Market Augmentation

Proof

Further Research

Two-Sided Markets: Bulow-Klemperer-Style Results for Welfare

Yannai A. Gonczarowski

Harvard

SLMath (MSRI) Summer School June 23, 2023

Based upon (but all typos are my own):

Bulow-Klemperer-Style Results for Welfare Maximization in Two-Sided Markets, Moshe Babaioff, Kira Goldner, Y.A.G., 2020

Market Augmentation

Proof

Further Research

Two Sided Markets ("Double Auctions")

- Each of m_S sellers holds one item. All items identical.
- Each of m_B (potential) **buyers** is interested in (any) one item.
- Each seller j has **private cost** $s_j \ge 0$ for parting with her item.
- Each buyer *i* has **private value** $b_i \ge 0$ for obtaining an item.

Two Sided Markets ("Double Auctions")

- Each of m_{S} sellers holds one item. All items identical.
- Each of m_B (potential) **buyers** is interested in (any) one item.
- Each seller *j* has **private cost** $s_i \ge 0$ for parting with her item.
- Each buyer *i* has **private value** $b_i > 0$ for obtaining an item.
- A trade is a specification of a set of sellers (to part with their items) and an equal-sized set of buyers (to obtain these items). Efficient if maximizes the gains-from-trade:

 $\sum b_i$ trading buver *i* trading seller i

) Si

Market Augmentation

Proof

Further Research

Two Sided Markets ("Double Auctions")

- Each of m_S sellers holds one item. All items identical.
- Each of m_B (potential) **buyers** is interested in (any) one item.
- Each seller j has **private cost** $s_j \ge 0$ for parting with her item.
- Each buyer *i* has **private value** $b_i \ge 0$ for obtaining an item.
- A **trade** is a specification of a set of sellers (to part with their items) and an equal-sized set of buyers (to obtain these items). **Efficient** if maximizes the **gains-from-trade**:

$$\frac{\sum b_i}{\text{trading buyer } i} - \frac{\sum s_j}{\text{trading seller } j}$$

- Ideal goal: a **mechanism** (function from all values and costs to a trade + payment/charge for each participant) that is:
 - Individually rational (IR) allows voluntary participation.
 - Incentive compatible (IC) incentivizes truthful reporting.
 - Weakly **budget balanced (BB)** does not lose money ("IR for the auctioneer").
 - Efficient output trade efficient w.r.t. input costs/values.

Market Augmentation

Proof

Further Research

Myerson and Sattherthwaite's Seminal Impossibility

VCG is a (generally applicable) IR, IC, efficient mechanism.

- Output efficient trade.
- Charge each trading buyer her minimum trading bid.
- Pay each trading seller her maximum trading bid.

Example

Market Augmentation

Proof

Further Research

Myerson and Sattherthwaite's Seminal Impossibility

VCG is a (generally applicable) IR, IC, efficient mechanism.

- Output efficient trade.
- Charge each trading buyer her minimum trading bid.
- Pay each trading seller her maximum trading bid.

Example

For one buyer with value b = 10 and one seller with cost s = 9:

• Efficient trade is to trade the item. (Gains-from-trade = 1)

Market Augmentation

Proof

Further Research

Myerson and Sattherthwaite's Seminal Impossibility

VCG is a (generally applicable) IR, IC, efficient mechanism.

- Output efficient trade.
- Charge each trading buyer her minimum trading bid.
- Pay each trading seller her maximum trading bid.

Example

- Efficient trade is to trade the item. (Gains-from-trade = 1)
- Buyer's minimum trading bid is $9 \Rightarrow$ buyer pays 9.

Market Augmentation

Proof

Further Research

Myerson and Sattherthwaite's Seminal Impossibility

VCG is a (generally applicable) IR, IC, efficient mechanism.

- Output efficient trade.
- Charge each trading buyer her minimum trading bid.
- Pay each trading seller her maximum trading bid.

Example

- Efficient trade is to trade the item. (Gains-from-trade = 1)
- Buyer's minimum trading bid is $9 \Rightarrow$ buyer pays 9.
- Seller's maximum trading bid is $10 \Rightarrow$ seller paid 10.

