Contract Design Under Uncertainty

Tal Alon | PhD Student @ Technion, Israel Institue of Technology Joint work with Paul Dütting, Yingkai Li, and Inbal Talgam-Cohen

October 3, 2023

Modern Algorithms in Society

• Interactions with **self-interested** individuals

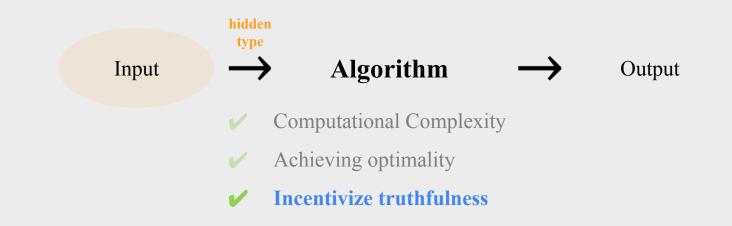
• In AGT, we take participants' incentives into account

Social Media Marketing

- Paid Ads in the social platform feed
- Influencer Marketing- a brand hires popular users

Paid Ads

 \circ Algorithmic **auction** - advertisers bid \rightarrow allocation and payments

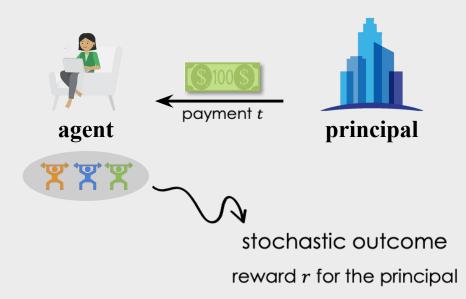


Influencer Marketing

• The algorithm determines a **contract** to incentivize effort

The Principal-Agent Problem [GH83]

- Moral hazard the agent's actions cannot be observed
- Objective: a contract maximizing expected rewards minus payment $\mathbb{E}[r-t]$



Research Agenda

Generalizations of the classic model:

- **Personalization** for participants from diverse population (with types)
- Multilateral contracts involving multiple principals or agents
- The need for simple contracts

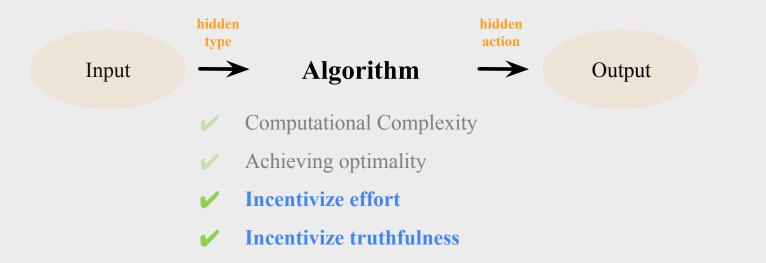
Research Agenda

Generalizations of the classic model:

- **Personalization** for participants from diverse population (with types)
- Multilateral contracts involving multiple principals or agents

• The need for simple contracts

Research Agenda



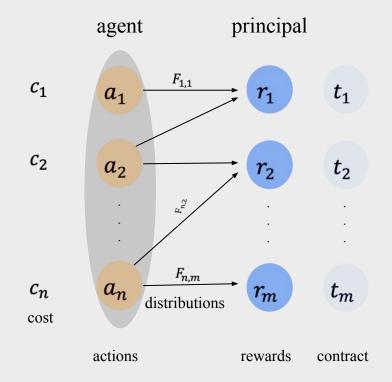
Outline

- Single-parameter model of types [ADT.C. EC'21]
 - Motivated by single-parameter auction design
- Characterization of the design space [ADT.C. EC'21]
- Counter-intuitive and undesirable properties of optimal contracts [ADLT.C. EC'23]
- Linear contracts (aka commission-based) are near-optimal [ADLT.C. EC'23]

Recent works on contracts with types. Myerson)1982(, Guruganesh et al.)2021), Castiglioni et al.)2021), Gottlieb and Moreira)2022(, Casto-Pire et al.)2022(.

The Model

 \circ The classic principal-agent model by Grossman-Hart (1983)



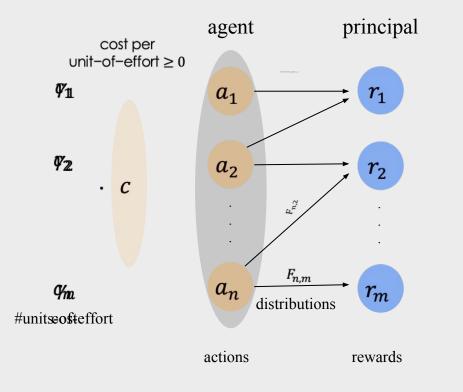
Notation. $T_i = \mathbb{E}_{j \sim F_i}[t_j], R_i = \mathbb{E}_{j \sim F_i}[r_j]$

