Background Complexity Simplicity Menu Sizes Communicat Proof Utility

Duality

Duality Gap

Further Research

Multi-Item Mechanisms: Complexity, Simplicity, Menus & Communication

Yannai A. Gonczarowski

Harvard

SLMath (MSRI) Summer School June 22, 2023

Based upon (but all typos are my own):

Bounding the Menu-Size of Approximately Optimal Auctions via Optimal-Transport Duality, Y.A.G., 2018

The Menu-Size Complexity of Revenue Approximation, Moshe Babaioff, Y.A.G., Noam Nisan, 2022

Strong Duality for a Multiple-Good Monopolist, Constantinos Daskalakis, Alan Deckelbaum, Christos Tzamos, 2017

- Complexity
- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

- A single **seller** has *n* **items** that she would like to sell to a single **buyer**. The seller has no other use for the items.
 - E.g., a market for **digital goods**.

- Complexity
- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Functior
- Duality
- Duality Gap
- Further Research

- A single **seller** has *n* **items** that she would like to sell to a single **buyer**. The seller has no other use for the items.
 - E.g., a market for **digital goods**.
- The buyer has a private **value** (the maximum price she is willing to pay) for each item (need not be the same for all items).
- The buyer's value for any subset of the items is the **sum** of the values of the items in the subset.

- Complexity
- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Functior
- Duality
- Duality Gap
- Further Research

- A single **seller** has *n* **items** that she would like to sell to a single **buyer**. The seller has no other use for the items.
 - E.g., a market for **digital goods**.
- The buyer has a private **value** (the maximum price she is willing to pay) for each item (need not be the same for all items).
- The buyer's value for any subset of the items is the **sum** of the values of the items in the subset.
- For each item, the seller has **prior knowledge** of a distribution from which the buyer's value for this item is drawn, **independently** of any other value.
- The seller can choose any selling **mechanism** / **auction** (as long as the buyer can both **opt out** and **strategize**...).

- Complexity
- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Functior
- Duality
- Duality Gap
- Further Research

- A single **seller** has *n* **items** that she would like to sell to a single **buyer**. The seller has no other use for the items.
 - E.g., a market for **digital goods**.
- The buyer has a private **value** (the maximum price she is willing to pay) for each item (need not be the same for all items).
- The buyer's value for any subset of the items is the **sum** of the values of the items in the subset.
- For each item, the seller has **prior knowledge** of a distribution from which the buyer's value for this item is drawn, **independently** of any other value.
- The seller can choose any selling **mechanism** / **auction** (as long as the buyer can both **opt out** and **strategize**...).
 - (The buyer would like to maximize her expected **utility** = value for bought items payment.)

- Complexity
- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Functior
- Duality
- Duality Gap
- Further Research

A Classic Question in Economics

- A single **seller** has *n* **items** that she would like to sell to a single **buyer**. The seller has no other use for the items.
 - E.g., a market for **digital goods**.
- The buyer has a private **value** (the maximum price she is willing to pay) for each item (need not be the same for all items).
- The buyer's value for any subset of the items is the **sum** of the values of the items in the subset.
- For each item, the seller has **prior knowledge** of a distribution from which the buyer's value for this item is drawn, **independently** of any other value.
- The seller can choose any selling **mechanism** / **auction** (as long as the buyer can both **opt out** and **strategize**...).
 - (The buyer would like to maximize her expected **utility** = value for bought items payment.)

A fundamental question in mechanism design: How can the seller maximize her (expected) revenue given the prior distribution over the buyer's values?

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

Earlier this Week, With Inbal: One Item

- A possible mechanism: choose a price, and offer the item for that price.
- The price that maximizes the revenue among all possible prices (the **monopoly price**) is

$$\operatorname{arg} \operatorname{Max}_{p} p \cdot \mathbb{P}_{v \sim F} [v \ge p].$$

• Other mechanisms are also possible (multiround, lottery tickets, etc.)

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

Earlier this Week, With Inbal: One Item

- A possible mechanism: choose a price, and offer the item for that price.
- The price that maximizes the revenue among all possible prices (the **monopoly price**) is

$$\operatorname{arg} \operatorname{Max}_{p} p \cdot \mathbb{P}_{v \sim F} [v \ge p].$$

• Other mechanisms are also possible (multiround, lottery tickets, etc.)

Theorem (Myerson, 1981; Riley and Zeckhauser, 1983)

In any single-item setting, no other mechanism can obtain higher revenue than posting the revenue-maximizing price.

Complexity

- Simplicity
- Menu Sizes
- Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

More than One Item: Complex!

How can the seller maximize the revenue from two items?

• Distributions independent, so optimally price each item separately!

Complexity

- Simplicity
- Menu Sizes
- Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

More than One Item: Complex!

How can the seller maximize the revenue from two items?

• Distributions independent, so optimally price each item separately?

Example

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

How can the seller maximize the revenue from two items?

• Distributions independent, so optimally price each item separately?

Example

If both item values are uniformly distributed in $\{\$1,\$2\}$:

• Pricing each item separately, seller obtains a revenue of \$1 for each item, for a total revenue of \$2.

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

How can the seller maximize the revenue from two items?

• Distributions independent, so optimally price each item separately?

Example

- Pricing each item separately, seller obtains a revenue of \$1 for each item, for a total revenue of \$2.
- Pricing only the bundle at \$3, seller obtains a revenue of $\$3 \cdot 0.75$

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

How can the seller maximize the revenue from two items?

• Distributions independent, so optimally price each item separately?

Example

- Pricing each item separately, seller obtains a revenue of \$1 for each item, for a total revenue of \$2.
- Pricing only the bundle at \$3, seller obtains a revenue of $3 \cdot 0.75 = 2.25 > 2!$

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

How can the seller maximize the revenue from two items?

• Distributions independent, so optimally price each item separately?

Example

- Pricing each item separately, seller obtains a revenue of \$1 for each item, for a total revenue of \$2.
- Pricing only the bundle at \$3, seller obtains a revenue of $3 \cdot 0.75 = 2.25 > 2!$
- So pricing each item separately does not always maximize revenue!

Model & Background	More than One It	em: Complex!
Complexity	How can the seller maxim	ze the revenue from two items?
Simplicity	• Distributions independe	ent, so optimally price each item separately? 🗶
Menu Sizes		
Communication		
Proof		
Utility Function		
Duality		
Duality Gap		
Further		
Research	Distribution	Unique Optimal Mechanism

 $\mathsf{Unif}\{1,2\} \times \mathsf{Unif}\{1,2\}$

Price the bundle (at \$3)

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

- Distributions independent, so optimally price each item separately? \bigstar
- Optimally price the bundle of both items!

