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Supervised learning

A common problem in machine learning takes the following form:

We have a set X = {xi}ni=1 of points in Rd and corresponding set
Y = {yi}ni=1 of labels in Ro . We wish to learn how to identify the label yi
from the point xi by finding some function f : Rd → Ro such that
yi ≈ f (xi ).

How do we define the approximation? We assume there is a distribution D
on Rd × Ro so that each (xi , yi ) is an i.i.d. (independent and identical
distributed) sample from D. We want to find f such that error (or loss) is
small on average.

If yi takes values in a discrete set, this problem is called classification. A
simple notion of error here is counting the number of mistakes, meaning
we wish to maximize accuracy: Pr(x ,y)∼D[y = f (x)].
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Training models

We parameterize a class of “learnable” functions as fθ. Denoting our loss
function ℓ, we wish to find

θ∗ = argmin
θ

E
(x ,y)∼D

[ℓ(fθ(x), y)].

This is difficult to find in practice, so we approximate the inner
expectation with the empirical expectation:

θ∗ ≈ argmin
θ

1

n

n∑
i=1

[ℓ(fθ(xi ), yi )].

This may still difficult to find, depending on exactly what fθ and ℓ are!
However, a general iterative technique works called gradient descent. We
start with θ(0) chosen arbitrarily and update

θ(t+1) = θ(t) − η∇θ
1

n

n∑
i=1

[ℓ(fθ(xi ), yi )]

for some step-size η. This converges to a local (but not global) minimum
under various regularity assumptions.
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Notes on loss functions

From before, we wish to find

θ∗ = argmin
θ

E
(x ,y)∼D

[ℓ(fθ(x), y)].

While intuitively, our loss function ℓ is some notion of accuracy, we are
free to interpret fθ(x) however we wish. In the case of classification, it’s
common to interpret fθ(x) instead as a probability (or more vaguely
“confidence”) that a particular label is correct.

Gradient descent does not require the problem to be differentiable
everywhere! However, it does need to be at least continuous and
differentiable almost everywhere, so (in)accuracy does not work as a loss
for gradient descent.
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Classification example

?
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Neural network overview
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finput output

Each non-input node is a linear combination of its input nodes, with a
non-linear activation function applied. Ex:

bi =
5∑

j=1

max{0,wija
j}

The learnable parameters are the weights wij . Separate for each layer.
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Generalization results in machine learning
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Classical bias–variance tradeoff

less complex more complex
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Modern generalization results

Deep learning models are highly complex and expressive, yet even when
trained with no explicit regularization to perfectly interpolate noisy
training data, they still generalize well [ZBH+17].
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Benign overfitting

• Informally, we say a model exhibits benign overfitting if it achieves
zero error on noisy training data, but still performs well on test data.

• Significant progress has been made in understanding benign
overfitting in linear models, but less is known about non-linear models.

• We seek to study the dynamics of a (shallow) ReLU neural network
trained using GD and hinge loss on a noisy binary classification
problem.
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Key results

Assume inputs (xi , yi ) ∈ Rd × {−1, 1} have a signal and noise component
and let ∈ [0, 1] control the strength of the signal component:

xi ≈
√

yisi +
√
1− ni .

We show three distinct training outcomes:

1. Benign overfitting ( small but not too small): zero training loss
and generalization error asymptotically (in dimension d) optimal.

2. Non-benign overfitting ( very small): zero training loss and
generalization error bounded below by a constant. (note! optimal
classifier exists)

3. No overfitting ( large): zero training loss on “clean” points but
nonzero loss on “corrupted” points, and asymptotically optimal
generalization error.
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Comparison with other works

A number of benign/tempered overfitting results have emerged for two
layer networks trained with GD + logistic loss on noisy, linearly separable
data for binary classification with near-orthogonal inputs.

• [FCB22] consider smoothed leaky ReLU activations and assume the
data is drawn from a mixture of well-separated sub-Gaussian
distributions.

• [XG23] extends this result to more general activation functions,
including ReLU.

• [CCBG22, KCCG23] study convolutional networks where the noise
and signal components lie on disjoint patches.

• [FVBS23] considers leaky ReLU and analyzes the KKT points of the
max-margin problem.

• [KYS23] demonstrate benign-tempered overfitting transitions in the
case of univariate inputs for ReLU networks.
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Setup
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Problem and data assumptions

• Training sample has 2n points (xi , yi )
2n
i=1 ∈ (Rd × {−1, 1}).