• Agent's action i^* maximizes $T_i - c_i$

• Principal's revenue $R_{i^*} - T_{i^*}$

The Model

• Type is drawn from G with density g supported on $C = [\underline{c}, \overline{c}]$



The Model

• A contract (x, t) consists of two mappings:

• Payment rule $t: C \rightarrow \mathbb{R}^m$ from types to a paymet scheme

• Allocation rule $x: C \rightarrow [n]$ from types to an action recommendation

Notation. $T_i^c = \mathbb{E}_{j \sim F_i}[t(c)_j]$

• Agent *c* report \hat{c} and action $i^*(c)$ maximize $T_{i^*(c)}^{\hat{c}} - \gamma_{i^*(c)}c$

• A contract (x, t) is incentive compatible (IC) if $c = \hat{c}$ and $x(c) = i^*(c)$

• Principal's contract maximizes $\mathbb{E}_{c\sim G}[R_{x(c)} - T_{x(c)}^{c}]$ s.t. IC

• Welfare sum of utilities $\mathbb{E}_{c \sim G}[R_{i^*(c)} - \gamma_{i^*(c)}c]$

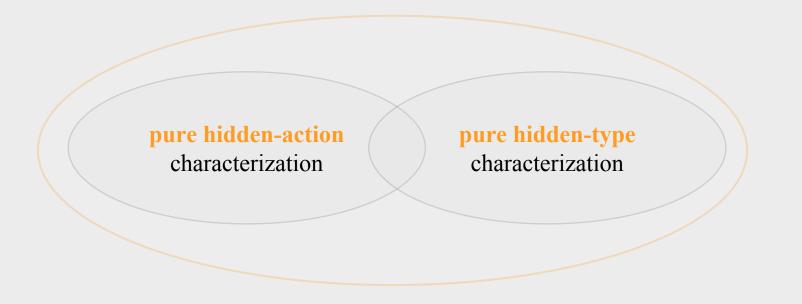
Definition. Allocation rule x is **implementable** if exists payment rule t s.t. (x, t) is IC

Q. What do implementable allocation rules look like?

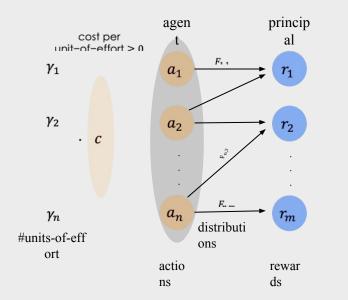
pure hidden-action characterization pure hidden-type characterization

Definition. Allocation rule x is **implementable** if exists payment rule t s.t. (x, t) is IC

Q. What do implementable allocation rules look like?



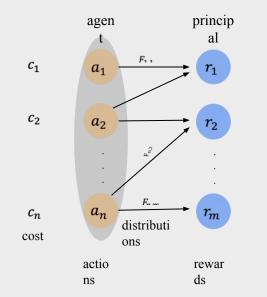
Pure hidden action



Pure hidden action

• x is **implementable** \Leftrightarrow exists no **deviation scheme** λ_k s.t. (1) dominant distribution $\sum_k \lambda_k F_k \ge F_x$

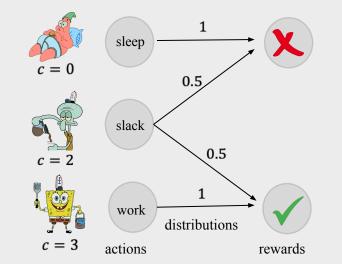
(2) strictly lower cost $\sum_k \lambda_k c_k < c_x$



Pure hidden action

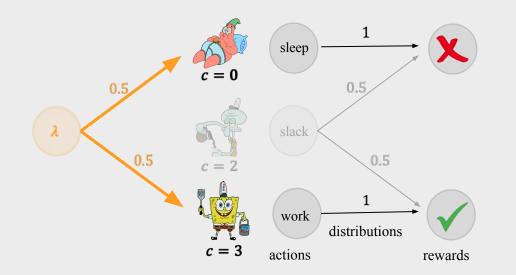
• x is **implementable** \Leftrightarrow exists no **deviation scheme** λ_k s.t. (1) dominant distribution $\sum_k \lambda_k F_k \ge F_x$

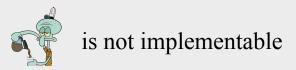
(2) strictly lower cost $\sum_k \lambda_k c_k < c_x$



