Singular cscK metrics on smoothable varieties

Chung-Ming Pan

Joint work with Tat Dat Tô and Antonio Trusiani

GSA Seminar, SLMath October 02, 2024

Outline

CscK problem

Mildly singular varieties

Main results

Constant scalar curvature Kähler (cscK) metrics

Let (X, ω) be a compact Kähler manifold with $\dim_{\mathbb{C}} X = n$. Locally,

$$\omega = \sum_{\alpha,\beta} \omega_{\alpha\bar{\beta}} i \, dz_{\alpha} \wedge d\bar{z}_{\beta}$$

where $(\omega_{\alpha\bar{\beta}})$ is hermitian, positive-definite and $d\omega = 0$.

- $\operatorname{Ric}(\omega) = -\operatorname{dd^c} \log(\det(\omega_{\alpha\bar{\beta}})) = \operatorname{Ricci} \text{ form/curvature}$ $\hookrightarrow \operatorname{globally defined} (1, 1) - \operatorname{form representing} c_1(X) \in H^{1,1}(X, \mathbb{R})$
- $S(\omega) = \operatorname{tr}_{\omega} \operatorname{Ric}(\omega) = \frac{n \operatorname{Ric}(\omega) \wedge \omega^{n-1}}{\omega^n} = \operatorname{scalar} \operatorname{curvature}$

A metric ω is called a cscK metric if $S(\omega) = \bar{s} := \frac{nc_1(X) \cdot [\omega]^{n-1}}{[\omega]^n}$.

Example: Kähler–Einstein metrics (i.e. $Ric(\omega) = \lambda \omega$) and their products

CscK problem

Question: Can one find a cscK metric in a Kähler class α ?

Fix a Kähler metric $\omega \in \alpha$.

Lemma ($\partial \bar{\partial}$ -lemma)

$$\omega' \in \alpha \iff \omega' = \omega + dd^c u \text{ for some } u \in \mathcal{C}^{\infty}(X).$$

The space of Kähler potentials:

$$\mathcal{H}_{\omega}(X) := \{ u \in \mathcal{C}^{\infty}(X) \, | \, \omega_u := \omega + \mathsf{dd^c}u > 0 \} \, .$$

 $\hookrightarrow \mathcal{H}_{\omega}/\mathbb{R} \simeq \{\omega' \text{ K\"ahler metric in } \alpha\}.$

The cscK equation $S(\omega_u) = \overline{s}$ is the Eular–Lagrange equation of the Mabuchi functional (K-energy) $\mathbf{M} : \mathcal{H}_\omega \to \mathbb{R}$.

Mabuchi functional

Mabuchi functional (Chen–Tian formula): for every $u \in \mathcal{H}_{\omega}$,

$$\mathbf{M}(u) = \mathbf{H}(u) + \bar{s} \mathbf{E}(u) - n \mathbf{E}_{\mathsf{Ric}(\omega)}(u).$$

• The entropy $\mathbf{H}:\mathcal{H}_{\omega}\to\mathbb{R}_{\geq0}$ (leading term) is defined as

$$\mathbf{H}(u) = \frac{1}{V} \int_{X} \log \left(\frac{\omega_u^n}{\omega^n} \right) \omega_u^n.$$

• The energy functional $\mathbf{E}: \mathcal{H}_{\omega} \to \mathbb{R}$ (distance) is a primitive of $u \mapsto \mathsf{MA}(u) = \omega_u^n/V$; precisely,

$$\mathbf{E}(u) = \frac{1}{(n+1)V} \sum_{i=0}^{n} \int_{X} u \, \omega_{u}^{j} \wedge \omega^{n-j}, \quad \frac{d}{dt} \, \mathbf{E}(u_{t}) = \int_{X} \dot{u}_{t} \frac{\omega_{u_{t}}^{n}}{V}.$$

• The Θ -energy $\mathbf{E}_{\Theta}(u) = \frac{1}{nV} \sum_{i=0}^{n-1} \int_X u \, \Theta \wedge \omega_u^j \wedge \omega^{n-1-j}$.