Market Augmentation

Proof

Further Research

Myerson and Sattherthwaite's Seminal Impossibility

VCG is a (generally applicable) IR, IC, efficient mechanism.

- Output efficient trade.
- Charge each trading buyer her minimum trading bid.
- Pay each trading seller her maximum trading bid.

Example

- Efficient trade is to trade the item. (Gains-from-trade = 1)
- Buyer's minimum trading bid is $9 \Rightarrow$ buyer pays 9.
- Seller's maximum trading bid is $10 \Rightarrow$ seller paid 10.
- VCG with these inputs runs a deficit of $1! \Rightarrow$ VCG not BB.

Market Augmentation

Proof

Further Research

Myerson and Sattherthwaite's Seminal Impossibility

VCG is a (generally applicable) IR, IC, efficient mechanism.

- Output efficient trade.
- Charge each trading buyer her minimum trading bid.
- Pay each trading seller her maximum trading bid.

Example

For one buyer with value b = 10 and one seller with cost s = 9:

- Efficient trade is to trade the item. (Gains-from-trade = 1)
- Buyer's minimum trading bid is $9 \Rightarrow$ buyer pays 9.
- Seller's maximum trading bid is $10 \Rightarrow$ seller paid 10.
- VCG with these inputs runs a deficit of $1! \Rightarrow$ VCG not BB.

Theorem (Myerson and Satterthwaite, 1983)

Even for one seller and one buyer ($m_S = m_B = 1$), there is no mechanism that is IR, IC, BB, and efficient.

Market Augmentation

Proof

Further Research

The "Go To" Road to a Positive Result

- "First best" efficiency infeasible!
- "Go to" mechanism design approach: maintain **feasibility** constraints (IR, IC, BB), relax efficiency.
 - Assume values and costs are independently drawn from some distribution, find feasible mechanism with optimal expected efficiency ("second best").

Market Augmentation

Proof

Further Research

The "Go To" Road to a Positive Result

- "First best" efficiency infeasible!
- "Go to" mechanism design approach: maintain **feasibility** constraints (IR, IC, BB), relax efficiency.
 - Assume values and costs are independently drawn from some distribution, find feasible mechanism with optimal expected efficiency ("second best").
 - Needs to be carefully tailored to the Bayesian prior.
 - Known to be extremely **complex**, eludes precise description.

Market Augmentation

Proof

Further Research

The "Go To" Road to a Positive Result

- "First best" efficiency infeasible!
- "Go to" mechanism design approach: maintain **feasibility** constraints (IR, IC, BB), relax efficiency.
 - Assume values and costs are independently drawn from some distribution, find feasible mechanism with optimal expected efficiency ("second best").
 - Needs to be carefully tailored to the Bayesian prior.
 - Known to be extremely **complex**, eludes precise description.
- ⇒ As in many mechanism-design settings, tradeoff between efficiency on the one hand, and on the other hand both mechanism simplicity and amount of knowledge required by mechanism.

Market Augmentation

Proof

Further Research

Let's Do Something Different

Will draw inspiration from the one-sided markets literature:

• Canonical setting: one seller w/one item; *m* buyers, each w/ drawn private value. Goal: maximize seller's expected revenue.

Market Augmentation

Proof

Further Research

Let's Do Something Different

Will draw inspiration from the one-sided markets literature:

- Canonical setting: one seller w/one item; *m* buyers, each w/ drawn private value. Goal: maximize seller's expected revenue.
- "Go to" approach: find an IR & IC mechanism that maximizes seller's expected **revenue** given the buyer value distributions.
- Optimal mechanism, even for i.i.d. buyers, requires some information about the distributions.