Distribution	Unique Optimal Mechanism
$Unif\{1,2\} \times Unif\{1,2\}$	Price the bundle (at \$3)

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

- Distributions independent, so optimally price each item separately? $oldsymbol{\lambda}$
- Optimally price the bundle of both items? X

Distribution	Unique Optimal Mechanism
$Unif\{1,2\}\!\times\!Unif\{1,2\}$	Price the bundle (at \$3)
$Unif\{0,1\}\!\times\!Unif\{0,1\}$	Price each separately (\$1 each)

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

- Distributions independent, so optimally price each item separately? \bigstar
- Optimally price the bundle of both items? X
- Either price separately or bundle?

Distribution	Unique Optimal Mechanism
$Unif\{1,2\}\!\times\!Unif\{1,2\}$	Price the bundle (at \$3)
$Unif\{0,1\}\!\times\!Unif\{0,1\}$	Price each separately (\$1 each)

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

- Distributions independent, so optimally price each item separately? $oldsymbol{\lambda}$
- Optimally price the bundle of both items? X
- Either price separately or bundle? 🗶

Distribution	Unique Optimal Mechanism
${\sf Unif}\{1,2\}\!\times\!{\sf Unif}\{1,2\}$	Price the bundle (at \$3)
$Unif\{0,1\}\!\times\!Unif\{0,1\}$	Price each separately (\$1 each)
$Unif\{0,1,2\}\!\times\!Unif\{0,1,2\}$	Offer: one for $2 / both for 33$

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

- Distributions independent, so optimally price each item separately? X
- Optimally price the bundle of both items? X
- Either price separately or bundle? X
- Post a price for each item and a price for the bundle?

Distribution	Unique Optimal Mechanism
$Unif\{1,2\}\!\times\!Unif\{1,2\}$	Price the bundle (at \$3)
$Unif\{0,1\}\!\times\!Unif\{0,1\}$	Price each separately (\$1 each)
${\sf Unif}\{0,1,2\}\!\times\!{\sf Unif}\{0,1,2\}$	Offer: one for $2 / both for 3$

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

- Distributions independent, so optimally price each item separately? X
- Optimally price the bundle of both items? $oldsymbol{\lambda}$
- Either price separately or bundle? X
- Post a price for each item and a price for the bundle? X

Distribution	Unique Optimal Mechanism
$Unif\{1,2\}\!\times\!Unif\{1,2\}$	Price the bundle (at \$3)
$Unif\{0,1\}\!\times\!Unif\{0,1\}$	Price each separately (\$1 each)
$Unif\{0,1,2\}\!\times\!Unif\{0,1,2\}$	Offer: one for $2 / both for 33$
$Unif\{1,2\}\!\times\!Unif\{1,3\}$	Offers include lottery tickets (both for \$4 / for \$2.5: first w.p. 1, second w.p. 1/2) T'04.DDT'14

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

- Distributions independent, so optimally price each item separately? X
- Optimally price the bundle of both items? $oldsymbol{\lambda}$
- Either price separately or bundle? X
- Post a price for each item and a price for the bundle? X
- Choose between a few lotteries?

Distribution	Unique Optimal Mechanism
$Unif\{1,2\}\!\times\!Unif\{1,2\}$	Price the bundle (at \$3)
$Unif\{0,1\}\!\times\!Unif\{0,1\}$	Price each separately (\$1 each)
$Unif\{0,1,2\}\!\times\!Unif\{0,1,2\}$	Offer: one for $2 / \text{both for }3$
$Unif\{1,2\}\!\times\!Unif\{1,3\}$	Offers include lottery tickets (both for \$4 / for \$2.5: first w.p. 1, second w.p. 1/2) T'04,DDT'14

Complexity

- Simplicity
- Monu Sizo
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

- Distributions independent, so optimally price each item separately? X
- Optimally price the bundle of both items? $oldsymbol{\lambda}$
- Either price separately or bundle? X
- Post a price for each item and a price for the bundle? X
- Choose between a few lotteries? 🗶

Distribution	Unique Optimal Mechanism
$Unif\{1,2\}\!\times\!Unif\{1,2\}$	Price the bundle (at \$3)
$Unif\{0,1\}\!\times\!Unif\{0,1\}$	Price each separately (\$1 each)
$Unif\{0,1,2\}\!\times\!Unif\{0,1,2\}$	Offer: one for $2 / \text{both for }3$
$Unif\{1,2\}\!\times\!Unif\{1,3\}$	Offers include lottery tickets (both for \$4 / for \$2.5: first w.p. 1, second w.p. 1/2) T'04,DDT'14
$Beta\big(1,2\big)\timesBeta\big(1,2\big)$	Offer infinitely many lotteries DDT'13,DDT'15

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

More than One Item: Complex!

How can the seller maximize the revenue from two items?

- Distributions independent, so optimally price each item separately? \bigstar
- Optimally price the bundle of both items? $oldsymbol{\lambda}$
- Either price separately or bundle? X
- Post a price for each item and a price for the bundle? X
- Choose between a few lotteries? 🗶

Generally: analytic solution not known, structure not understood.

Distribution	Unique Optimal Mechanism
$Unif\{1,2\}\!\times\!Unif\{1,2\}$	Price the bundle (at \$3)
$Unif\{0,1\}\!\times\!Unif\{0,1\}$	Price each separately (\$1 each)
$Unif\{0,1,2\}\!\times\!Unif\{0,1,2\}$	Offer: one for $2 / both for 33$
$Unif\{1,2\}\!\times\!Unif\{1,3\}$	Offers include lottery tickets (both for \$4 / for \$2.5: first w.p. 1, second w.p. $1/2$) T'04,DDT'14
$Beta\big(1,2\big)\timesBeta\big(1,2\big)$	Offer infinitely many lotteries DDT'13,DDT'15

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

Not Merely Unaesthetic / Hard to Formally Analyze

- Cannot be computed in expected polynomial-time even for seemingly simple distributions (unless ZPP $\supseteq P^{\#P}$). DDT'14
 - Even some simple questions about optimal mechanisms are #P-hard to answer, even for such simple distributions. DDT'14
- Harder to represent to the buyer.
- Harder for the buyer to find/verify optimal strategy.

Complexity

- Simplicity
- Menu Sizes
- Communication
- Proof
- Utility Function
- Duality
- Duality Gap
- Further Research

Not Merely Unaesthetic / Hard to Formally Analyze

- Cannot be computed in expected polynomial-time even for seemingly simple distributions (unless ZPP $\supseteq P^{\#P}$). DDT'14
 - Even some simple questions about optimal mechanisms are #P-hard to answer, even for such simple distributions. DDT'14
- Harder to represent to the buyer.
- Harder for the buyer to find/verify optimal strategy.