Pure hidden action

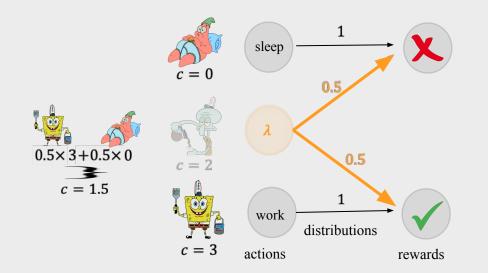
• x is **implementable** \Leftrightarrow exists no **deviation scheme** λ_k s.t. (1) dominant distribution $\sum_k \lambda_k F_k \ge F_x$ (2) strictly lower cost $\sum_k \lambda_k c_k < c_x$

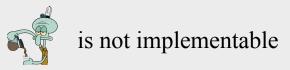




Pure hidden action

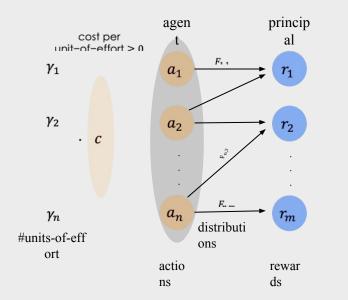
• x is **implementable** \Leftrightarrow exists no **deviation scheme** λ_k s.t. (1) dominant distribution $\sum_k \lambda_k F_k \ge F_x$ (2) strictly lower cost $\sum_k \lambda_k c_k < c_x$





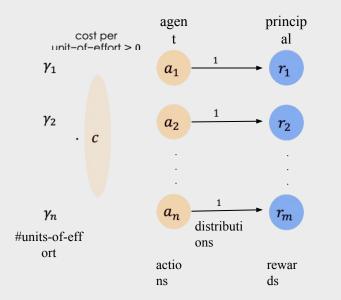
• LP duality approach

Pure hidden type



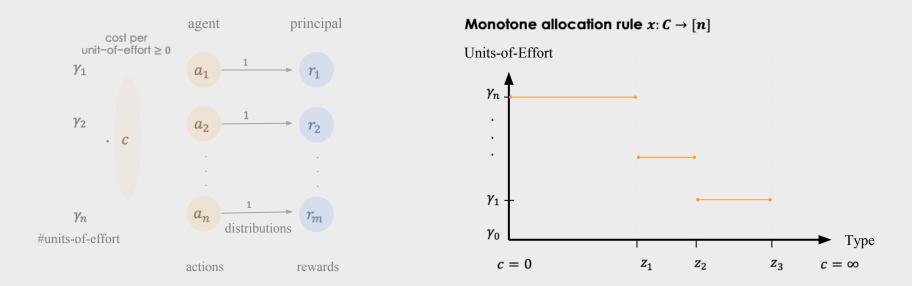
Pure hidden type

• x is implementable \Leftrightarrow x is monotone [Myerson 1981]

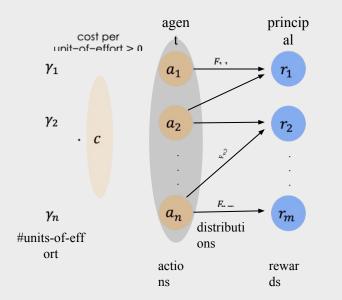


Pure hidden type

• x is implementable \Leftrightarrow x is monotone [Myerson 1981]

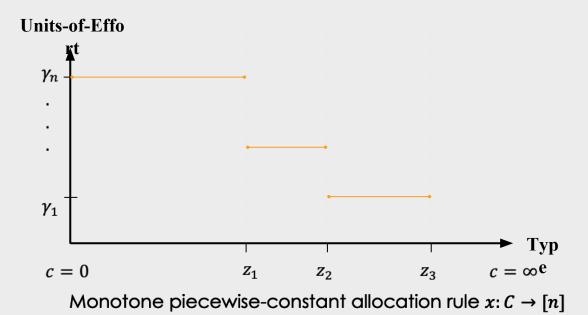


Hidden type and hidden action



Hidden type and hidden action

Proposition [ADT EC'21]. If x is implementable, it is monotone



Theorem [ADT EC'21]. x implementable \Leftrightarrow exists no deviation scheme $\lambda_{(z,k)}$ s.t.

- (1) dominant sum of distributions $\sum_{z,k} \lambda_{(z,k)} F_k \ge \sum_z F_{x(z)}$
- (2) strictly lower joint cost $\sum_{z,k} \lambda_{(z,k)} \gamma_k z < \sum_z \gamma_{x(z)} z$

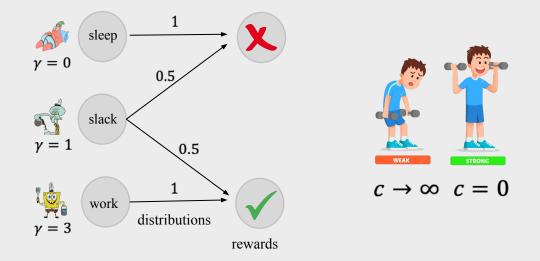
Corollary [ADT EC'21]. Optimal contract is **polytime computable** for const #actions

Hardness for constant #actions in the multi-parameter model [Guruganesh-Schneider-Wang'21]

Example

Theorem [ADT EC'21]. *x* **implementable** \Leftrightarrow exists no **deviation scheme** $\lambda_{(z,k)}$ s.t.