Market Augmentation

Proof

Further Research

Let's Do Something Different

Will draw inspiration from the one-sided markets literature:

- Canonical setting: one seller w/one item; *m* buyers, each w/ drawn private value. Goal: maximize seller's expected revenue.
- "Go to" approach: find an IR & IC mechanism that maximizes seller's expected **revenue** given the buyer value distributions.
- Optimal mechanism, even for i.i.d. buyers, requires some information about the distributions.
- Bulow-Klemperer (1996): with i.i.d. buyers, under assumptions on the distribution, if we can recruit one more similar buyer (=i.i.d. same distribution), we can "beat" the tradeoff from the last slide: ∃ a simple, prior-independent, feasible (IR & IC) mechanism that in the augmented market gives expected revenue ≥ optimal revenue in the original market.

Market Augmentation

Proof

Further Research

Let's Do Something Different

Will draw inspiration from the one-sided markets literature:

- Canonical setting: one seller w/one item; *m* buyers, each w/ drawn private value. Goal: maximize seller's expected revenue.
- "Go to" approach: find an IR & IC mechanism that maximizes seller's expected **revenue** given the buyer value distributions.
- Optimal mechanism, even for i.i.d. buyers, requires some information about the distributions.
- Bulow-Klemperer (1996): with i.i.d. buyers, under assumptions on the distribution, if we can recruit one more similar buyer (=i.i.d. same distribution), we can "beat" the tradeoff from the last slide: ∃ a simple, prior-independent, feasible (IR & IC) mechanism that in the augmented market gives expected revenue ≥ optimal revenue in the original market.

This lecture: Bulow-Klemperer-style results for two-sided markets.

"Beat the tradeoff"! A simple, prior-independent, feasible (IR, IC, BB) mechanism that in an augmented market gives expected efficiency ≥ optimal efficiency in the original market.

Market Augmentation

Proof

Further Research

Main Result

Setting:

- Market with m_S sellers, m_B buyers.
- Values and costs drawn i.i.d. from a distribution *F*.
- Augmented market: has one more buyer with value drawn independently from *F*. (*m*_S sellers, *m*_B+1 buyers.)

Theorem (Main Result — Informal)

There exists mechanism that is a simple, prior-independent (=does not require any information about F), IR, IC, and BB, such that this mechanism in the augmented market has expected gains-from-trade at least as high as the optimal-yet-infeasible VCG mechanism in the original market.

Market Augmentation

Proof

Further Research

Main Result

Setting:

- Market with m_S sellers, m_B buyers.
- Values and costs drawn i.i.d. from a distribution F.
- Augmented market: has one more buyer with value drawn independently from *F*. (*m*_S sellers, *m*_B+1 buyers.)

Theorem (Main Result — Informal)

There exists mechanism that is a simple, prior-independent (=does not require any information about F), IR, IC, and BB, such that this mechanism in the augmented market has expected gains-from-trade at least as high as the optimal-yet-infeasible VCG mechanism in the original market.

- Same result also if adding a seller rather than a buyer.
 - Aesthetic preference to add buyer: same pre-trade welfare.
 - Same will hold also for all other results we'll see today.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR) Inspired by McAfee's (1992) classic Trade Reduction mechanism. BTR:

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR) Inspired by McAfee's (1992) classic

Trade Reduction mechanism. BTR:

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

Buyers	Sellers
90	10
70	20
60	45
50	75
20	95

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

- Sort (reported) buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.

Buyers	Sellers
90	10
70	20
60	45
50	75
20	95

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

- Sort (reported) buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.

Buyers	Sellers
90 >	> 10
70	20
60	45
50	75
20	95

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

- Sort (reported) buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.

Buyers	Sellers
90 2	> 10
70 2	> 20
60	45
50	75
20	95

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

- Sort (reported) buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.

Buyers	Sellers
90 >	> 10
70 >	> 20
60 >	> 45
50	75
20	95

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

- Sort (reported) buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.

Buyers	Sellers
90	> 10
70	> 20
60 2	> 45
50 •	< 75
20	95

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

- Sort (reported) buyer values in decreasing order, seller costs in increasing order.
- Calculate the efficient trade size q.