So what revenue can we get using simpler mechanisms?

Model & Background Complexity Simplicity

Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

Simple Mechanisms: Limiting Complexity

Option 1: Qualitatively: disallow some "features":

- Allow only pricing separately.
 HN'12, HR'19
- Allow only "packaging".
 BILW'14, R'16
- Disallow lotteries.
 BNR'18

An "all or nothing" approach...

Model & Background Complexity Simplicity Menu Sizes

Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

Simple Mechanisms: Limiting Complexity

Option 1: Qualitatively: disallow some "features":

Allow only pricing separately. HN'12, HR'19
Allow only "packaging". Today with Konstantin BILW'14, R'16

BNR'18

Disallow lotteries.

An "all or nothing" approach...

Model & Background Complexity Simplicity Menu Sizes

Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

Simple Mechanisms: Limiting Complexity

Option 1: Qualitatively: disallow some "features":

- Allow only pricing separately.
 Allow only "packaging".
 Today with Konstantin
 BILW'14, R'16
- Disallow lotteries.
 BNR'18

An "all or nothing" approach...

Such studied features lose at least a constant fraction of the optimal revenue.

Model & Background Complexity Simplicity Menu Sizes Communicatio Proof Utility Function

uality

Further Research

Simple Mechanisms: Limiting Complexity

Option 1: Qualitatively: disallow some "features":

- Allow only pricing separately.
 Allow only "packaging".
 Today with Konstantin
 BILW'14, R'16
- Disallow lotteries.
 BNR'18

An "all or nothing" approach...

Such studied features lose at least a constant fraction of the optimal revenue.

Option 2: Quantitatively: limit a numeric complexity measure:

- Number of options presented to the buyer. HN'13
- The communication requirements of the mechanism.
- Learning-theoretic dimensionality.
 MR'15, MR'16, BSV'16, S'17, BSV'18
- A " " approach...

Model & Background Complexity Simplicity Menu Sizes Communicatio Proof Utility Function

Duality

Duality Gap

Further Research

Simple Mechanisms: Limiting Complexity

Option 1: Qualitatively: disallow some "features":

- Allow only pricing separately. HN'12, HR'19
 Allow only "packaging". Today with Konstantin BILW'14, R'16
- Disallow lotteries.
 BNR'18

An "all or nothing" approach...

Such studied features lose at least a constant fraction of the optimal revenue.

Option 2: Quantitatively: limit a numeric complexity measure:

- Number of options presented to the buyer. HN'13
- The communication requirements of the mechanism.
- Learning-theoretic dimensionality.
 MR'15, MR'16, BSV'16, S'17, BSV'18
- A " " approach...

Suitable for a systematic study of the trade-offs between simplicity and quality.

Model & Background Complexity Simplicity Menu Sizes Communicatio Proof Utility Function

Duality

Duality Gap

Further Research

Simple Mechanisms: Limiting Complexity

Option 1: Qualitatively: disallow some "features":

- Allow only pricing separately.
 Allow only "packaging".
 Today with Konstantin
 BILW'14, R'16
- Disallow lotteries.
 BNR'18

An "all or nothing" approach...

Such studied features lose at least a constant fraction of the optimal revenue.

Option 2: Quantitatively: limit a numeric complexity measure:

- Number of options presented to the buyer. HN'13
- The communication requirements of the mechanism.
- Learning-theoretic dimensionality.
 MR'15, MR'16, BSV'16, S'17, BSV'18
- A " " approach...

Suitable for a systematic study of the trade-offs between simplicity and quality. This lecture.

Simple Mechanisms: Limiting Complexity Option 1: Qualitatively: disallow some "features": Allow only pricing separately. HN'12, HR'19 Allow only "packaging". BILW'14, R'16 Today with Konstantin Disallow lotteries. BNR'18 An "all or nothing" approach... Such studied features lose at least a constant fraction of the optimal revenue. Option 2: Quantitatively: limit a numeric complexity measure: Number of options presented to the buyer. HN'13 • The communication requirements of the mechanism. Learning-theoretic dimensionality. MR'15, MR'16, BSV'16, S'17, BSV'18 Α" " approach... Later this morning Suitable for a systematic study of the trade-offs between simplicity and quality. This lecture.

Simplicity

Model & Background
Complexity
Simplicity
Menu Sizes
Communicatio
Proof

The Menu Size of a Selling Mechanism

Model & Background Complexity Simplicity Menu Sizes

Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

The Menu Size of a Selling Mechanism

Well known: every truthful selling mechanism, however complex, is equivalent to specifying a **menu** of possible probabilistic outcomes for the buyer to choose from.

Model & Background Complexity Simplicity Menu Sizes

The Menu Size of a Selling Mechanism

Well known: every truthful selling mechanism, however complex, is equivalent to specifying a **menu** of possible probabilistic outcomes for the buyer to choose from.

as a second second	Today's Specials
	P[Item 1] P[Item 2] Price
	0% 100% \$3
A A A A A A A A A A A A A A A A A A A	20% 30% \$4
Chez Seller Items • Bundles • Lotteries	40% 60% \$10 $\vdots \vdots \vdots$ 100% 100% \$20
	The Classic Choice
	- One entry per buyer -
During

Utility Functior

Duality

Duality Gap

Further Research

The Menu Size of a Selling Mechanism

Well known: every truthful selling mechanism, however complex, is equivalent to specifying a **menu** of possible probabilistic outcomes for the buyer to choose from.

The Menu Size of a Selling Mechanism

Well known: every truthful selling mechanism, however complex, is equivalent to specifying a **menu** of possible probabilistic outcomes for the buyer to choose from.

• The base-2 logarithm of the menu size is precisely the **deterministic** communication complexity of running the mechanism. BGN'21

Utility Functior

Duality

Duality Gap

Further Research

Up-to- ε Optimality with a Finite Menu Size?

Open Question (Hart and Nisan, 2014)

Is there a **finite** menu **size** $C(n, \varepsilon)$ that suffices for attaining a $(1-\varepsilon)$ fraction of the optimal revenue when selling *n* items drawn from any given distributions?

(The menu entries can depend on the distributions; the menu size cannot.)

$$\begin{pmatrix} \inf_{F_1,\ldots,F_n\in\Delta(\mathbb{R}_+)} \frac{\mathcal{R}ev_C(F_1\times\cdots\times F_n)}{\mathsf{OPT}(F_1\times\cdots\times F_n)} \end{pmatrix} \xrightarrow[C\to\infty]{??} 1$$

Utility Functior

Duality

Duality Gap

Further Research

Up-to- ε Optimality with a Finite Menu Size?

