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A Classic Question in Economics

• A single seller has n items that she would like to sell to a single buyer.
The seller has no other use for the items.

• E.g., a market for digital goods.

• The buyer has a private value (the maximum price she is willing to pay)
for each item (need not be the same for all items).

• The buyer’s value for any subset of the items is the sum of the values of
the items in the subset.

• For each item, the seller has prior knowledge of a distribution from
which the buyer’s value for this item is drawn, independently of any
other value.

• The seller can choose any selling mechanism / auction
(as long as the buyer can both opt out and strategize. . . ).

• (The buyer would like to maximize her expected
utility = value for bought items − payment.)

A fundamental question in mechanism design:
How can the seller maximize her (expected) revenue
given the prior distribution over the buyer’s values?
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Earlier this Week, With Inbal: One Item

• A possible mechanism: choose a price, and offer the item for that price.

• The price that maximizes the revenue among all possible prices (the
monopoly price) is

argMaxp p · Pv∼F

[
v≥p

]
.

• Other mechanisms are also possible (multiround, lottery tickets, etc.)

Theorem (Myerson, 1981; Riley and Zeckhauser, 1983)

In any single-item setting, no other mechanism can obtain higher revenue
than posting the revenue-maximizing price.
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More than One Item: Complex!
How can the seller maximize the revenue from two items?

• Distributions independent, so optimally price each item separately!

?

• Optimally price the bundle of both items

?

• Either price separately or bundle?

• Post a price for each item and a price for the bundle?

• Choose between a few lotteries?

Generally: analytic solution not known, structure not understood.

Distribution Unique Optimal Mechanism

Unif{1, 2}×Unif{1, 2} Price the bundle (at $3)

Unif{0, 1}×Unif{0, 1} Price each separately ($1 each)

Unif{0, 1, 2}×Unif{0, 1, 2} Offer: one for $2 / both for $3

Unif{1, 2}×Unif{1, 3}
Offers include lottery tickets
(both for $4 / for $2.5: first w.p. 1, second w.p. 1/2)

T’04,DDT’14

Beta
(
1, 2
)
× Beta

(
1, 2
) Offer infinitely many lotteries

DDT’13,DDT’15
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Example

If both item values are uniformly distributed in {$1, $2}:

• Pricing each item separately, seller obtains a revenue of $1 for
each item, for a total revenue of $2.

• Pricing only the bundle at $3, seller obtains a revenue of
$3 · 0.75

= 2.25 > 2!

• So pricing each item separately does not always maximize
revenue!
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More than One Item: Complex!
How can the seller maximize the revenue from two items?

• Distributions independent, so optimally price each item separately?
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Not Merely Unaesthetic / Hard to Formally Analyze

• Cannot be computed in expected polynomial-time even for seemingly
simple distributions (unless ZPP ⊇ P#P). DDT’14

• Even some simple questions about optimal mechanisms are
#P-hard to answer, even for such simple distributions. DDT’14

• Harder to represent to the buyer.

• Harder for the buyer to find/verify optimal strategy.

So what revenue can we get using simpler mechanisms?

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 5 / 21



Model &
Background

Complexity

Simplicity

Menu Sizes

Communication

Proof

Utility
Function

Duality

Duality Gap

Further
Research

Not Merely Unaesthetic / Hard to Formally Analyze

• Cannot be computed in expected polynomial-time even for seemingly
simple distributions (unless ZPP ⊇ P#P). DDT’14

• Even some simple questions about optimal mechanisms are
#P-hard to answer, even for such simple distributions. DDT’14

• Harder to represent to the buyer.

• Harder for the buyer to find/verify optimal strategy.

So what revenue can we get using simpler mechanisms?

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 5 / 21



Model &
Background

Complexity

Simplicity

Menu Sizes

Communication

Proof

Utility
Function

Duality

Duality Gap

Further
Research

Simple Mechanisms: Limiting Complexity

Option 1: Qualitatively: disallow some “features”:

• Allow only pricing separately. HN’12, HR’19

• Allow only “packaging”. BILW’14, R’16

• Disallow lotteries. BNR’18

An “all or nothing” approach. . .

Today with Konstantin

Such studied features lose at least a constant fraction of the optimal revenue.