• k positive and k negative points have their output label flipped:
denote β(i) = −1 if i-th point is corrupted otherwise β(i) = 1.

• Labels: yi = (−1)iβ(i) (clean label is (−1)i )

• Inputs are of the form

xi = (−1)i (
√

v +
√
1− β(i)ni ).

• Noise vectors (ni )
2n
i=1 are mutually independent and identically

distributed (i.i.d.) random vectors drawn from the uniform
distribution over Sd−1 ∩ span{v}⊥.

• ∈ [0, 1] controls the strength of the signal versus the noise.

• Test data has same form but is assumed uncorrupted.
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Loss function, model and training

• We study a densely connected, single layer feed-forward ReLU neural
network with no bias terms f : R2m×d × Rd → R,

f (W, x) =
2m∑
j=1

(−1)j max{0, ⟨wj , x⟩}.

• Use the hinge loss L(t) :=
∑2n

i=1max{0, 1− yi f (t, xi )}.
• Inner weights trained using (sub)gradient descent. Let

• F (t) := {i ∈ [2n] : ℓ(t, xi ) < 1}
• A(t)

j := {i ∈ [2n] : ⟨w(t)
j , xi ⟩ > 0},

then update can be written as

w
(t+1)
j = w

(t)
j + (−1)jη

2n∑
l=1

1(l ∈ A(t)
j ∩ F (t))ylxl .
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Hinge versus logistic loss: recap

Hinge loss: max{0, 1− z}
• Defines a margin separating
classes and penalizes points for
lying within or on the incorrect
side.

• Contribution of each point to
overall loss driven only its
network activation.

• When yi f (xi ) ≥ 1, point no
longer contributes to dynamics
(switches off).

Logistic loss: log(1 + exp(−z))

• Attempts to learn log odds of
point being in positive class.

• Points which are already well
fitted, i.e., yi f (xi ) is large, have
a reduced contribution.

• A point always contributes to
the dynamics of the network
(never switches off).
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Hinge versus logistic loss: dynamics
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Hinge versus logistic: analysis

• For the logistic loss one can consider the surrogate
g(z) := −ℓ′(z) = 1/(1 + exp(z)).

• If one can show that the evaluation of g on each sample at any given
time is ‘balanced’ then provided the fraction of corruptions is not too
large the training dynamics are primarily driven by the clean points.

• Strategy: uniformly upper bounded the ratio
ℓ′(yi f (t, xi ))/ℓ

′(yl f (t, xl)) in time for all pairs of inputs.

• For the hinge loss this approach is not feasible as if iteration t some
points achieve zero loss while others have not then this ratio is
unbounded.

• The key idea we use to characterize the training dynamics is to reduce
the analysis of the trajectory of each neuron to that of counting the
number of clean versus corrupt updates to it.
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Assumptions on model parameters

Let δ ∈ (0, 1/2) denote the failure probability, ρ ∈ (0, 1) bound the
magnitude of inner products of the noise and λw bound the norm of
weight initializations. For sufficiently large and small constants C ≥ 1 and
c ≤ 1 respectively,

1. k ≤ cn,

2. d ≥ Cρ−2 log(n/δ)

3. λw ≤ cη

4. η ≤ ξ, where ξ depends on n, m, k , , and d .
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Comments on setup

There are a number of notable limitations with the data model studied
here that should be addressed.

• Signal and noise being orthogonal: this simplifies the analysis but
is not necessary, in particular one could extend our techniques to the
setting where the inner product between the signal and noise are
sufficiently small.

• Inputs have equal magnitude: this simplifies our analysis as it
means the push each input gives an activated neuron is the same,
thereby reducing the problem to that of counting activations. Can be
relaxed to all magnitudes within a sufficiently small range.

• Near orthogonality of the noise: intuitively, if noise components
are nearly orthogonal then correlations between activations of
different inputs is due to the signal. Much harder to relax: equivalent
restrictions are present in nearly all other works in this space.
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Results

E. George 22/34



Benign overfitting

Theorem 1

Assume n ≥ C log(1/δ), m ≥ C log(n/δ), ρ ≤ c · and
C
√

log(n/δ)/d ≤ ≤ cn−1. Then there exists a sufficiently small
step-size η such that with probability at least 1− δ over the randomness of
the dataset and network initialization the following hold.