Buyers	Sellers
90 💈	> 10
70 🕻	> 20
60 🔾	> 45
50 <	< 75
20 <	\$ 95

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

• Sort (reported) buyer values in decreasing order, seller costs in increasing order.

• Calculate the efficient trade size q.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

• Sort (reported) buyer values in decreasing order, seller costs in increasing order.

• Calculate the efficient trade size q.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of **buyer** *q*+1 as the price.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer q+1 as the price.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of **buyer** q+1 as the price.
- If a trading seller has higher cost than this price:

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of **buyer** q+1 as the price.
- If a trading seller has higher cost than this price:

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of **buyer** q+1 as the price.
- If a trading seller has higher cost than this price:

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of **buyer** q+1 as the price.
- If a trading seller has higher cost than this price: **reduce** the trade between seller *q* and buyer *q*.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of **buyer** q+1 as the price.
- If a trading seller has higher cost than this price: **reduce** the trade between seller *q* and buyer *q*.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of **buyer** q+1 as the price.
- If a trading seller has higher cost than this price: **reduce** the trade between seller *q* and buyer *q*.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of **buyer** q+1 as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller q and buyer q. Trade the top q−1 pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer q+1 as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller q and buyer q. Trade the top q−1 pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer q+1 as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller q and buyer q. Trade the top q−1 pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer q+1 as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller q and buyer q. Trade the top q−1 pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

- Calculate the efficient trade size q.
- Attempt to trade at the value of **buyer** q+1 as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller q and buyer q. Trade the top q−1 pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.
- Robust (prior-independent, IR, IC, BB) and anonymous.

Market Augmentation

Proof

Further Research

A Simple Mechanism: Buyer Trade Reduction (BTR)

Inspired by McAfee's (1992) classic **Trade Reduction** mechanism. **BTR**:

• Sort (reported) buyer values in decreasing order, seller costs in increasing order.

- Calculate the efficient trade size q.
- Attempt to trade at the value of buyer q+1 as the price.
- If a trading seller has higher cost than this price: reduce the trade between seller *q* and buyer *q*. Trade the top *q*−1 pairs, with all buyers paying the value of the reduced buyer and all sellers being paid the cost of the reduced seller.
- Robust (prior-independent, IR, IC, BB) and anonymous.

Theorem (Main Result — Formal Restatement)

 $\forall m_S, m_B, \forall F:$ BTR $(m_S, m_B+1) \ge$ OPT $(m_S, m_B).$

Market Augmentation

Proof

Further Research

Proof: $BTR(m_S, m_B+1) \ge OPT(m_S, m_B)$

We will prove that

 $OPT(m_S, m_B+1) - BTR(m_S, m_B+1) \leq OPT(m_S, m_B+1) - OPT(m_S, m_B).$

Market Augmentation

Proof

Further Research

Proof: $BTR(m_S, m_B+1) \ge OPT(m_S, m_B)$

We will prove that

 $OPT(m_S, m_B+1) - BTR(m_S, m_B+1) \leq OPT(m_S, m_B+1) - OPT(m_S, m_B).$

Couple the two markets:
 Draw m_S+m_B+1 values i.i.d. from F:

$$x^{(1)} \ge \dots \ge x^{(m_{S})} \ge x^{(m_{S}+1)} \ge \dots \ge x^{(m_{S}+m_{B}+1)}$$

2 Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.

Market Augmentation

Proof

Further Research

Proof: $BTR(m_S, m_B+1) \ge OPT(m_S, m_B)$

• We will prove that

 $OPT(m_S, m_B+1) - BTR(m_S, m_B+1) \leq OPT(m_S, m_B+1) - OPT(m_S, m_B).$

Couple the two markets:
 Draw m_S+m_B+1 values i.i.d. from F:

$$x^{(1)} \ge \dots \ge x^{(m_S)} \ge x^{(m_S+1)} \ge \dots \ge x^{(m_S+m_B+1)}$$

2 Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.
• For any x⁽¹⁾ ≥ ··· ≥ x^(m_S+m_B+1), we will prove in expectation over Step 2 that E[OPT_{aug}] - E[BTR_{aug}] ≤ E[OPT_{aug}] - E[OPT_{orig}].