Option 2: Quantitatively: limit a numeric complexity measure:

• Number of options presented to the buyer. HN’13

• The communication requirements of the mechanism.

• Learning-theoretic dimensionality. MR’15, MR’16, BSV’16, S’17, BSV’18

A “ ” approach. . .

Suitable for a systematic study of the trade-offs between simplicity and quality.

This lecture.

Later this morning
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Further
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The Menu Size of a Selling Mechanism

Well known: every truthful selling mechanism, however complex, is
equivalent to specifying a menu of possible probabilistic outcomes for the
buyer to choose from.

Chez Seller
Items • Bundles • Lotteries

Today’s Specials

P[Item 1] P[Item 2] Price

0% 100% $3
20% 30% $4
40% 60% $10
.
.
.

.

.

.

.

.

.

100% 100% $20

The Classic Choice

0% 0% $0

— One entry per buyer —

Menu Size
HN’13

see also BCKW’10,
D’11, DV’11, DV’12

• The base-2 logarithm of the menu size is precisely the deterministic
communication complexity of running the mechanism. BGN’21
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Up-to-ε Optimality with a Finite Menu Size?

Open Question (Hart and Nisan, 2014)

Is there a finite menu size C(n, ε) that suffices for attaining
a (1−ε) fraction of the optimal revenue when selling n items
drawn from any given distributions?

(The menu entries can depend on the distributions; the menu size cannot.)

(
inf

F1,...,Fn∈∆(R+)

RevC (F1 × · · · × Fn)

OPT(F1 × · · · × Fn)

)
???−−−−−−→
C→∞

1

• Proved some special cases.

• Challenge: Hart and Nisan, 2013: For correlated distributions, no!
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Quantifying the Menu Size for Up-to-ε Optimality

Theorem (Babaioff, G., Nisan, 2022)
For every ε > 0, there exists a finite menu size C = C(n, ε) such that
for every n valuation distributions, some mechanism with menu size at most
C obtains at least a (1−ε) fraction of the optimal revenue.

But what is the rate of (uniform) convergence?

How fast must C grow as a function ε?

I.e., how good can low-complexity mechanisms be?

How complex must high-revenue mechanisms be?

Theorem (BGN, 2022)
For any fixed number of items n, a
menu size polyomial in 1/ε is sufficient.

Theorem (G, 2018)
For any fixed number of items n, a
menu size polyomial in 1/ε is necessary.

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Complexity, Simplicity, Menus, Communication Jun 22, 2023 9 / 21
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Communication Complexity of Up-to-ε Optimality

• Recall that the logarithm of the menu size is precisely the deterministic
communication complexity of running the mechanism. BGN’22

• While there still is a gap between our polynomial lower & upper bounds,
they together tightly resolve the communication complexity question:

Corollary (G., 2018)
For any fixed number of items n, the necessary and sufficient deterministic
communication complexity of a mechanism for up-to-ε revenue maximization
from any distribution is of the order of log 1/ε.

• Main takeaway: dichotomy between one item (complexity 1) and
any other fixed number of items (complexity Θ(log 1/ε)).

• No further qualitative jump for larger n.

• Communication complexity characterization despite mechanisms still not
understood.
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• Main takeaway: dichotomy between one item (complexity 1) and
any other fixed number of items (complexity Θ(log 1/ε)).

• No further qualitative jump for larger n.

• Communication complexity characterization despite mechanisms still not
understood.
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Lower Bound via Duality

• Lower bound proof already for two i.i.d. items, bounded, additive loss:

Theorem (G., 2018)

There exist C(ε) = Ω(1/ 4√ε) and a distribution F ∈ ∆
(
[0, 1]

)
, such that

for every ε > 0 it is the case that RevM(F×F ) < Rev(F×F )− ε
for every mechanism M with menu-size at most C(ε).

• Let’s prove this!

• Recall: Daskalakis, Deckelbaum, Tzamos (2013, 2015) prove that infinite
menu-size required for precise revenue maximization with two items
sampled i.i.d. from the Beta distribution F = Beta(1, 2).

• They do so by identifying a (strong!) dual problem (an optimal-transport
problem), identifying the optimal dual and primal solutions for this F ,
and showing that the optimal primal solution has infinite menu size.