Open Question (Hart and Nisan, 2014)

Is there a **finite** menu **size** $C(n, \varepsilon)$ that suffices for attaining a $(1-\varepsilon)$ fraction of the optimal revenue when selling *n* items drawn from any given distributions?

(The menu entries can depend on the distributions; the menu size cannot.)

$$\begin{pmatrix} \inf_{F_1,\ldots,F_n\in\Delta(\mathbb{R}_+)} \frac{\mathcal{R}ev_C(F_1\times\cdots\times F_n)}{\mathsf{OPT}(F_1\times\cdots\times F_n)} \end{pmatrix} \xrightarrow[C\to\infty]{??} 1$$

• Proved some special cases.

Utility Functior

Duality

Duality Gap

Further Research

Up-to- ε Optimality with a Finite Menu Size?

Open Question (Hart and Nisan, 2014)

Is there a **finite** menu **size** $C(n, \varepsilon)$ that suffices for attaining a $(1-\varepsilon)$ fraction of the optimal revenue when selling *n* items drawn from any given distributions?

(The menu entries can depend on the distributions; the menu size cannot.)

$$\begin{pmatrix} \inf_{F_1,\ldots,F_n\in\Delta(\mathbb{R}_+)} \frac{\mathcal{R}ev_C(F_1\times\cdots\times F_n)}{\mathsf{OPT}(F_1\times\cdots\times F_n)} \end{pmatrix} \xrightarrow{???} 1$$

- Proved some special cases.
- Challenge: Hart and Nisan, 2013: For correlated distributions, no!

Utility Functior

Duality

Duality Gap

Further Research

Up-to- ε Optimality with a Finite Menu Size?

Open Question (Hart and Nisan, 2014)

Is there a **finite** menu **size** $C(n, \varepsilon)$ that suffices for attaining a $(1-\varepsilon)$ fraction of the optimal revenue when selling *n* items drawn from any given distributions?

(The menu entries can depend on the distributions; the menu size cannot.)

$$\left(\inf_{F_1,\ldots,F_n\in\Delta(\mathbb{R}_+)}\frac{\mathcal{R}ev_{\mathcal{C}}(F_1\times\cdots\times F_n)}{\mathsf{OPT}(F_1\times\cdots\times F_n)}\right) \xrightarrow[\mathcal{C}\to\infty]{} 1$$

- Proved some special cases.
- Challenge: Hart and Nisan, 2013: For correlated distributions, no!

Model & Background Complexity Simplicity

Menu Sizes

Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Menu Size for Up-to- ε Optimality

Theorem (Babaioff, G., Nisan, 2022)

For every $\varepsilon > 0$, there exists a finite menu size $C = C(n, \varepsilon)$ such that for every n valuation distributions, some mechanism with menu size at most C obtains at least a $(1-\varepsilon)$ fraction of the optimal revenue.

Proof

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Menu Size for Up-to- ε Optimality

Theorem (Babaioff, G., Nisan, 2022)

For every $\varepsilon > 0$, there exists a finite menu size $C = C(n, \varepsilon)$ such that for every n valuation distributions, some mechanism with menu size at most C obtains at least a $(1-\varepsilon)$ fraction of the optimal revenue.

> But what is the rate of (uniform) convergence? How fast must C grow as a function ε ?

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Menu Size for Up-to- ε Optimality

Theorem (Babaioff, G., Nisan, 2022)

For every $\varepsilon > 0$, there exists a finite menu size $C = C(n, \varepsilon)$ such that for every n valuation distributions, some mechanism with menu size at most C obtains at least a $(1-\varepsilon)$ fraction of the optimal revenue.

> But what is the rate of (uniform) convergence? How fast must C grow as a function ε ?

I.e., how good can low-complexity mechanisms be? How complex must high-revenue mechanisms be?

Utility

Duality

Duality Gap

Further Research

Quantifying the Menu Size for Up-to- ε Optimality

Theorem (Babaioff, G., Nisan, 2022)

For every $\varepsilon > 0$, there exists a finite menu size $C = C(n, \varepsilon)$ such that for every n valuation distributions, some mechanism with menu size at most C obtains at least a $(1-\varepsilon)$ fraction of the optimal revenue.

> But what is the rate of (uniform) convergence? How fast must C grow as a function ε ?

I.e., how good can low-complexity mechanisms be? How complex must high-revenue mechanisms be?

Theorem (BGN, 2022)

For any fixed number of items n, a menu size polyomial in $1/\varepsilon$ is sufficient.

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Menu Size for Up-to- ε Optimality

Theorem (Babaioff, G., Nisan, 2022)

For every $\varepsilon > 0$, there exists a finite menu size $C = C(n, \varepsilon)$ such that for every n valuation distributions, some mechanism with menu size at most C obtains at least a $(1-\varepsilon)$ fraction of the optimal revenue.

> But what is the rate of (uniform) convergence? How fast must C grow as a function ε ?

I.e., how good can low-complexity mechanisms be? How complex must high-revenue mechanisms be?

Theorem (BGN, 2022)

For any fixed number of items n, a menu size polyomial in $1/\varepsilon$ is sufficient.

Theorem (**G**, 2018)

For any fixed number of items n, a menu size polyomial in $1/\varepsilon$ is necessary.

Utility Function

Duality

Duality Gap

Further Research

Communication Complexity of Up-to- ε Optimality

• Recall that the logarithm of the menu size is precisely the deterministic communication complexity of running the mechanism. BGN'22

Utility Function

Duality

Duality Gap

Further Research

Communication Complexity of Up-to- ε Optimality

- Recall that the logarithm of the menu size is precisely the deterministic communication complexity of running the mechanism. BGN'22
- While there still is a gap between our polynomial lower & upper bounds, they together **tightly** resolve the communication complexity question:

Corollary (G., 2018)

For any fixed number of items n, the necessary and sufficient deterministic communication complexity of a mechanism for up-to- ε revenue maximization from any distribution is of the order of $\log 1/\varepsilon$.

Utility Function

Duality

Duality Gap

Further Research

Communication Complexity of Up-to- ε Optimality

- Recall that the logarithm of the menu size is precisely the deterministic communication complexity of running the mechanism. BGN'22
- While there still is a gap between our polynomial lower & upper bounds, they together **tightly** resolve the communication complexity question:

Corollary (G., 2018)

For any fixed number of items n, the necessary and sufficient deterministic communication complexity of a mechanism for up-to- ε revenue maximization from any distribution is of the order of $\log 1/\varepsilon$.