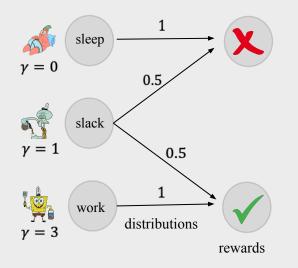
- (1) dominant sum of distributions $\sum_{z,k} \lambda_{(z,k)} F_k \ge \sum_z F_{x(z)}$
- (2) strictly lower joint cost $\sum_{z,k} \lambda_{(z,k)} \gamma_k z < \sum_z \gamma_{x(z)} z$

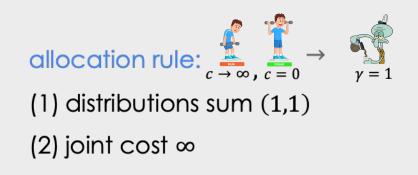


Example

Theorem [ADT EC'21]. x implementable \Leftrightarrow exists no deviation scheme $\lambda_{(z,k)}$ s.t.

- (1) dominant sum of distributions $\sum_{z,k} \lambda_{(z,k)} F_k \ge \sum_z F_{x(z)}$
- (2) strictly lower joint cost $\sum_{z,k} \lambda_{(z,k)} \gamma_k z < \sum_z \gamma_{x(z)} z$

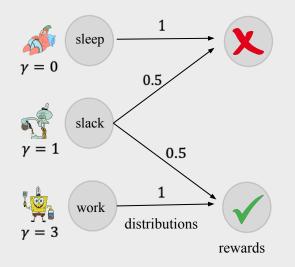




Example

Theorem [ADT EC'21]. x implementable \Leftrightarrow exists no deviation scheme $\lambda_{(z,k)}$ s.t.

- (1) dominant sum of distributions $\sum_{z,k} \lambda_{(z,k)} F_k \ge \sum_z F_{x(z)}$
- (2) strictly lower joint cost $\sum_{z,k} \lambda_{(z,k)} \gamma_k z < \sum_z \gamma_{x(z)} z$



allocation rule: $(c, q) = 0 \rightarrow (c, q) \rightarrow (c, q)$

Optimal Contracts and Their Issues

- Informational requirements, extensive analysis, etc.
- Unintuitive, e.g., non-monotonicity in rewards [DRT EC'19]

Theorem [ADLT EC'23]. In the single dimensional typed model

- Large menu-size complexity
- Revenue **non-monotonicity** w.r.t type distribution

Simple Contracts

◦ In a linear contract, the principal offers a fixed share $\alpha \in [0,1]$ of the rewards

"It is probably the great robustness of linear rules based on aggregates that accounts for their popularity. That

point is not made as effectively as we would like by our model; we suspect

that it cannot be made effectively in any traditional Bayesian model." [Milgrom and Holmstrom 1987]

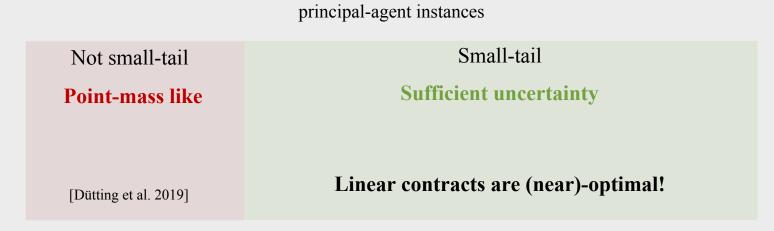
Simple Contracts

◦ In a linear contract, the principal offers a fixed share $\alpha \in [0,1]$ of the rewards

- Robustness of linear contracts. Carroll)2015(, Dütting et al.)2019(, Yu and Kong)2020(, Dai and Toikka)2022(, Walton and Carroll)2022(
- Approximation of linear contracts. Dütting et al.)2019(, Castiglioni et al.)2021(, Guruganesh et al.)2021(

Near-Optimality of Linear Contracts

- o $\theta(n)$ separation for point-mass distributions [DRT EC'19]
 - o Boundary case
- o Approximately optimal with sufficient uncertainty
 - o The small-tail assumption



