in (3 + >(1))= rounds.

There exists a strategy to create a Hamilton cycle in �= rounds
a.a.s., where � is the result of a high dimensional optimization
problem. Numerical computations indicate that � < 2.61135.
(Gao, Kamiński, MacRury, Prałat, Euro. J. of Comb., 2022)

We recently analysed a fully adaptive greedy augmentation
algorithm to attain an upper bound of 2.01678=.
(Gao, MacRury, Prałat, RANDOM 2022, 2022)

One more trick brings it down to to 1.81696=.
(Gao, Frieze, MacRury, Prałat, Sorkin, 2023+)

24

Hamilton Cycles: Lower Bounds

Obvious necessary condition: the graph has the minimum
degree at least 2.

A.a.s. no strategy can create a Hamilton cycle in less than
(ln 2 + ln(1 + ln 2) + >(1))= ≥ 1.21973= rounds.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

A.a.s. no strategy can create a Hamilton cycle in less than
(ln 2 + ln(1 + ln 2) + � + >(1))= rounds for some universal
constant � > 10−8.
(Gao, Kamiński, MacRury, Prałat, Euro. J. of Comb., 2022)

We recently improved this bound to 1.26575= using similar
techniques as in the perfect matching problem.

25

Hamilton Cycles: Lower Bounds

Obvious necessary condition: the graph has the minimum
degree at least 2.

A.a.s. no strategy can create a Hamilton cycle in less than
(ln 2 + ln(1 + ln 2) + >(1))= ≥ 1.21973= rounds.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

A.a.s. no strategy can create a Hamilton cycle in less than
(ln 2 + ln(1 + ln 2) + � + >(1))= rounds for some universal
constant � > 10−8.
(Gao, Kamiński, MacRury, Prałat, Euro. J. of Comb., 2022)

We recently improved this bound to 1.26575= using similar
techniques as in the perfect matching problem.

25

Hamilton Cycles: Lower Bounds

Obvious necessary condition: the graph has the minimum
degree at least 2.

A.a.s. no strategy can create a Hamilton cycle in less than
(ln 2 + ln(1 + ln 2) + >(1))= ≥ 1.21973= rounds.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

A.a.s. no strategy can create a Hamilton cycle in less than
(ln 2 + ln(1 + ln 2) + � + >(1))= rounds for some universal
constant � > 10−8.
(Gao, Kamiński, MacRury, Prałat, Euro. J. of Comb., 2022)

We recently improved this bound to 1.26575= using similar
techniques as in the perfect matching problem.

25

Hamilton Cycles: Lower Bounds

Obvious necessary condition: the graph has the minimum
degree at least 2.

A.a.s. no strategy can create a Hamilton cycle in less than
(ln 2 + ln(1 + ln 2) + >(1))= ≥ 1.21973= rounds.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

A.a.s. no strategy can create a Hamilton cycle in less than
(ln 2 + ln(1 + ln 2) + � + >(1))= rounds for some universal
constant � > 10−8.
(Gao, Kamiński, MacRury, Prałat, Euro. J. of Comb., 2022)

We recently improved this bound to 1.26575= using similar
techniques as in the perfect matching problem.

25

Small Subgraphs

Small Subgraphs: Upper Bound

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

A.a.s. there exists a strategy to create � in =(3−1)/3$ rounds,
where $ = $(=) → ∞ as = →∞.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

"•-••-•"•_•

27

Small Subgraphs: Upper Bound

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

A.a.s. there exists a strategy to create � in =(3−1)/3$ rounds,
where $ = $(=) → ∞ as = →∞.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

"•-••-•"•_•

27

Small Subgraphs: Upper Bound

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

A.a.s. there exists a strategy to create � in =(3−1)/3$ rounds,
where $ = $(=) → ∞ as = →∞.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

"•-••-•"•_•

27

Small Subgraphs: Upper Bound

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

A.a.s. there exists a strategy to create � in =(3−1)/3$ rounds,
where $ = $(=) → ∞ as = →∞.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

"•-••-•"•_•

✓
'•←•⑧-•Ñ

☒
• • II • El La • • •

27

Small Subgraphs: Upper Bound

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

A.a.s. there exists a strategy to create � in =(3−1)/3$ rounds,
where $ = $(=) → ∞ as = →∞.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

"•-••-•"•_•

• • •

V4
27

Small Subgraphs: Lower Bounds

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

Conjecture: a.a.s. no strategy can create � in =(3−1)/3/$ rounds,
where $ = $(=) → ∞ as = →∞.
The conjecture is true for � = 3+1.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

The conjecture is true.
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)

The semi-random process can be generalized to hypergraphs
and some results can be transferred. But some questions are
still open, for example, � = (3)6 and 2 squares (1 circle).