- Main takeaway: dichotomy between one item (complexity 1) and any other fixed number of items (complexity Θ(log 1/ε)).
 - No further qualitative jump for larger n.

Utility Function

Duality

Duality Gap

Further Research

Communication Complexity of Up-to- ε Optimality

- Recall that the logarithm of the menu size is precisely the deterministic communication complexity of running the mechanism. BGN'22
- While there still is a gap between our polynomial lower & upper bounds, they together **tightly** resolve the communication complexity question:

Corollary (G., 2018)

For any fixed number of items n, the necessary and sufficient deterministic communication complexity of a mechanism for up-to- ε revenue maximization from any distribution is of the order of $\log 1/\varepsilon$.

- Main takeaway: dichotomy between one item (complexity 1) and any other fixed number of items (complexity Θ(log 1/ε)).
 - No further qualitative jump for larger *n*.
 - Communication complexity characterization despite mechanisms still not understood.

Proof

Utility Function

Duality

Duality Gap

Further Research

Lower Bound via Duality

Lower bound proof already for two i.i.d. items, bounded, additive loss:

Theorem (G., 2018)

There exist $C(\varepsilon) = \Omega(1/\sqrt[4]{\varepsilon})$ and a distribution $F \in \Delta([0,1])$, such that for every $\varepsilon > 0$ it is the case that $\operatorname{Rev}_M(F \times F) < \operatorname{Rev}(F \times F) - \varepsilon$ for every mechanism M with menu-size at most $C(\varepsilon)$.

Proof

Utility Function

Duality

Duality Gap

Further Research

Lower Bound via Duality

Lower bound proof already for two i.i.d. items, bounded, additive loss:

Theorem (G., 2018)

There exist $C(\varepsilon) = \Omega(1/\sqrt[4]{\varepsilon})$ and a distribution $F \in \Delta([0,1])$, such that for every $\varepsilon > 0$ it is the case that $\operatorname{Rev}_M(F \times F) < \operatorname{Rev}(F \times F) - \varepsilon$ for every mechanism M with menu-size at most $C(\varepsilon)$.

• Let's prove this!

Proof

Utility Function

Duality

Duality Gap

Further Research

Lower Bound via Duality

• Lower bound proof already for two i.i.d. items, bounded, additive loss:

Theorem (**G.**, 2018)

There exist $C(\varepsilon) = \Omega(1/\sqrt[4]{\varepsilon})$ and a distribution $F \in \Delta([0,1])$, such that for every $\varepsilon > 0$ it is the case that $\operatorname{Rev}_M(F \times F) < \operatorname{Rev}(F \times F) - \varepsilon$ for every mechanism M with menu-size at most $C(\varepsilon)$.

- Let's prove this!
- Recall: Daskalakis, Deckelbaum, Tzamos (2013, 2015) prove that infinite menu-size required for precise revenue maximization with two items sampled i.i.d. from the Beta distribution F = Beta(1,2).

Proof

Utility Function

Duality

Duality Gap

Further Research

Lower Bound via Duality

• Lower bound proof already for two i.i.d. items, bounded, additive loss:

Theorem (**G.**, 2018)

There exist $C(\varepsilon) = \Omega(1/\sqrt[4]{\varepsilon})$ and a distribution $F \in \Delta([0,1])$, such that for every $\varepsilon > 0$ it is the case that $\operatorname{Rev}_M(F \times F) < \operatorname{Rev}(F \times F) - \varepsilon$ for every mechanism M with menu-size at most $C(\varepsilon)$.

- Let's prove this!
- Recall: Daskalakis, Deckelbaum, Tzamos (2013, 2015) prove that infinite menu-size required for precise revenue maximization with two items sampled i.i.d. from the Beta distribution F = Beta(1,2).
- They do so by identifying a (strong!) dual problem (an **optimal-transport** problem), identifying the optimal dual and primal solutions for this *F*, and showing that the optimal primal solution has infinite menu size.

Proof

Utility Function

Duality

Duality Gap

Further Research

Lower Bound via Duality

• Lower bound proof already for two i.i.d. items, bounded, additive loss:

Theorem (**G.**, 2018)

There exist $C(\varepsilon) = \Omega(1/\sqrt[4]{\varepsilon})$ and a distribution $F \in \Delta([0,1])$, such that for every $\varepsilon > 0$ it is the case that $\operatorname{Rev}_M(F \times F) < \operatorname{Rev}(F \times F) - \varepsilon$ for every mechanism M with menu-size at most $C(\varepsilon)$.

- Let's prove this!
- Recall: Daskalakis, Deckelbaum, Tzamos (2013, 2015) prove that infinite menu-size required for precise revenue maximization with two items sampled i.i.d. from the Beta distribution F = Beta(1,2).
- They do so by identifying a (strong!) dual problem (an **optimal-transport** problem), identifying the optimal dual and primal solutions for this *F*, and showing that the optimal primal solution has infinite menu size.
- We will start by reviewing their optimal-transport duality framework, and then see how to leverage it to reason about approximately optimal mechanisms.

A Mechanism as a Utility Function

Proof

Utility Function

Duality

Duality Gap

Further Research

A Mechanism as a Utility Function

Proof

Utility Function

Duality

Duality Gap

Further Research

A Mechanism as a Utility Function

Utility

Function

Duality

Duality Gap

Further Research

A Mechanism as a Utility Function

Proof

Utility Function

Duality

Duality Gap

Further Research

A Mechanism as a Utility Function

Proof

Utility Function

Duality

Duality Gap

Further Research

A Mechanism as a Utility Function

Proof

Utility Function

Duality

Duality Gap

Further Research

A Mechanism as a Utility Function

Proof

Utility Function

Duality

Duality Gap

Further Research

A Mechanism as a Utility Function

Proof

Utility Function

Duality

Duality Gap

Further Research

A Mechanism as a Utility Function

L I+ili+...

Function

Duality

Duality Gap

Further Research

A Mechanism as a Utility Function

• A single-item illustration:

Theorem (Rochet, 1987)

 $u(\cdot)$ is the utility function of some mechanism iff it is nonnegative, nondecreasing, convex, 1-Lipschitz (ℓ_1 norm).

1 1001

Utility Function

Duality

Duality Gap

Further Research

A Mechanism as a Utility Function

• A single-item illustration:

Theorem (Rochet, 1987)

 $u(\cdot)$ is the utility function of some mechanism iff it is nonnegative, nondecreasing, convex, 1-Lipschitz (ℓ_1 norm). For such $u(\cdot)$:

• At every valuation v, the allocation probabilities form a subgradient.