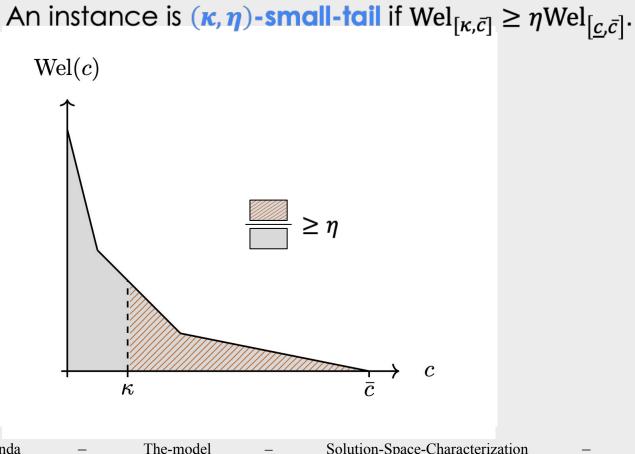
Near-Optimality of Linear Contracts

Theorem [ADLT EC'23]. **Revenue** benchmark:

- **3-approximation** for normal $\mathcal{N}(\mu, \sigma^2)$ truncated at c = 0 with $\sigma \ge 5\eta/2\sqrt{2}$
- **2-approximation** for **uniform** $U[0, \bar{c}]$
 - **Optimal** when $i^*(r, \bar{c}) = 0$
- o 2-approximation for decreasing densities (e.g., exponential)
- Constant approximation w.r.t optimal welfare benchmark [ADLT EC'23]

The Small-Tail Assumption

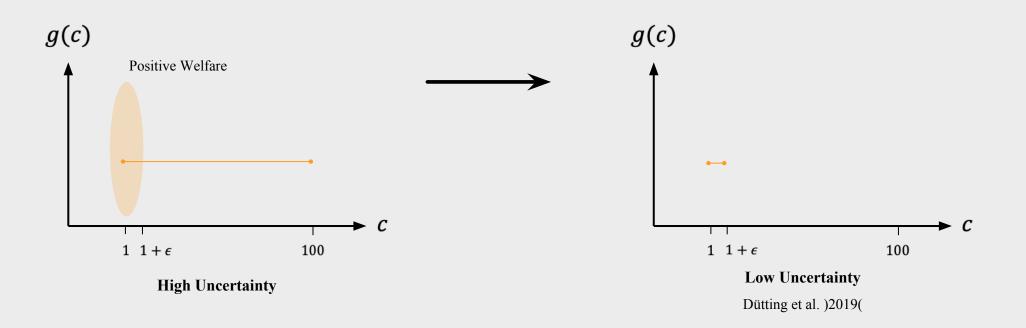
Definition [ADLT EC'23]. Let $\kappa \in [\underline{c}, \overline{c}], \eta \in [0,1]$.



Agenda

The Small-Tail Assumption

Depends on the entire principal-agent setting



Universal Approximation Guarantee

Theorem [ADLT EC'23]. Let $q \in (0,1)$ and $G(c_q) = q$. If for $\alpha, \eta \in (0,1)$ the settings is

 $(\frac{c_q}{\alpha}, \eta)$ -small-tail then linear contract α is at least $(1 - \alpha)\eta q$ of the optimal welfare

Slowly-Increasing Distributions

• Applies to any CDF and captures its **rate of increase**

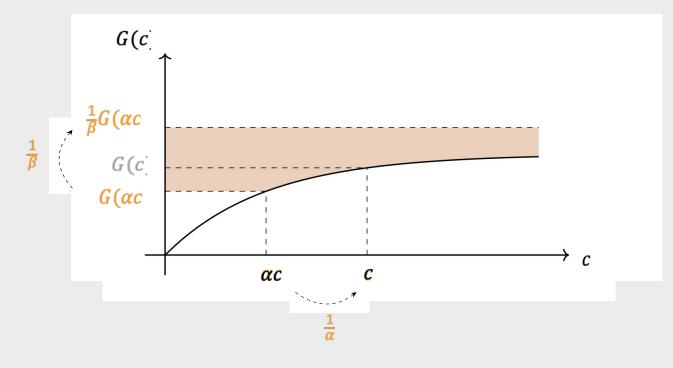
• Parametric approximation of linear contracts

• Any distribution is slowly-increasing for some parameters

Slowly-Increasing Distributions

Definition [ADLT EC'23]. Let $\alpha, \beta \in (0,1)$, and $\kappa \in [\underline{c}, \overline{c}]$.

A distribution G is (α, β, κ) -slowly-increasing if $G(c) \le \frac{1}{\beta}G(\alpha c) \ \forall \kappa \le c$



Approximation for Slowly Increasing

Theorem [ADLT EC'23]. Let $\alpha, \beta, \eta \in (0,1)$, and $\kappa \in [\frac{c}{\alpha}, \overline{c}]$.

