
Model &
Background

Parametric
Learning

Nonparametric
Learning

Proof
Overview

Conclusion

Multi-Item Mechanisms:
Revenue Maximization from Samples

Yannai A. Gonczarowski

Harvard

SLMath (MSRI) Summer School
June 22–23, 2023

Based upon (but all typos are my own):

Learning Simple Auctions, Jamie Morgenstern and Tim Roughgarden, 2016

The Sample Complexity of Up-to-ε Multi-Dimensional Revenue Maximization,
Y.A.G. and S. Matthew Weinberg, 2021

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Revenue Maximization from Samples Jun 22–23, 2023 1 / 18



Model &
Background

Parametric
Learning

Nonparametric
Learning

Proof
Overview

Conclusion

Revenue Maximization with Samples as Input

• With the advent of internet-scale marketplaces, from
Google/Bing/Facebook ad auctions through Amazon,
now is a time for microeconomic theory to shine brightly!

• E.g., ad auctions: literature tells us how to maximize revenue (in some
settings), if we fully know the market distribution.

• Even Google/Facebook/. . . , even with lots of past data and structural
econ/io, do not know the market distribution, but at best only see many
samples from it.

• Can a seller make do with an (internet-scale but) reasonable amount
of samples?

• Turn to statistical/machine learning for modeling inspiration.

• Sample complexity: the number of samples required for learning a
“good enough” auction.

• CS: “polynomially” = many vs. “exponentially” = too many
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Setting
• Standard setup: one seller, n items for sale, m (potential) buyers.

• Buyer i ’s valuation for item j is independently drawn from some
distribution Vij supported on [0,H].

• Each buyer’s valuation is additive across items.

• Seller wishes to find an auction mechanism that would yield good
revenue in expectation over×i,j

Vij .

• Individually Rational (IR):

∀i , ∀valuations vi1, . . . , vim, if i bids vi , then : vi (outcome)−paymenti ≥ 0.

• Bayesian Incentive Compatible (BIC):

∀i , vi , v ′
i : Ev−i∼V−i

[vi (outcome)− paymenti | i bids vi ] ≥
Ev−i∼V−i

[
vi (outcome)− paymenti | i bids v ′

i

]
.

Two standard settings:

• Bayesian revenue maximization: seller has complete knowledge of×Vij .

• Revenue maximization from samples: seller has access to polynomially
many samples from×Vij . (“PAC learning-like.”)

• Benchmark remains the optimal auction given×Vij .
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Bayesian Auction (Mechanism) Design

• The seller is given
a distribution from which the buyers’ types (item valuations)
are drawn, but does not know
the realizations.

• The goal: find a truthful auction that maximizes the
revenue of the seller, in expectation over this
distribution.
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Empirical
Bayesıan Auction (Mechanism) Design

• The seller is given polynomially many samples from
a distribution from which the buyers’ types (item valuations)
are drawn, but does not know the distribution or
the realizations.

• The goal: find a truthful auction that maximizes* the
revenue of the seller, in expectation over this (unknown)
distribution.
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The Challenge in Empirical Auction Design

• Single-item Bayesian optimization is completely solved. (Myerson 1981)

• The näıve approach (at least when there is just one item): perform
Bayesian optimization with respect to the empirical distribution over the
samples.

• The potential problem: overfitting. A mechanism tailored for a slightly
noisy version of the true underlying distribution can conceivably perform
very poorly on the true distribution.
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Learning-Theoretic Dimensionality

Theorem (Morgenstern and Roughgarden, 2016)

The pseudodimension of the set of all separate-item-pricing
mechanisms (when viewed as functions from valuations to
revenue) is O(n log n).

• Babaioff, Immorlica, Lucier, and Weinberg (2014) prove
that the better of optimal separate item pricing and optimal
bundle pricing attains at least a 1/6 fraction of the optimal
revenue. Therefore, the above theorem guarantees that
poly(n,H, log 1/δ) samples suffice for learning an up-to-1/7
optimal mechanism with probability 1− δ.