Market Augmentation

Proof

Further Research

Proof: $BTR(m_S, m_B+1) \ge OPT(m_S, m_B)$

We will prove that

 $OPT(m_S, m_B+1) - BTR(m_S, m_B+1) \leq OPT(m_S, m_B+1) - OPT(m_S, m_B).$

Couple the two markets:
 Draw ms+mB+1 values i.i.d. from F:

$$\underbrace{x^{(1)} \ge \dots \ge x^{(m_S)}}_{x^{(m_S+1)}} \ge x^{(m_S+1)} \ge \dots \ge x^{(m_S+m_B+1)}$$

trading buyers & nontrading sellers

Q Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.
For any x⁽¹⁾ ≥ ··· ≥ x^(m_S+m_B+1), we will prove in expectation over Step 2 that E[OPT_{aug}] - E[BTR_{aug}] ≤ E[OPT_{aug}] - E[OPT_{orig}].

Market Augmentation

Proof

Further Research

Proof: $BTR(m_S, m_B+1) \ge OPT(m_S, m_B)$

• We will prove that

 $OPT(m_S, m_B+1) - BTR(m_S, m_B+1) \leq OPT(m_S, m_B+1) - OPT(m_S, m_B).$

Couple the two markets:
 Draw m_S+m_B+1 values i.i.d. from F:

 $\underbrace{x^{(1)} \ge \dots \ge x^{(m_S)}}_{\text{trading buyers & nontrading sellers}} \ge \underbrace{x^{(m_S+1)} \ge \dots \ge x^{(m_S+m_B+1)}}_{\text{nontrading buyers & trading sellers}}.$

2 Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.
• For any x⁽¹⁾ ≥ ··· ≥ x^(m_S+m_B+1), we will prove in expectation over Step 2 that E[OPT_{aug}] - E[BTR_{aug}] ≤ E[OPT_{aug}] - E[OPT_{orig}].

Market Augmentation

Proof

Further Research

Proof: $BTR(m_S, m_B+1) \ge OPT(m_S, m_B)$

We will prove that

 $OPT(m_S, m_B+1) - BTR(m_S, m_B+1) \leq OPT(m_S, m_B+1) - OPT(m_S, m_B).$

Couple the two markets:
 Draw m_S+m_B+1 values i.i.d. from F:

 $\underbrace{x^{(1)} \ge \dots \dots \ge x^{(m_S)}}_{\text{trading buyers \& nontrading sellers}} \ge \underbrace{x^{(m_S+1)} \ge \dots \dots \ge x^{(m_S+m_B+1)}}_{\text{nontrading buyers \& trading sellers}}$

2 Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.
• For any x⁽¹⁾ ≥ · · · ≥ x^(m_S+m_B+1), we will prove in expectation over Step 2 that E[OPT_{aug}] - E[BTR_{aug}] ≤ E[OPT_{aug}] - E[OPT_{orig}].

$$\mathbb{E}[\mathsf{OPT}_{aug}] - \mathbb{E}[\mathsf{BTR}_{aug}] \qquad \mathbb{E}[\mathsf{OPT}_{aug}] - \mathbb{E}[\mathsf{OPT}_{orig}]$$

 $BTR(m_S, m_B+1) \ge OPT(m_S, m_B)$ Proof: We will prove that $OPT(m_5, m_B+1) - BTR(m_5, m_B+1) < OPT(m_5, m_B+1) - OPT(m_5, m_B).$ Proof Couple the two markets: **1** Draw $m_S + m_B + 1$ values i.i.d. from F: $x^{(1)} \ge \dots \ge x^{(m_S)} \ge x^{(m_S+1)} \ge \dots \ge x^{(m_S+m_B+1)}$ trading buyers & nontrading sellers nontrading buyers & trading sellers 2 Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer. • For any $x^{(1)} > \cdots > x^{(m_S + m_B + 1)}$, we will prove in expectation over Step 2 that $\mathbb{E}[\mathsf{OPT}_{aug}] - \mathbb{E}[\mathsf{BTR}_{aug}] \leq \mathbb{E}[\mathsf{OPT}_{aug}] - \mathbb{E}[\mathsf{OPT}_{orig}].$ $\mathbb{E}[\mathsf{OPT}_{aug}] - \mathbb{E}[\mathsf{BTR}_{aug}]$ $\mathbb{E}[\mathsf{OPT}_{au\sigma}] - \mathbb{E}[\mathsf{OPT}_{orig}]$ $x^{(1)}$ $x^{(m_S)} x^{(m_S+1)}$ diff $\neq 0$ if ...