Distance on \mathcal{H}_{ω}

 d_1 -distance: consider $(u_t)_{t\in[0,1]}$ a smooth curve in \mathcal{H}_ω joining u_0 & u_1 ,

$$d_1(u_0,u_1):=\inf_{u_t}\int_0^1\left(\int_X|\dot{u}_t|\frac{\omega_{u_t}^n}{V}\right)\mathrm{d}t.$$

E is monotone increasing \leadsto unique extension to all $u \in \mathsf{PSH}(X,\omega)$

$$\mathbf{E}(u) := \inf \{ \mathbf{E}(v) \mid u \le v \in \mathcal{H}_{\omega} \} \in [-\infty, \infty).$$

The finite energy class (Guedj-Zeriahi '07) is defined as

$$\mathcal{E}^1(X,\omega) := \{ u \in \mathsf{PSH}(X,\omega) \,|\, \mathbf{E}(u) > -\infty \}.$$

Theorem (Darvas '15)

- $(\mathcal{E}^1(X,\omega),d_1)$ is a metric completion of (\mathcal{H}_ω,d_1) ;
- $d_1(u, v) = \mathbf{E}(u) + \mathbf{E}(v) 2\mathbf{E}(P_{\omega}(u, v));$
- $(\mathcal{E}^1(X,\omega), d_1)$ is a geodesic metric space.

Convexity, minimizer & existence characterization

Theorem

- M is convex along geodesics in $\mathcal{E}^1(X,\omega)$ (Berman-Berndtsson '17, Berman-Darvas-Lu '17);
- Find a minimizer φ of $\mathbf{M} \iff$ find a cscK ω_{φ} in $[\omega]$ (Darvas-Rubinstein '17, Berman-Darvas-Lu '20, Chen-Cheng '21).

Theorem (DR'17, BDL'20, CC'21)

TFAE

- **1** There exists a unique cscK metric $\omega_{\mathsf{cscK}} \in [\omega]$;
- **2 M** is coercive, i.e. $\exists A > 0$ and B > 0 such that

$$\mathbf{M}(u) \ge A(-\mathbf{E}(u)) - B, \quad \forall u \in \mathcal{E}^1_{\text{norm}}(X, \omega).$$

CscK equations and YTD conjecture

Finding a cscK metric in $[\omega]$ boils down to solving the following couple of equations with unknown pair (φ, F) ,

$$(\omega + \mathrm{dd^c}\varphi)^n = e^F\omega^n \quad \mathrm{and} \quad \Delta_{\omega_\varphi}F = -\bar{s} + \mathrm{tr}_{\omega_\varphi}\operatorname{Ric}(\omega).$$

Chen-Cheng '21:
$$\|\varphi\|_{L^{\infty}} + \|F\|_{L^{\infty}} \leq C(\mathbf{H}(\varphi), X, \omega)$$
.

Yau-Tian-Donaldson Conjecture

 $\exists ! \ cscK \ in \ [\omega] \iff (X, [\omega]) \ is \ uniformly \ K-stable$

Rmk: X Fano,
$$\exists$$
! KE in $c_1(-K_X) \Leftrightarrow (X, -K_X)$ is K-stable (CDS'15, ...)

Singular setting

Mildly singular varieties

Why singular varieties/degenerate families?

- Minimal Model Program, Ueno '75 ∃ 3-fold has no smooth minimal model
- Compactifying moduli spaces, e.g. $r \ll 1$

$$\mathcal{X} = \{([z], t) \in \mathbb{P}^3 \times \mathbb{D}_r \mid z_1 z_2 z_3 + z_0^3 - t \sum_{i=1}^3 z_i^3 = 0\} \stackrel{\pi = \mathsf{pr}_2}{\longrightarrow} \mathbb{D}_r$$

By variety, we mean an irreducible reduced complex analytic space.