• Fix samples (v (1), . . . , v (s)) and fix thresholds t1, . . . , ts .
How big can we make s while keeping (v (1), . . . , v (s))
shatterable?
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Bounding the Pseudodimension
• Fix some item i , gradually increase pi from 0 to ∞. Keep track of

at which samples item i gets sold (1) or doesn’t get sold (0)

, e.g.
(1, 1, 1, 1) → (1, 1, 0, 1) → (1, 0, 0, 1) → (0, 0, 0, 1) → (0, 0, 0, 0).

• At most s + 1 such “sold/unsold labelings” for item i ⇒ at most
(s+1)n “which item(s) are sold/unsold labelings” altogether.

• For a fixed “which item(s) are sold/unsold labeling” with
sold/unsold labels (ℓ1i , . . . , ℓ

s
i ) for each item i , the revenue from

sample (valuations) v (k), for prices so labeled, is
∑n

i=1 ℓ
k
i pi .

• Linear function of the prices (for each fixed “which item(s) are
sold/unsold labeling”) ⇒ pseudodimension n+1.
⇒ Even if all prices were so labeled, by the Perles–Sauer–Shelah
Lemma, the overall number of distinct “which sample(s) have
high/low revenue labelings” would be at most sn+1.

• Overall number of distinct “which sample(s) have high/low revenue
labelings” is at most (s+1)n · sn+1.

• (v (1), . . . , v (s)) shatterable ⇒ 2s ≤ (s+1)n ·sn+1 ⇒ s = O(n log n).

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Revenue Maximization from Samples Jun 22–23, 2023 8 / 18
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From Bayesian Design to Empirical Design

• Revenue maximization from samples ubiquitously seen as the “next step”
beyond Bayesian revenue maximization:

1 Understand the structure of good-revenue auctions.
2 Low-dimensional set of good auctions ⇒ no overfitting.

Bayesian From Samples

Single-Item
(and more generally,
single-parameter)

Exact revenue maximization:

Myerson’81

Up-to-ε:

CR’14, MR’15,
DHP’16, HT’16,
RS’16, GN’17

Multi-Item (and
more generally,
multi-parameter)

Some percentage:

CHK’07, CHMS’10, CMS’15,
HN’12, BILW’14, RW’15, Yao’15,
CDW’16, CM’16, CZ’17, HR’19

Some percentage:

MR’16, BSV’16,
CD’17, S’17, BSV’18

Up-to-ε:

???
(even for one buyer, two items)

Up-to-ε:

Why bother trying
when Bayesian case
still open?

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Revenue Maximization from Samples Jun 22–23, 2023 9 / 18
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Sample Complexity: A Nonparametric Approach

Notation
m buyers, n items,
independent valuation distributions supported on [0,H].

Theorem (G. and Weinberg, 2021)

For every ε, δ > 0, the sample complexity of learning, w.p. 1−δ, an IR
and ε-BIC auction that maximizes revenue (among all such auctions) up to
an additive ε is poly(m, n,H, 1/ε, log 1/δ).

•

ε-

BIC: ∀i , vi , v ′
i :

Ev−i∼V−i [vi (outcome)− paymenti | i bids vi ] ≥
Ev−i∼V−i [vi (outcome)− paymenti | i bids v ′

i ]

− ε

• Applies mutatis mutandis also for other incentive compatibility notions.

• Computationally unbounded seller. (Information-theoretic result.)

• Proof assumes nothing regarding structure/dimensionality of optimal-,
or approximately optimal-, revenue auctions.

• Holds even far beyond additive valuations.
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Strengthened Results for Special Cases

Corollary (Single Buyer (Digital Goods), Many Items)

For m=1 buyer (recall: also models selling digital goods),
for every ε, δ > 0, the sample complexity of learning, w.p. 1−δ, an IR and
IC mechanism that maximizes revenue (among all such mechanisms) up to
an additive ε is poly(n,H, 1/ε, log 1/δ).

Cf. DHN’14: fails for correlated distributions.

Corollary (Single Item, Many Buyers)

For n=1 item, for every ε, δ > 0, the sample complexity of efficiently
learning, w.p. 1−δ, an IR and DSIC auction that maximizes revenue (among
all IR and BIC/DSIC auctions) up to an additive ε is poly(m,H, 1/ε, log 1/δ).