 $BTR(m_S, m_B+1) \ge OPT(m_S, m_B)$ Proof: We will prove that $OPT(m_5, m_B+1) - BTR(m_5, m_B+1) < OPT(m_5, m_B+1) - OPT(m_5, m_B).$ Proof Couple the two markets: **1** Draw $m_S + m_B + 1$ values i.i.d. from F: $x^{(1)} \ge \dots \ge x^{(m_S)} \ge x^{(m_S+1)} \ge \dots \ge x^{(m_S+m_B+1)}$ trading buyers & nontrading sellers nontrading buyers & trading sellers 2 Uniformly at random assign $m_{\rm S}$ as sellers, $m_{\rm B}$ as old buyers, 1 as new buyer. • For any $x^{(1)} > \cdots > x^{(m_S + m_B + 1)}$, we will prove in expectation over Step 2 that $\mathbb{E}[\mathsf{OPT}_{aug}] - \mathbb{E}[\mathsf{BTR}_{aug}] \leq \mathbb{E}[\mathsf{OPT}_{aug}] - \mathbb{E}[\mathsf{OPT}_{orig}].$ $\mathbb{E}[\mathsf{OPT}_{aug}] - \mathbb{E}[\mathsf{BTR}_{aug}]$ $\mathbb{E}[\mathsf{OPT}_{au\sigma}] - \mathbb{E}[\mathsf{OPT}_{orig}]$ new buyer in top m_S $_{\chi}(1) \dots _{\chi}(m_{S}) _{\chi}(m_{S}+1) \dots$ diff $\neq 0$ if ...

Model & Background Market Augmentation Proof Further Research	Proof: • We will pr OPT(ms • Couple th 1 Draw p	$\begin{array}{l} BTR(m_S, m_B + 1) \geq 0\\ ove that\\ m_B + 1) - BTR(m_S, m_B + 1) \leq OPT(n)\\ e \text{ two markets:}\\ m_S + m_B + 1 \text{ values i.i.d. from } F:\\ \chi^{(1)} \geq \cdots \geq \chi^{(m_S)} \geq \chi^{(m_S + 1)} \geq \cdots \end{array}$	$OPT(m_S, m_B)$ $m_S, m_B+1) - OPT(m_S, m_B).$ $\dots \ge x^{(m_S+m_B+1)}.$			
	trading buyers & nontrading sellers nontrading buyers & trading sellers					
	2 Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.					
	• For any $x^{(1)} \ge \cdots \ge x^{(m_S+m_B+1)}$, we will prove in expectation over Step 2 that					
	$\mathbb{E}[OPI_{aug}] - \mathbb{E}[BIR_{aug}] \leq \mathbb{E}[OPI_{aug}] - \mathbb{E}[OPI_{orig}].$					
	$\mathbb{E}[OPT_{\mathit{aug}}] - \mathbb{E}[BTR_{\mathit{aug}}] \qquad \mathbb{E}[OPT_{\mathit{aug}}] - \mathbb{E}[OPT_{\mathit{org}}]$					
			new buyer in top m_S			
_	diff \neq 0 if		$x^{(1)}$ $x^{(m_S)}x^{(m_S+1)}$			
-	$Pr[diff \neq 0]$		$m_S/(m_S+m_B+1)$			