Under (α, β, κ) -slowly-increasing and (κ, η) -small-tail

linear contract α is $(1 - \alpha)\beta\eta$ of the optimal welfare

Proof Idea for Slowly Increasing

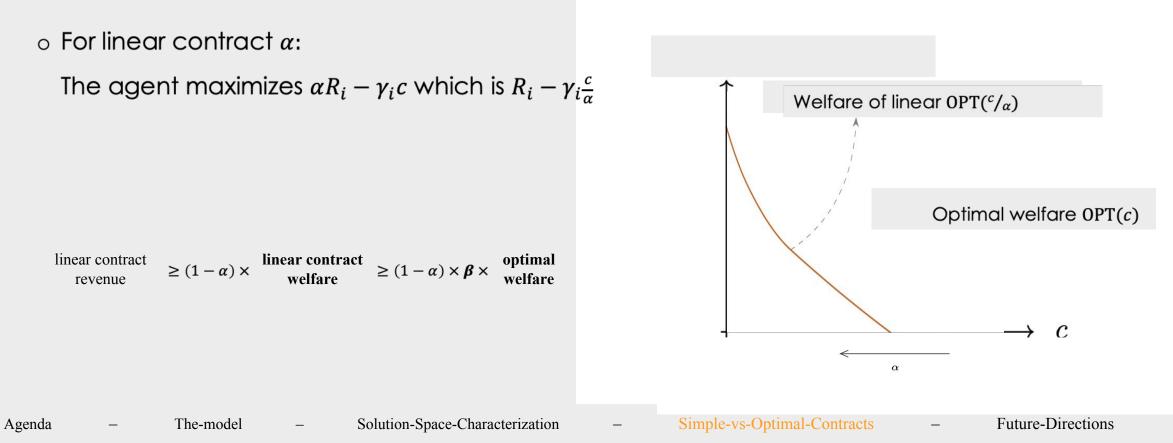
Step 1. Revenue of linear contract α is at least $1 - \alpha$ of its welfare

$$\begin{split} \text{revenue of linear contract} & \text{welfare of linear contract} \\ \mathbb{E}_{c\sim G}[(1-\alpha)R_{x(c)}] & \geq (1-\alpha) \times \\ \mathbb{E}_{c\sim G}[R_{x(c)}-\gamma_{x(c)}c] \end{split}$$

Proof Idea for Slowly Increasing

Step 2. welfare of linear contract α is at least β of the optimal welfare

 \circ When maximizing welfare, the agent maximizes $R_i - \gamma_i c$



Summary and Future Directions

- Single-parameter model of types
- Characterization of the design space
- Counter-intuitive and **undesirable** properties of **optimal contracts**
- Linear contracts are near-optimal

Future directions:

- Other forms of simple contracts that are near-optimal
- Contracts that involve multiple agents
- \circ Other models for incentivizing effort

!Thank You

alontal@campus.technion.ac.il

www.talalon.org

Research Agenda

Generalizations of the classic model:

- Personalization for participants from diverse population (with types)
- Multilateral contracts involving multiple principals or agents
 - Bad welfare performance for independent contracts.

Identify unique welfare-maximizing for interdependent contracts [ALST EC'21,OR'23]

• The need for simple contracts

Research Agenda

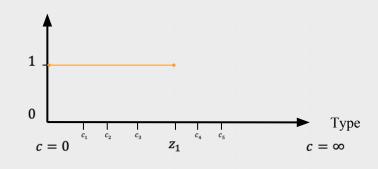
Generalizations of the classic model:

- **Personalization** for participants from diverse population (with types)
- Multilateral contracts involving multiple principals or agents
 - Bad welfare performance for independent contracts.
 - Identify unique welfare-maximizing for interdependent contracts [ALST EC'21,OR'23]
- The need for simple contracts

Pure hidden type

• x is implementable \Leftrightarrow x is monotone [Myerson 1981]

Units-of-Effort



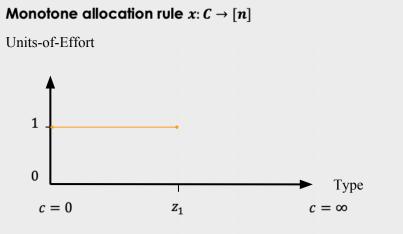
Notation. $S = \{c \mid x(c) = 1\}$ Existence and the integrated service $\sum_{c} \lambda_{c,1} = \sum_{c \in S} 1$ (2) lower joint cost $\sum_{c} \lambda_{c,1} c < \sum_{c \in S} c$

TODO!!!

Fix citations

Absent hidden action

• x is implementable \Leftrightarrow x is monotone [Myerson 1981]



o **allocation rule:**
$$x(c) = \begin{cases} 1, c \in [0, z_1), \\ 0, c \in [z_1, ∞) \end{cases}$$

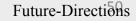
• payment rule:
$$p(c) = \begin{cases} z_1, & c \in [0, z_1), \\ 0, & c \in [z_1, \infty) \end{cases}$$

• **utility** of serving: $z_1 - c$, not serving: 0

Principals with Types

Agenda

—



Common Agency

- Multiple principals hire a single agent
- What if the **principals** have different interests?