Assume that X is a \mathbb{Q} -Gorenstein variety, i.e.

- X is a normal variety. $\hookrightarrow \operatorname{codim} X^{\operatorname{sing}} \ge 2$ and X is locally irreducible.
- K_X is a Q-line bundle. Namely, $\exists m \in \mathbb{N}^*$ and a line bundle L on X s.t $L_{|X^{\text{reg}}} = mK_{X^{\text{reg}}}$.

Adapted measures and klt singularities

What are cscK metrics on singular varieties?

Adapted measure: Let h be smooth hermitian metric on mK_X ,

$$\mu_h := \mathrm{i}^{n^2} \left(\frac{\Omega \wedge \overline{\Omega}}{|\Omega|_h^2} \right)^{1/m} \quad ext{where Ω: local generator of $m K_X$.}$$

CscK pbm makes sense if X has Kawamata log terminal (klt) singularities.

X is klt $\iff \mu$ has finite mass near X^{sing} .

- klt $\iff \forall r: Y \to X \text{ resol'n, } K_Y = r^*K_X + \sum_i a_i E_i, \ \forall a_i > -1.$
- In particular, $\mu = f\omega^n$ where $f \in L^p(X, \omega^n)$ for some p > 1.
- E.g.: ordinary double point $(\sum_i x_i^2 = 0)$, quotient singularities, etc
- ullet Odaka '13: K-semistable \mathbb{Q} -Fano \Longrightarrow at worst klt singularities

Singular cscK metrics

The Ricci curvature of an adapted measure μ_h is defined by

$$\operatorname{Ric}(\mu_h) \underset{loc}{=} \operatorname{dd^c} \log |\Omega|_h^{2/m} \in c_1(X).$$

Let X be klt and fix ω a smooth Kähler metric on X.

We want to solve

$$(\omega + \mathrm{dd^c}\varphi)^n = e^F \mu$$

 $\Delta_{\omega_\varphi} F = -\bar{s} + \mathrm{tr}_{\omega_\varphi} \Theta$ where $\Theta = \mathrm{Ric}(\mu)$.

The corresponding Mabuchi functional:

$$\mathbf{M}(u) := \mathbf{H}_{u}(u) + \bar{s} \mathbf{E}(u) - n \mathbf{E}_{\Theta}(u) - C$$

where
$$\mathbf{H}_{\mu}(u) := \frac{1}{V} \int_{X} \log \left(\frac{\omega_{u}^{n}}{\mu} \right) \omega_{u}^{n}$$
.

Theorem (Di Nezza-Lu '22)

M is convex along geodesics in $\mathcal{E}^1(X,\omega)$.

Main results

Setup:

- \mathcal{X} is an (n+1)-dimensional \mathbb{Q} -Gorenstein variety
- ullet $\pi:\mathcal{X} o\mathbb{D}$ is a proper holo. surj. map, and $X_t:=\pi^{-1}(t)$ normal orall t
- ullet ω a hermitian metric, relatively Kähler on \mathcal{X} $(\omega_t := \omega_{|X_t}$ Kähler $\forall t)$

Main Theorem (P.-Tô-Trusiani '23)

Under the above setting, suppose that X_0 is klt.

- (1) The coercivity threshold $\sigma(t) := \sup\{A \in \mathbb{R} \mid \exists B \in \mathbb{R} \text{ s.t. } \mathbf{M}_t \geq A(-\mathbf{E}_t) B \text{ on } \mathcal{E}^1_{\mathsf{norm}}(X_t, \omega_t)\}$ is lower semi-continuous near 0.
- (2) If \mathcal{X} is a smoothing of X_0 and \mathbf{M}_0 is coercive, then X_0 admits a singular cscK metric $\omega_{0, \text{cscK}}$ in $[\omega_0]$.