Proof

Utility Function

Duality

Duality Gap

Further Research

A Mechanism as a Utility Function

• A single-item illustration:

Theorem (Rochet, 1987)

 $u(\cdot)$ is the utility function of some mechanism iff it is nonnegative, nondecreasing, convex, 1-Lipschitz (ℓ_1 norm). For such $u(\cdot)$:

• At every valuation v, the allocation probabilities form a subgradient.

Proof

Utility Function

Duality

Duality Gap

Further Research

A Mechanism as a Utility Function

• A single-item illustration:

Theorem (Rochet, 1987)

 $u(\cdot)$ is the utility function of some mechanism iff it is nonnegative, nondecreasing, convex, 1-Lipschitz (ℓ_1 norm). For such $u(\cdot)$:

- At every valuation v, the allocation probabilities form a subgradient.
- ∇u(v) exists almost everywhere, and for every v for which it exists, a buyer with valuation v pays ∇u(v) · v − u(v).

Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

Massaging the Primal

 $\sup_{M:} \int \mathsf{payment}_M(v) d\bar{F}(v)$ mechanism

Model & Backgroun Complexity Simplicity

Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

Massaging the Primal

 $\sup_{M:} \int \mathsf{payment}_M(v) d\bar{F}(v) =$ mechanism

Model & Background Complexity Simplicity Menu Sizes Communicati Proof Utility Function

Duality

Massaging the Primal

 $\sup_{\substack{M:\\ \text{mechanism}}} \int \mathsf{payment}_M(v) d\bar{F}(v) =$

... through the analysis of Rochet ('87) from the last slide...
Duality

Duality Gap

Further Research

Massaging the Primal

 $\sup_{\substack{M:\\ \text{mechanism}}} \int \mathsf{payment}_M(v) d\bar{F}(v) =$

... through the analysis of Rochet ('87) from the last slide...

 $\sup_{u:} \int \left(\nabla u(v) \cdot v - u(v) \right) d\bar{F}(v)$ = nonnegative nondecreasing, convex, 1-Lipschitz (l1)

Function Duality

D 10 0

Further Research

Massaging the Primal

 $\sup_{\substack{M:\\ \text{mechanism}}} \int \mathsf{payment}_M(v) d\bar{F}(v) =$

... through the analysis of Rochet ('87) from the last slide...

 $\sup_{u:} \int \left(\nabla u(v) \cdot v - u(v) \right) d\bar{F}(v) =$ = nonnegative nondecreasing, convex, 1-Lipschitz (l1)

Massaging the Primal $\sup_{M:} \int \mathsf{payment}_M(v) d\bar{F}(v) =$... through the analysis of Rochet ('87) from the last slide... $\sup_{u:} \int \left(\nabla u(v) \cdot v - u(v) \right) d\bar{F}(v) =$ = Duality nonnegative nondecreasing. convex, 1-Lipschitz (l1)

... carefully applying (Daskalakis et al., '13,'15) the divergence theorem (think "high-dimensional integration by parts")...

Model &
Background
Complexity
Simplicity
Menu Sizes
Communication
Proof
Utility
Function
Duality
Duality Gap
Further
Research
$$\begin{array}{l} \sup_{\substack{M:\\mechanism}} \int payment_{M}(v)d\bar{F}(v) =\\ \dots through the analysis of Rochet ('87) from the last slide....\\ = \sup_{\substack{U:\\monnegative,\\nondecreasing,\\1-Lipschitz(\ell_1)}} \int (\nabla u(v) \cdot v - u(v)) d\bar{F}(v) =\\ \dots carefully applying (Daskalakis et al., '13,'15) the divergence theorem(think "high-dimensional integration by parts")....\\ = \sup_{\substack{U:\\monnegative,\\nondecreasing,\\1-Lipschitz(\ell_1)}} \int u(v)d\mu(v)$$

where μ is a **signed** Radon measure of total mass 0 on the valuation space that depends only on \overline{F} (and f, and ∇f)

Communicatio

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0)\geq 0,\\ convex,\\ u(v)-u(w)\leq |(v-w)_+|_1}} \int u d\mu \leq$$

Communicati

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

u()

$$\sup_{\substack{u(0) \geq 0, \\ convex, \\ \nu) - u(w) \leq |(v-w)_+|_1}} \int ud\mu \leq \inf_{\substack{\gamma: \\ coupling \text{ of } \mu_+, \mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v,w)$$

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0) \ge 0, \\ convex, \\ (v)-u(w) \le |(v-w)_+|_1}} \int ud\mu \leq \inf_{\substack{\gamma: \\ coupling \text{ of } \mu_+, \mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v, w)$$

Proof. For every feasible u, γ :

и

$$\int \mathit{ud}\mu = \int \mathit{ud}(\mu_+ - \mu_-)$$

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0) \ge 0, \\ convex, \\ (v)-u(w) \le |(v-w)_+|_1}} \int ud\mu \leq \inf_{\substack{\gamma: \\ coupling \text{ of } \mu_+, \mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v, w)$$

Proof. For every feasible u, γ :

и

$$\int \mathit{ud}\mu = \int \mathit{ud}(\mu_+ - \mu_-) =$$

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0) \ge 0, \\ convex, \\ (v)-u(w) \le |(v-w)_+|_1}} \int ud\mu \leq \inf_{\substack{\gamma: \\ coupling \text{ of } \mu_+, \mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v, w)$$

Proof. For every feasible u, γ :

и

$$\int \textit{ud}\,\mu = \int \textit{ud}(\mu_+ - \mu_-) =$$

 \ldots by feasibility of γ \ldots

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0) \geq 0, \\ convex, \\ (v)-u(w) \leq |(v-w)_+|_1}} \int ud\mu \leq \inf_{\substack{\gamma: \\ coupling \text{ of } \mu_+, \mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v, w)$$

Proof. For every feasible u, γ :

и

$$\int u d\mu = \int u d(\mu_{+} - \mu_{-}) =$$
... by feasibility of γ ... = $\int (u(v) - u(w)) d\gamma(v, w)$

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u:\\ (0)\geq 0,\\ convex,\\ u(v)-u(w)\leq |(v-w)_+|_1}} \int ud\mu \leq \inf_{\substack{\gamma:\\ coupling \text{ of } \mu_+,\mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v,w)$$

Proof. For every feasible u, γ :

$$\int u d\mu = \int u d(\mu_+ - \mu_-) =$$
... by feasibility of γ ... = $\int (u(v) - u(w)) d\gamma(v, w) \leq$

Proof

Utility Function

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0) \geq 0, \\ convex, \\ (v)-u(w) \leq |(v-w)_+|_1}} \int ud\mu \leq \inf_{\substack{\gamma: \\ coupling \text{ of } \mu_+, \mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v, w)$$

Proof. For every feasible u, γ :

и

$$\int u d\mu = \int u d(\mu_{+} - \mu_{-}) =$$
... by feasibility of γ ... = $\int (u(v) - u(w)) d\gamma(v, w) \leq$

... by feasibility of u...