Interests form principals' privately-known types

TODO

•We study welfare-maximizing contracts with hidden principal types

•Such contracts incentivize the most rewarding action in aggregate

Common Agency

Theorem [Alon Lavi Shamash & T.-C. EC'21].

The bad:

• In some settings welfare maximization is **impossible**

The good:

• The class of settings with possibility is **large and identifiable**

- For this class, welfare maximization is **tractable**
- The contracts are **unique** and make economic sense

Summary

—

—

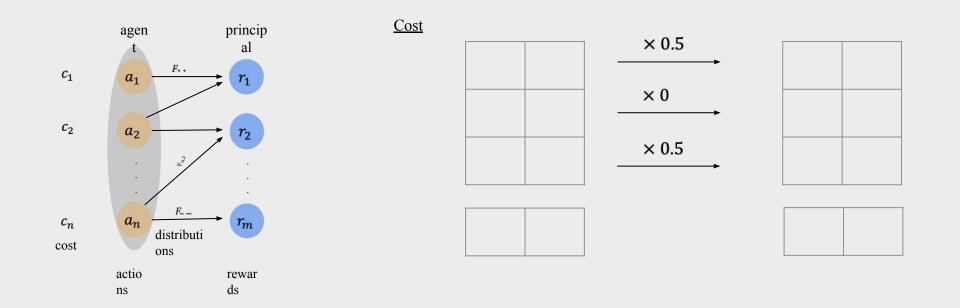
Some more work

—

Absent hidden type

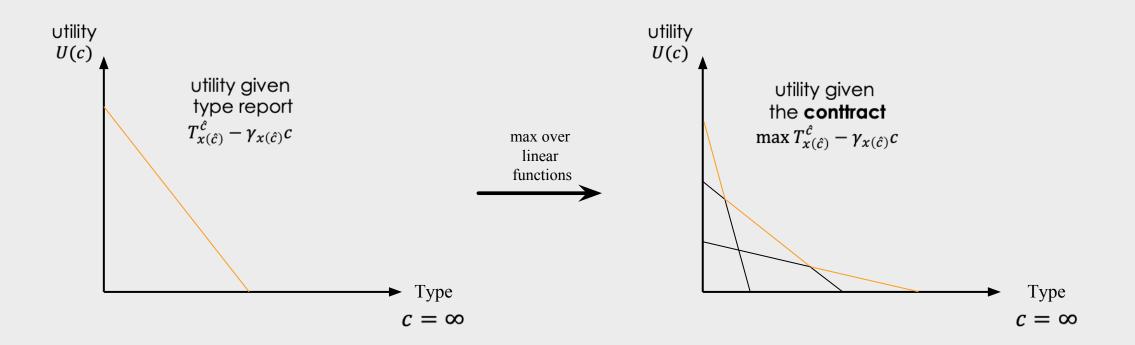
—

○ x is implementable \Leftrightarrow [GH 1983]



Intuition: Monotonicity Isn't Sufficient

Because



—

Absent hidden type

—

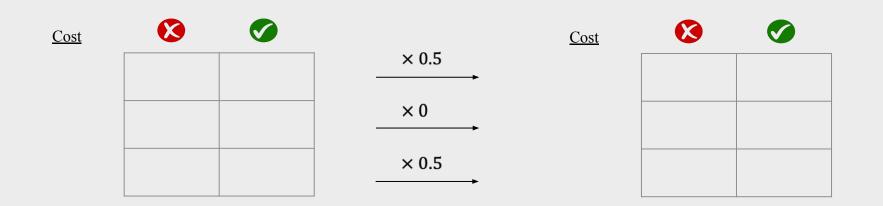
○ x is implementable \Leftrightarrow [GH 1983]

—

Absent hidden type

—

○ x is implementable \Leftrightarrow [GH 1983]