• We will start by reviewing their optimal-transport duality framework, and
then see how to leverage it to reason about approximately optimal
mechanisms.
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A Mechanism as a Utility Function
• A single-item illustration:

1

−1

0

1 P[Item 1] = 25%, E[Price] = ¢10

v

u
(v
)

Theorem (Rochet, 1987)

u(·) is the utility function of some mechanism iff it is
nonnegative, nondecreasing, convex, 1-Lipschitz (ℓ1 norm).

For such u(·):
• At every valuation v , the allocation probabilities form a subgradient.

• ∇u(v) exists almost everywhere, and for every v for which it exists,
a buyer with valuation v pays ∇u(v) · v − u(v).
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Massaging the Primal

sup
M:

mechanism

∫
paymentM(v)dF̄ (v)

=

. . . through the analysis of Rochet (’87) from the last slide. . .

= sup
u:

nonnegative,
nondecreasing,

convex,
1-Lipschitz (ℓ1)

∫ (
∇u(v) · v − u(v)

)
dF̄ (v) =

. . . carefully applying (Daskalakis et al., ’13,’15) the divergence theorem
(think “high-dimensional integration by parts”). . .

= sup
u:···

∫
u(v)dµ(v)

where µ is a signed Radon measure of total mass 0 on the valuation space
that depends only on F̄ (and f , and ∇f )
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. . . carefully applying (Daskalakis et al., ’13,’15) the divergence theorem
(think “high-dimensional integration by parts”). . .

= sup
u:···

∫
u(v)dµ(v)

where µ is a signed Radon measure of total mass 0 on the valuation space
that depends only on F̄ (and f , and ∇f )
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A Dual (Daskalakis et al., ’13,’15)

Theorem (Daskalakis et al., ’13)

sup
u:

u(0)≥0,
convex,

u(v)−u(w)≤|(v−w)+|1

∫
udµ ≤

inf
γ:

coupling of µ+,µ−

∫ ∣∣∣(v − w)+
∣∣∣
1
dγ(v ,w)

Proof. For every feasible u, γ:

∫
udµ =

∫
ud(µ+ − µ−)

=

. . . by feasibility of γ. . . =

∫ (
u(v)− u(w)

)
dγ(v ,w)≤

. . . by feasibility of u. . . ≤
∫ ∣∣∣(v − w)+

∣∣∣
1
dγ(v ,w)

Daskalakis et al. then identified u,γ with equality for (µ of)
F̄ =Beta(1, 2)×Beta(1, 2).
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For equality, γ(v ,w)-a.e.:

vi < wi ⇒ ∇ui = 0 along segment
vi > wi ⇒ ∇ui = 1 along segment
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G.’18: lower-bound loss
for u with small menu size and optimal γ
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Wedging a Gap from the Optimal Dual

• DDT: optimal dual(&primal) for two items i.i.d. Beta(1, 2).

• Complementary slackness:

• Down: award Item 2 w.p. 1.
• Up: award Item 2 w.p. 0.
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• Strictly concave ⇒
infinite menu size.

• Finite menu size ⇒
piecewise-linear.

• Complementary
slackness violated.

• #pieces ≤ menu size.

• Quantify loss!
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• Quantifiable Ω(δ2) loss from each x-axis coordinate at which the

piecewise-linear curve and the optimal curve are off by ≥ δ.

• Loss weighting “uniform enough” s.t. it suffices to show a constant
measure of x-axis coordinates with distance ≥ δ.
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An Open Problem

• Main open problem: 99% of revenue via poly(n) menu-size, even for
i.i.d. items, even for bounded distributions.

• The state-of-the-art literature seems to be a long way from identifying
very-high-dimensional optimal mechanisms, and especially from
identifying their duals (cf. GK’14).

• One may hope that with time, it may be possible to do so.

• Plausibly, if one could generate high-dimensional optimal mechanisms
(and corresponding duals) for which the high-dimensional analogue of
the discussed strictly concave curve has large-enough measure (while
maintaining a small-enough radius of curvature, etc.), then a proof
similar to the above may be used to show that an exponential
dependence on n is indeed required for sufficiently small, yet fixed, ε.
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