1. The training process terminates at an iteration Tend ≤ Cn
η .

2. For all i ∈ [2n] then ℓ(Tend, xi ) = 0.

3. The generalization error satisfies

P(sgn(f (Tend, x)) ̸= y) ≤ exp
(
−cd · 2

)
.
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Main ideas behind Theorem 1

1. There are two phases of training driven by the relative imbalance in
the number of clean versus corrupt points. Clean data dominates the
dynamics early on but once fitted the corrupt points takeover.

2. In the first phase the network fits the clean data by learning a strong
signal component, in particular by the end of this phase for most
neurons (−1)j⟨wj , s⟩ is large. Each corrupt point has some neurons of
the correct output sign that activate on it throughout this phase.

3. In the second phase clean points start to switch off. The network fits
the corrupt data by learning the noise components, however, only so
many updates can occur before these points are fitted and thus the
signal component the network has learned is not overly impacted.

4. At test time the noise component of a new input is approximately
orthogonal to the noise components the network has learned,
therefore it classified based on its signal component.
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Harmful overfitting

Theorem 2

Assume m ≥ C log(n/δ), ρ ≤ cn−1, and ≤ c√
nd
. Then with probability

at least 1− δ over the randomness of the dataset and network
initialization the following hold.

1. The training process terminates at an iteration Tend ≤ Cn
η .

2. For all i ∈ [2n] then ℓ(Tend, xi ) = 0.

3. The generalization error satisfies

P(sgn(f (Tend, x)) ̸= y) ≥ 1

8
.
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Main ideas behind Theorem 2

1. Training dynamics are dominated by the noise and points are fitted
based on their individual and approximately orthogonal noise
components.

2. The network fails to learn the signal strongly enough to overcome the
noise.

3. The network generalizes poorly!
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No overfitting

Theorem 3

Assume m ≥ 2, n ≥ C log
(
m
δ

)
, ρ ≤ c · and Cn−1 ≤ ≤ ck−1. Then

there exists a sufficiently small step-size η such that with probability at
least 1− δ over the randomness of the dataset and network initialization
we have the following.

1. The training process terminates at an iteration Tend ≤ Cn
η .

2. For all i clean ℓ(Tend, xi ) = 0 while ℓ(Tend, xi ) = 1 for all i corrupt.

3. The generalization error satisfies

P(sgn(f (Tend, x)) ̸= y) ≤ exp
(
−cd · 2

)
.
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Main ideas behind Theorem 3

1. Before any points are fitted training dynamics are dominated by the
contributions to the signal component across the training sample.

2. In the first phase of training clean points are fitted based on their
signal component while corrupt points quickly cease to activate
neurons of the same sign.

3. In the second phase the activation of corrupt points on neurons of the
opposite sign gradually decreases before ceasing, eventually each
corrupt point is zeroed by the network. Not enough activations occur
for the corrupt points to start activating neurons of the correct sign.

4. The number of updates required to zero the corrupt points is small
enough that the signal component the network has learned is not
overly impacted and remains strong.

5. At test time the noise component of a new input is approximately
orthogonal to the noise components the network has learned,
therefore it is classified based on its signal component.
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Comparison of results

Table 1: across all results k ≤ cn while d ≥ Cn2 log(n/δ) for [FCB22], [XG23] and
Theorem 1.

[FCB22] [XG23] Theorem 1 Theorem 2 Theorem 3

n ≥ C · log

(
1

δ

)
log

(m
δ

)
log

(
1

δ

)
1 log

(m
δ

)
m ≥ C · 1 log

(n
δ

)
log

(n
δ

)
log

(n
δ

)
1

≤ c · 1

n

1

n

1

n

1√
nd

1

k

≥ C · 1√
nd

√
log(md

nδ )

nd

√
log( nδ )

d
0

1

n

Result Benign1 Benign Benign Non-benign No-overfit
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Supporting experiments

In all plots, γ = .
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Conclusion
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Summary

• Under a simple data model we prove transitions between three
different training outcomes based on , which controls the clean
margin of the data,

1. benign overfitting,
2. harmful overfitting,
3. no overfitting.

• Unlike prior and concurrent works we study the hinge loss and prove
our results in essence by bounding the number of clean versus corrupt
updates that occur throughout different phases of training.
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Future work and open questions

• Relax data assumptions, trainable outer layer etc.

• Classification problems with a non-linear decision boundary

• Role of depth!

• Working with structured, correlated data as opposed to
near-orthogonal data.
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Thanks for attending!
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