Cf. parametric approaches: even in “Myersonian” settings, generalizes
slightly beyond previous “top-right table cell” results.
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What Drives the Results of the Paper

• Assuming access to an oracle that can solve the Bayesian revenue
maximization problem for explicitly given discrete distributions (but
assuming nothing about the structure of its output!), we explicitly
construct our learning algorithm.

• In fact, we prove a general black-box reduction/transformation,
converting “middle-column results” (Bayesian Auction Design) to
“right-column results” (Empirical Auction Design):

Meta Theorem (G. and Weinberg, 2021)

For any percentage C :

If ∃ algorithm for C% revenue maximization given an explicitly specified
finite distribution,

Then ∀ ε, δ > 0, ∃ “as computationally efficient” algorithm for an ε less
than C% revenue maximization w.p. 1−δ, given poly(m, n,H, 1/ε, log 1/δ)
samples from the underlying (not necessarily finite) distribution.

• Latter loses ε in IC compared to former.

• But, for a single buyer (digital goods) OR a single item: no loss in IC.

Yannai A. Gonczarowski (Harvard) Multi-Item Mechanisms: Revenue Maximization from Samples Jun 22–23, 2023 12 / 18
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Learning-Algorithm Outline
Notation
m buyers, n items, S samples.

(w 1
11, . . . ,w

1
mn) (w 2

11, . . . ,w
2
mn) · · · · · · · · · (wS

11, . . . ,w
S
mn)

W11 = Unif{⌊w 1
11⌋ε, . . . , ⌊wS

11⌋ε} · · · Wmn = Unif{⌊w 1
mn⌋ε, . . . , ⌊wS

mn⌋ε}

Deliberately introduced
controlled model misspecification for
statistical analysis to rule out overfitting

µ̂
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(A Peak) Behind the Scenes
• ε-BIC vs. BIC revenue maximization:

Theorem (Rubinstein and Weinberg, 2015; see also DW12)

Let W be any joint distribution over arbitrary valuations, where the
valuations of different buyers are independent.
The maximum revenue attainable by any IR and ε-BIC auction for W is at
most 2m

√
nLHε greater than the maximum revenue attainable by any IR

and BIC auction for W.

• Chernoff-style concentration bound for product distributions:

Theorem (Babichenko et al., 2017; see also DHP16)

Let V1, . . . ,Vℓ be discrete distributions. Let S ∈ N.
For every i , draw S independent samples from Vi , and let Wi be the uniform
distribution over these samples.

For every ε > 0 and f :×ℓ

i=1
suppVi → [0,H], we have that

Pr
(∣∣E×ℓ

i=1 Wi
[f ]− E×ℓ

i=1 Vi
[f ]

∣∣ > ε
)
≤ 4H

ε
exp

(
− ε2S

8H2

)
.
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Some Remarks on Model Misspecification

• One of the main proof ideas: relatively small (i.e., grows
“moderately enough”) number of possible oracle inputs.

• Independent valuation distributions +
Deliberately introduced a controlled amount of model
misspecification.

• A fairly moderate price: ε-IC.

• For n=1 item: in fact precise IC, computational efficiency.

• For m=1 buyer, there is a known “ε-IC to IC transformation”
that loses negligible (poly(ε)) revenue without requiring any
knowledge of any distribution (Nisan, ∼’05; see also Madarász and
Prat, 2017)

⇒ overcome the model misspecification to overall
learn a precisely IC mechanism!

• We do not know a “direct path” to learning an IC mechanism.

• Deliberate model misspecification as a tool against overfitting.
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Conclusion & Further Research

• Main takeaway: empirical revenue maximization not harder than
Bayesian revenue maximization in many settings: any result that holds
given full information immediately implies a robust result from samples.

• For many buyers AND many items, a fairly moderate price to pay: ε-IC.
• Otherwise (see the paper for details): same incentive compatibility notion.

Open Question

Given an IR and ε-BIC auction for some product distribution, even in an
additive multi-item setting, is it possible to transform it into an IR and
(precisely) BIC auction with negligible (poly(ε)·poly(m, n,H)) revenue loss
using polynomially many samples from this product distribution?

• Known ε-BIC-to-BIC reduction from samples (DHKN’17) requires a
number of samples that is polynomial in the size of the type space =
exponential in the number of items, but does not assume independence.

• Can independence come to the rescue?
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Questions?
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