Some developments and remarks

Openness under deformation: X_0 has !cscK in $[\omega] \Rightarrow$ so does X_t , $\forall t \sim 0$

- LeBrun–Simanca '94: $\pi: \mathcal{X} \to \mathbb{D}$ is smooth.
- Biquard–Rollin '15: $\pi: \mathcal{X} \to \mathbb{D}$ is a smoothing of X_0 & dim $\mathbb{C} X_t = 2$.

Openness in Kähler cone \mathcal{K}_X : LS '94: X smooth

Blum–Liu–Xu'22: K-stability is Zariski open in proj flat fami of Fano var. Smooth Odaka'13/ anal. pf $\mathcal{X} \to \mathbb{D}$: Spotti–Sun–Yao'16, P.–Trusiani'23 Remark: In our result,

- (1) supports the openness of K-stability in a more general context.
- (1) also works for changing Kähler classes in singular setting, i.e. $\sigma([\omega]) := \sup\{A \in \mathbb{R} \mid \exists B \in \mathbb{R} \text{ s.t. } \mathbf{M}_{\omega} \geq A(-\mathbf{E}_{\omega}) B \text{ on } \mathcal{E}^1_{\mathsf{norm}}(X, \omega)\}$ is l.s.c. for $[\omega] \in \mathcal{K}_X$
- (2) is the first step towards the analytic YTD for singular klt varieties.

Main input 1: strong convergence in families

Let $t_k \to 0$ as $k \to +\infty$. Denote $X_k := X_{t_k}$ and $\omega_k := \omega_{t_k}$.

Convergence in families (P.-Trusiani '23):

We say that $\varphi_k \in \mathsf{PSH}(X_k, \omega_k)$ converges to $\varphi_0 \in \mathsf{PSH}(X_0, \omega_0)$ if \forall data: $U_0 \subseteq X_0^{\mathrm{reg}}$, $\mathcal{U} \subseteq \mathcal{X} \setminus \mathsf{sing}(\pi)$, and F s.t.

the sequence $F_{\nu}^* \varphi_k$ converges to φ_0 in $L^1(U_0)$.

This notion is well-defined, i.e. does not depend on the choice of (U_0, F) .

Strong convergence in families (P.-Tô-Trusiani '23):

$$\varphi_k$$
 converges to φ_0 and $\mathbf{E}_k(\varphi_k) \to \mathbf{E}_0(\varphi_0)$.

Main input 2: key relative properties in families

Propositions (P.-Tô-Trusiani '23)

Under our setting of the main theorem:

- (1) Strong compactness:
 - Let $(u_k)_k \in \bigsqcup_k \mathcal{E}^1_{\mathsf{norm}}(X_k, \omega_k)$ s.t. $(\mathbf{H}_k(u_k))_k$ is uniformly bounded. Then \exists a subsequence converging strongly to some $u_0 \in \mathcal{E}^1(X_0, \omega_0)$.
- (2) Lower semi-continuity of Mabuchi functional: If $(u_k)_k \in \bigsqcup_k \mathcal{E}^1(X_k, \omega_k)$ converges strongly to $u_0 \in \mathcal{E}^1(X_0, \omega_0)$, then

$$\mathbf{M}_0(u_0) \leq \liminf_{k \to +\infty} \mathbf{M}_k(u_k).$$

Proof: L.s.c. of coercivity threshold

On X_0 , \exists constants $A_0 \in \mathbb{R}$, $B_0 > 0$ s.t.

$$\mathbf{M}_0(u) \geq A_0(-\mathbf{E}_0(u)) - B_0, \, \forall u \in \mathcal{E}^1_{\mathsf{norm}}(X_0, \omega_0).$$

Theorem (uniform coercivity)

For any $A < A_0$, $\exists B > 0$ and r > 0 s.t.

$$\mathbf{M}_t \geq A(-\mathbf{E}_t) - B$$
 on $\mathcal{E}^1_{\mathsf{norm}}(X_t, \omega_t)$, $\forall |t| < r$.