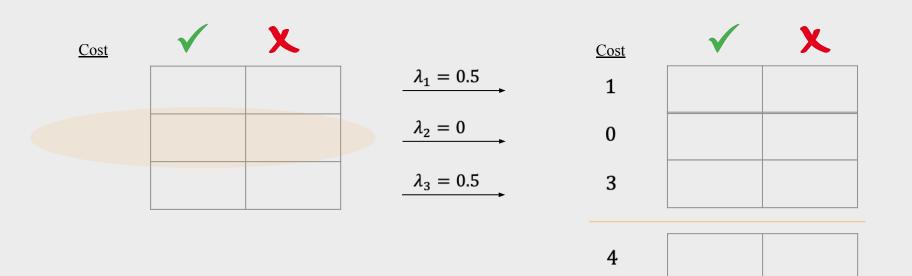


—

Absent hidden type

—

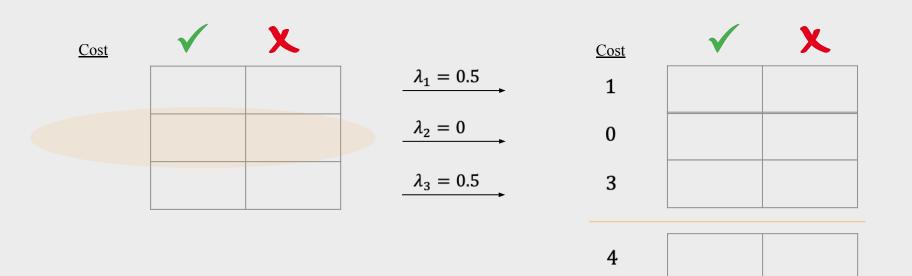
○ x is implementable \Leftrightarrow [GH 1983]



Absent hidden type

—

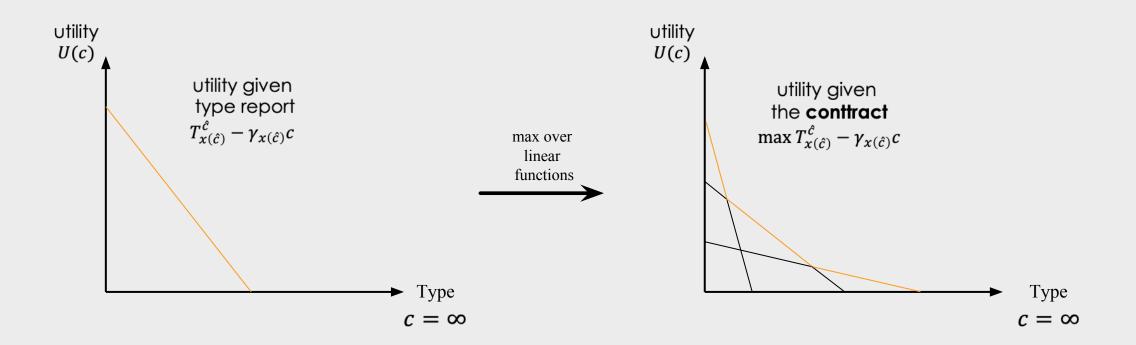
○ x is implementable \Leftrightarrow [GH 1983]



Intuition: Monotonicity Isn't Sufficient

No hidden-action

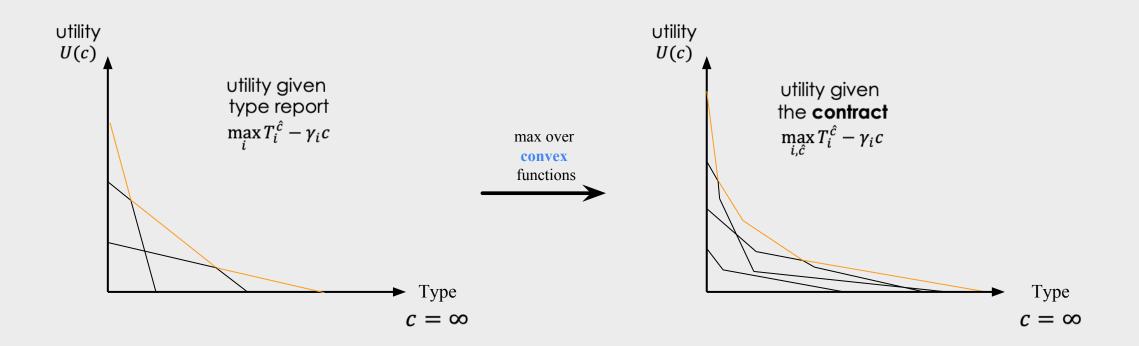
—



Intuition: Monotonicity Isn't Sufficient

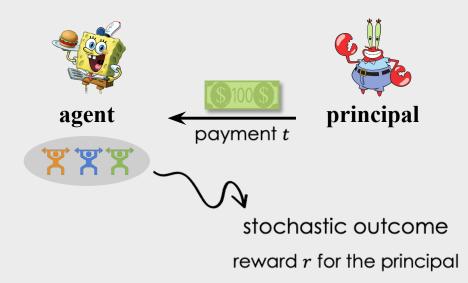
With hidden-action

—



The Principal-Agent Problem [GH83]

- Moral hazard the agent's actions cannot be observed
- Objective: a contract maximizing expected rewards minus payment $\mathbb{E}[r-t]$



Contract Theory Approach

Proposition [Alon Dütting and T.-C. EC'21]. The following LP computes if x is **implementable**

$$\begin{array}{ll} \max & 0 \\ \text{s.t.} & F_{x(z)}t^{z} - \gamma_{x(z)}z \geq F_{k}t^{z'} - \gamma_{k}z \; \forall z, z' \in C, k \in [n] \\ & t_{j}^{z} \geq 0 \end{array}$$

—

—