28

Small Subgraphs: Lower Bounds

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

Conjecture: a.a.s. no strategy can create � in =(3−1)/3/$ rounds,
where $ = $(=) → ∞ as = →∞.
The conjecture is true for � = 3+1.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

The conjecture is true.
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)

The semi-random process can be generalized to hypergraphs
and some results can be transferred. But some questions are
still open, for example, � = (3)6 and 2 squares (1 circle).

28

Small Subgraphs: Lower Bounds

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

Conjecture: a.a.s. no strategy can create � in =(3−1)/3/$ rounds,
where $ = $(=) → ∞ as = →∞.
The conjecture is true for � = 3+1.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

The conjecture is true.
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)

The semi-random process can be generalized to hypergraphs
and some results can be transferred.

But some questions are
still open, for example, � = (3)6 and 2 squares (1 circle).

28

Small Subgraphs: Lower Bounds

Let � be a fixed graph with degeneracy equal to 3 ≥ 2.

Conjecture: a.a.s. no strategy can create � in =(3−1)/3/$ rounds,
where $ = $(=) → ∞ as = →∞.
The conjecture is true for � = 3+1.
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman, and
Stojaković, RSA, 2020)

The conjecture is true.
(Behague, Marbach, Prałat, Ruciński, ArXiv, 2021+)

The semi-random process can be generalized to hypergraphs
and some results can be transferred. But some questions are
still open, for example, � = (3)6 and 2 squares (1 circle).

28

Open Problems

Open Problems

Recall that Ben-Eliezer, Gishboliner, Hefetz and Krivelevich
(SODA, 2020) considered the general problem of constructing a
copy of a spanning graph � of max-degree Δ.

Specifically, they showed that a copy of � can be constructed in
3
2 (Δ + >(Δ))= rounds a.a.s.

The >(Δ) term prevents this result from yielding good bounds
when Δ is constant.

Compute a (small/explicit) universal constant � > 0 such that
for any bounded degree spanning graph �, � can be
constructed in � · Δ rounds a.a.s.

A starting point may be to consider when some additional
structure is assumed to hold on � – i.e., it is vertex transitive, or
at least Δ-regular.

30

Open Problems

Recall that Ben-Eliezer, Gishboliner, Hefetz and Krivelevich
(SODA, 2020) considered the general problem of constructing a
copy of a spanning graph � of max-degree Δ.

Specifically, they showed that a copy of � can be constructed in
3
2 (Δ + >(Δ))= rounds a.a.s.

The >(Δ) term prevents this result from yielding good bounds
when Δ is constant.

Compute a (small/explicit) universal constant � > 0 such that
for any bounded degree spanning graph �, � can be
constructed in � · Δ rounds a.a.s.

A starting point may be to consider when some additional
structure is assumed to hold on � – i.e., it is vertex transitive, or
at least Δ-regular.

30

Open Problems

Recall that Ben-Eliezer, Gishboliner, Hefetz and Krivelevich
(SODA, 2020) considered the general problem of constructing a
copy of a spanning graph � of max-degree Δ.

Specifically, they showed that a copy of � can be constructed in
3
2 (Δ + >(Δ))= rounds a.a.s.

The >(Δ) term prevents this result from yielding good bounds
when Δ is constant.

Compute a (small/explicit) universal constant � > 0 such that
for any bounded degree spanning graph �, � can be
constructed in � · Δ rounds a.a.s.

A starting point may be to consider when some additional
structure is assumed to hold on � – i.e., it is vertex transitive, or
at least Δ-regular.

30

Open Problems

Recall that Ben-Eliezer, Gishboliner, Hefetz and Krivelevich
(SODA, 2020) considered the general problem of constructing a
copy of a spanning graph � of max-degree Δ.

Specifically, they showed that a copy of � can be constructed in
3
2 (Δ + >(Δ))= rounds a.a.s.

The >(Δ) term prevents this result from yielding good bounds
when Δ is constant.

Compute a (small/explicit) universal constant � > 0 such that
for any bounded degree spanning graph �, � can be
constructed in � · Δ rounds a.a.s.

A starting point may be to consider when some additional
structure is assumed to hold on � – i.e., it is vertex transitive, or
at least Δ-regular.

30

Open Problems

Recall that Ben-Eliezer, Gishboliner, Hefetz and Krivelevich
(SODA, 2020) considered the general problem of constructing a
copy of a spanning graph � of max-degree Δ.

Specifically, they showed that a copy of � can be constructed in
3
2 (Δ + >(Δ))= rounds a.a.s.

The >(Δ) term prevents this result from yielding good bounds
when Δ is constant.

Compute a (small/explicit) universal constant � > 0 such that
for any bounded degree spanning graph �, � can be
constructed in � · Δ rounds a.a.s.

A starting point may be to consider when some additional
structure is assumed to hold on � – i.e., it is vertex transitive, or
at least Δ-regular. 30

THE
END