Suppose by contradiction, $\exists B_k \to +\infty$, $t_k \to 0$, $u_k \in \mathcal{E}^1_{norm}(X_k, \omega_k)$ s.t.

$$\mathbf{M}_k(u_k) < A(-\mathbf{E}_k(u_k)) - B_k.$$

Note: $|\mathbf{E}_{\Theta,t}(w)| \leq C_1 |\mathbf{E}_t(w)|$, $\forall w \in \mathcal{E}^1_{norm}(X_t, \omega_t)$, so

$$\mathbf{H}_k(u_k) + (\bar{s} + C_1)\mathbf{E}_k(u_k) \leq \mathbf{M}_k(u_k) < A(-\mathbf{E}_k(u_k)) - B_k.$$

Enlarge
$$C_1 = C_1(\bar{s}, A) \gg 1 \implies -\mathbf{E}_k(u_k) = d_1(0, u_k) =: d_k \to +\infty.$$

Take $g_k(s)$ the unit-speed geodesic in $\mathcal{E}^1_{\text{norm}}(X_k, \omega_k)$ joining 0 & u_k .

Set
$$v_k := g_k(D) \implies -\mathbf{E}_k(v_k) = D$$
.

By the convexity of M,

$$\mathbf{M}_{k}(v_{k}) \leq \frac{D}{d_{k}} \mathbf{M}_{k}(u_{k}) + \frac{d_{k} - D}{d_{k}} \mathbf{M}_{k}(0) \leq \frac{D}{d_{k}} (Ad_{k} - B_{k}) \leq AD$$

$$\mathbf{M}_{k}(v_{k}) \geq \mathbf{H}_{k}(v_{k}) + (\bar{s} + C_{1}) \mathbf{E}_{k}(v_{k}) = \mathbf{H}_{k}(v_{k}) + (\bar{s} + C_{1})(-D)$$

$$\hookrightarrow \mathbf{H}_k(v_k) \leq C_2 D$$
.

- (1) $\implies v_k$ sub-converges strongly to some $v_0 \in \mathcal{E}^1(X_0, \omega_0)$
- (2) \Longrightarrow $\mathbf{M}_0(v_0) \leq \liminf_k \mathbf{M}_k(v_k) \leq AD$

By the assumption on X_0 ,

$$A_0D - B_0 = A_0(-\mathbf{E}_0(v_0)) - B_0 \le \mathbf{M}_0(v_0) \le AD.$$

Take $D = \frac{B_0}{A_0 - A} + 1 \implies \text{Contradiction!}$

Existence on Q-Gorenstein smoothable varieties

Chen-Cheng '21 (Deruelle-Di Nezza '22, Guo-Phong '22): a priori estimates on a fixed Kähler manifold (X, ω) mainly depend on:

(1)
$$\mathbf{H}(\varphi) \leq K_1$$
, (2) $|\operatorname{Ric}(\omega)| \leq K_2 \omega$,

(3)
$$\exists \alpha > 0 \text{ s.t. } \int_X e^{-\alpha \psi} \omega^n \leq K_3, \forall \psi \in \mathsf{PSH}_{\mathsf{norm}}(X, \omega).$$

Let φ_t be a cscK potential on $\mathcal{E}^1_{\mathsf{norm}}(X_t, \omega_t)$.

Since \mathbf{M}_0 is coercive, the uniform coercivity gives

$$0 \ge \mathbf{M}_t(\varphi_t) \ge A(-\mathbf{E}_t(\varphi_t)) - B$$

$$\implies -\mathbf{E}_t(\varphi_t) \le B/A$$

$$\implies \mathbf{H}_t(\varphi_t) \le \mathbf{M}_t(\varphi_t) + (\bar{s} + C_1)(-\mathbf{E}_t(\varphi_t)) \le C_2B/A.$$

Extracting a subsequential limit to a smooth potential φ_0 on $X_0^{\text{reg}} \hookrightarrow \varphi_0$ is a cscK potential !

Thank you!