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0) \geq 0, \\ convex, \\ (v)-u(w) \leq |(v-w)_+|_1}} \int ud\mu \leq \inf_{\substack{\gamma: \\ coupling \text{ of } \mu_+, \mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v, w)$$

Proof. For every feasible u, γ :

и

$$\int u d\mu = \int u d(\mu_{+} - \mu_{-}) =$$
... by feasibility of γ ... = $\int (u(v) - u(w)) d\gamma(v, w) \leq$
... by feasibility of u ... $\leq \int |(v - w)_{+}|_{1} d\gamma(v, w)$

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0) \geq 0, \\ convex, \\ u(v) - u(w) \leq |(v-w)_+|_1}} \int u d\mu \leq \inf_{\substack{\gamma: \\ coupling \text{ of } \mu_+, \mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v, w)$$

Proof. For every feasible u, γ :

$$\int u d\mu = \int u d(\mu_{+} - \mu_{-}) =$$
... by feasibility of γ ... = $\int (u(v) - u(w)) d\gamma(v, w) \leq$
... by feasibility of u ... $\leq \int |(v - w)_{+}|_{1} d\gamma(v, w)$

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0)\geq 0,\\convex,\\(v)-u(w)\leq |(v-w)_+|_1}}\int ud\mu \leq \inf_{\substack{\gamma:\\coupling \text{ of } \mu_+,\mu_-}}\int \left|(v-w)_+\right|_1 d\gamma(v,w)$$

Proof. For every feasible u, γ :

и

$$\int u d\mu = \int u d(\mu_{+} - \mu_{-}) =$$
... by feasibility of γ ... = $\int (u(v) - u(w)) d\gamma(v, w) \leq$
... by feasibility of u ... $\leq \int |(v - w)_{+}|_{1} d\gamma(v, w)$

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0)\geq 0,\\convex,\\v)-u(w)\leq |(v-w)_+|_1}} \int ud\mu \leq \inf_{\substack{\gamma:\\coupling of \ \mu_+,\mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v,w)$$

Proof. For every feasible u, γ :

и(

Complementary slackness: For equality, $\gamma(v, w)$ -a.e.:

$$\int u d\mu = \int u d(\mu_{+} - \mu_{-}) =$$

$$\dots \text{ by feasibility of } \gamma \dots = \int (u(v) - u(w)) d\gamma(v, w) \leq 1$$

$$\dots \text{ by feasibility of } u \dots \leq \int |(v - w)_{+}|_{1} d\gamma(v, w)$$

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0) \geq 0, \\ convex, \\ v)-u(w) \leq |(v-w)_+|_1}} \int ud\mu \leq \inf_{coupling of \ \mu_+,\mu_-} \int \left| (v-w)_+ \right|_1 d\gamma(v,w)$$

Proof. For every feasible u, γ :

и(

Complementary slackness: For equality, $\gamma(v, w)$ -a.e.: $v_i < w_i \Rightarrow \nabla u_i = 0$ along segment

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0) \geq 0, \\ convex, \\ v)-u(w) \leq |(v-w)_+|_1}} \int ud\mu \leq \inf_{\substack{\gamma: \\ coupling of \ \mu_+,\mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v,w)$$

Proof. For every feasible u, γ :

и(

$$\int ud\mu = \int ud(\mu_{+} - \mu_{-}) = \begin{cases} v_{i} < w_{i} \Rightarrow \nabla u_{i} = 0 \text{ along segment} \\ v_{i} > w_{i} \Rightarrow \nabla u_{i} = 1 \text{ along segment} \end{cases}$$

$$\downarrow$$

$$\ldots \text{ by feasibility of } \gamma \ldots = \int \left(u(v) - u(w) \right) d\gamma(v, w)^{|\leq|}$$

$$\ldots \text{ by feasibility of } u \ldots \leq \int \left| (v - w)_{+} \right|_{1} d\gamma(v, w) \qquad \square$$

Complementary slackness:

For equality, $\gamma(v, w)$ -a.e.:

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0) \geq 0, \\ convex, \\ v) - u(w) \leq |(v-w)_+|_1}} \int ud\mu \leq \inf_{\substack{\gamma: \\ coupling of \ \mu_+, \mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v, w)$$

Proof. For every feasible u, γ :

и(

$$\int u d\mu = \int u d(\mu_{+} - \mu_{-}) = \bigvee_{i < w_{i} \Rightarrow \nabla u_{i} = 0 \text{ along segment}} \bigvee_{i < w_{i} \Rightarrow \nabla u_{i} = 0 \text{ along segment}} \\ \dots \text{ by feasibility of } \gamma \dots = \int \left(u(v) - u(w) \right) d\gamma(v, w) \stackrel{[\leq]}{\leq} \\ \dots \text{ by feasibility of } u \dots \leq \int \left| (v - w)_{+} \right|_{1} d\gamma(v, w) \qquad \square$$

Complementary slackness:

For equality $\gamma(v, w)$ -a e

Proof

Utility Functior

Duality

Duality Gap

Further Research

A Dual (Daskalakis et al., '13,'15)

Theorem (Daskalakis et al., '13)

$$\sup_{\substack{u(0) \geq 0, \\ convex, \\ v) - u(w) \leq |(v-w)_+|_1}} \int ud\mu \leq \inf_{\substack{\gamma: \\ coupling of \ \mu_+, \mu_-}} \int \left| (v-w)_+ \right|_1 d\gamma(v, w)$$

Proof. For every feasible u, γ :

и(

$$\int ud\mu = \int ud(\mu_{+} - \mu_{-}) = \bigvee_{i}^{i} \langle w_{i} \Rightarrow \nabla u_{i} = 0 \text{ along segment}$$

$$(v_{i} < w_{i} \Rightarrow \nabla u_{i} = 0 \text{ along segment}$$

$$(v_{i} > w_{i} \Rightarrow \nabla u_{i} = 1 \text{ along segment}$$

$$(v_{i} > w_{i} \Rightarrow \nabla u_{i} = 1 \text{ along segment}$$

$$(v_{i} > w_{i} \Rightarrow \nabla u_{i} = 1 \text{ along segment}$$

$$(v_{i} > w_{i} \Rightarrow \nabla u_{i} = 1 \text{ along segment}$$

$$(v_{i} > w_{i} \Rightarrow \nabla u_{i} = 1 \text{ along segment}$$

$$(v_{i} > w_{i} \Rightarrow \nabla u_{i} = 1 \text{ along segment}$$

$$(v_{i} > w_{i} \Rightarrow \nabla u_{i} = 1 \text{ along segment}$$

$$(v_{i} > w_{i} \Rightarrow \nabla u_{i} = 1 \text{ along segment}$$

Complementary slackness:

For equality, $\gamma(v, w)$ -a.e.:

Daskalakis et al. then identified u, γ with equality for $(\mu \text{ of})$ $\bar{F} = \text{Beta}(1, 2) \times \text{Beta}(1, 2)$. **G.** '18: lower-bound loss for μ with small menu size and optimal γ Model & Background Complexity Simplicity Menu Sizes Communicatio Proof Utility Function Duality Duality Gap

Further Research

Wedging a Gap from the Optimal Dual

Model & Background Complexity Simplicity Menu Sizes Communication Proof Utility Function Duality Duality Gap

Further Research

Wedging a Gap from the Optimal Dual

Model & Background Complexity Simplicity Menu Sizes Communicatio Proof Utility Function Duality Duality Gap

Further

Wedging a Gap from the Optimal Dual

Model & Background Complexity Simplicity Menu Sizes Communicatio Proof Utility Function Duality

Duality Gap

Wedging a Gap from the Optimal Dual

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 15 / 21

Model & Background Complexity Simplicity Menu Sizes Communicat Proof Utility Function

Duality Gap

Wedging a Gap from the Optimal Dual

- Utility Functior
- Duality
- Duality Gap

Further Research

Wedging a Gap from the Optimal Dual

- DDT: optimal dual(&primal) for two items i.i.d. Beta(1,2).
- Complementary slackness:

Proof

Utility Functior

Duality

Duality Gap

Further Research

Wedging a Gap from the Optimal Dual

- DDT: optimal dual(&primal) for two items i.i.d. Beta(1,2).
- Complementary slackness:

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 15 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 15 / 21

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

Model & Background Complexity Simplicity

e . . .

Proof

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

Model & Background Complexity Simplicity

Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

Model & Background Complexity Simplicity

Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

Communication

Proof

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

 Quantifiable Ω(δ²) loss from each x-axis coordinate at which the piecewise-linear curve and the optimal curve are off by ≥ δ.

• Loss weighting "uniform enough" s.t. it suffices to show a constant measure of x-axis coordinates with distance $\geq \delta$.

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

- Loss weighting "uniform enough" s.t. it suffices to show a constant measure of x-axis coordinates with distance ≥ δ.
- For circular opt.:

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

- Loss weighting "uniform enough" s.t. it suffices to show a constant measure of x-axis coordinates with distance ≥ δ.
- For circular opt.:

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

- Loss weighting "uniform enough" s.t. it suffices to show a constant measure of x-axis coordinates with distance $\geq \delta$.
- For circular opt.:

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

 Quantifiable Ω(δ²) loss from each x-axis coordinate at which the piecewise-linear curve and the optimal curve are off by ≥ δ.

- Loss weighting "uniform enough" s.t. it suffices to show a constant measure of x-axis coordinates with distance ≥ δ.
- For circular opt.:

• Maximal "close" measure in one linear piece: circle chord of sagitta 2δ .

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

 Quantifiable Ω(δ²) loss from each x-axis coordinate at which the piecewise-linear curve and the optimal curve are off by ≥ δ.

- Loss weighting "uniform enough" s.t. it suffices to show a constant measure of x-axis coordinates with distance ≥ δ.
- For circular opt.:

• Maximal "close" measure in one linear piece: circle chord of sagitta 2δ .

Proof

Utility Function

Duality

Duality Gap

Further Research

Quantifying the Gap from the Optimal Dual

- Loss weighting "uniform enough" s.t. it suffices to show a constant measure of x-axis coordinates with distance ≥ δ.
- For circular opt.:

- Maximal "close" measure in one linear piece: circle chord of sagitta 2δ.
- Conclude: #pieces \leq menu size; radius of curvature \leq fixed r.

Model & Background
Complexity
Simplicity
Menu Sizes
Communicatio
Proof
Utility Function
Duality
Duality Gap

Menu Size Scalability as Market Grows

Model & Background	Menu Size Scalability as Market Grows		
Complexity	1		
Simplicity			
Menu Sizes			
Communication			
Proof			
Utility Function	ē		
Duality	าน		
Duality Gap	N.		
Further Research	Re		
		· · · · · · · · · · · · · · · · · · ·	

Menu Size

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 17 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 17 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 17 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 17 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 17 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 17 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 17 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 17 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 17 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 17 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 17 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 17 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 18 / 21

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 19 / 21

Proof

Utility Function

Duality

Duality Gap

Further Research

An Open Problem

• Main open problem: 99% of revenue via poly(n) menu-size, even for i.i.d. items, even for bounded distributions.

Utility Function

Duality

Duality Gap

Further Research

An Open Problem

- Main open problem: 99% of revenue via poly(n) menu-size, even for i.i.d. items, even for bounded distributions.
- The state-of-the-art literature seems to be a long way from identifying very-high-dimensional optimal mechanisms, and especially from identifying their duals (cf. GK'14).

Decilies

Duality Gap

Further Research

An Open Problem

- Main open problem: 99% of revenue via poly(n) menu-size, even for i.i.d. items, even for bounded distributions.
- The state-of-the-art literature seems to be a long way from identifying very-high-dimensional optimal mechanisms, and especially from identifying their duals (cf. GK'14).
- One may hope that with time, it may be possible to do so.

Model & Background Complexity Simplicity Menu Sizes Communicat Proof Utility Euroci

Duality

Duality Gap

Further Research

An Open Problem

- Main open problem: 99% of revenue via poly(n) menu-size, even for i.i.d. items, even for bounded distributions.
- The state-of-the-art literature seems to be a long way from identifying very-high-dimensional optimal mechanisms, and especially from identifying their duals (cf. GK'14).
- One may hope that with time, it may be possible to do so.
- Plausibly, if one could generate high-dimensional optimal mechanisms (and corresponding duals) for which the high-dimensional analogue of the discussed strictly concave curve has large-enough measure (while maintaining a small-enough radius of curvature, etc.), then a proof similar to the above may be used to show that an exponential dependence on n is indeed required for sufficiently small, yet fixed, ε.

Model & Background
Complexity
Simplicity
Menu Sizes
Communicat
Proof

Utility Function

Duality

Duality Gap

Further Research

Questions?

"Lots of choice, isn't there!"