Model & Background Market Augmentation Proof Further Research	Proof: BIR(m_S, m_B+1) \geq OPT(m_S, m_B) • We will prove that OPT(m_S, m_B+1) - BTR(m_S, m_B+1) \leq OPT(m_S, m_B+1) - OPT(m_S, m_B). • Couple the two markets: • Draw m_S+m_B+1 values i.i.d. from F: $\underbrace{x^{(1)} \geq \cdots \geq x^{(m_S)}}_{\text{trading buyers & nontrading sellers}} \geq \underbrace{x^{(m_S+1)} \geq \cdots \geq x^{(m_S+m_B+1)}}_{\text{nontrading buyers & trading sellers}}$. • Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer. • For any $x^{(1)} \geq \cdots \geq x^{(m_S+m_B+1)}$, we will prove in expectation over Step 2 that $\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] \leq \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}].$			
	$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] \qquad \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}]$			
	diff \neq 0 if		$\underbrace{(1),\ldots,\chi(m_5)}_{X(1),\ldots,\chi(m_5)} \chi(m_5+1),\ldots,$	
	$\Pr[diff \neq 0]$		$m_S/(m_S+m_B+1)$	
	$\mathbb{E}[OPT_{aug}]$ $x^{(1),\ldots,x^{(m_S)},x^{(m_S+1)},\ldots,x^{(m_S+m_B)}}$			

Model & Background Market Augmentation Proof Further Research	Proof: $BIR(m_S, m_B+1) \ge OPI(m_S, m_B)$ • We will prove that $OPT(m_S, m_B+1) - BTR(m_S, m_B+1) \le OPT(m_S, m_B+1) - OPT(m_S, m_B).$ • Couple the two markets: 1 Draw m_S+m_B+1 values i.i.d. from F: $x^{(1)} \ge \cdots \ge x^{(m_S)} \ge x^{(m_S+1)} \ge \cdots \ge x^{(m_S+m_B+1)}.$ trading buyers & nontrading sellers 2 Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer. • For any $x^{(1)} \ge \cdots \ge x^{(m_S+m_B+1)}$, we will prove in expectation over Step 2 that $\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] \le \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}].$			
	$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] \qquad \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}]$			
	diff \neq 0 if		$\underbrace{(1),\ldots,\chi(m_5)}_{X(1),\ldots,\chi(m_5)} \chi(m_5+1),\ldots,$	
-	$\Pr[diff \neq 0]$		$m_S/(m_S+m_B+1)$	
-	$\mathbb{E}[OPT_{\mathit{aug}}]$	$\left[\begin{array}{c} X^{(1)},\ldots,X^{(m_S)} \end{array} \right] X^{(m_S+1)}.$	$\dots X^{(m_S+m_B)}$	

Model & Background Market Augmentation	Proof: • We will pr OPT(ms	$BTR(m_S, m_B+1) \ge 0$ rove that $(m_B, m_B+1) - BTR(m_S, m_B+1) \le OPT(m_B)$	$OPT(m_S, m_B)$ $m_S, m_B+1) - OPT(m_S, m_B).$		
Proof	 Couple th 	e two markets:			
Further Research	1 Draw	1 Draw $m_S + m_B + 1$ values i.i.d. from F:			
		$x^{(1)} \ge \dots \ge x^{(m_S)} \ge x^{(m_S+1)} \ge \dots \ge x^{(m_S+m_B+1)}.$			
	trading buyers & nontrading sellers nontrading buyers & trading sellers				
	2 Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.				
	• For any $x^{(1)} > \cdots > x^{(m_S + m_B + 1)}$, we will prove in expectation over Step 2 that				
	$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] < \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}].$				
		$\mathbb{E}[OPT_{\mathit{aug}}] - \mathbb{E}[BTR_{\mathit{aug}}]$	$\mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}]$		
-			new buyer in top m_S		
	$diff \neq 0 \ if \$		$x^{(1)}x^{(m_S)}x^{(m_S+1)}$		
	$Pr[diff \neq 0]$		$m_S/(m_S+m_B+1)$		
	$\mathbb{E}[OPT_{\mathit{aug}}]$	$X^{(1)}, \dots, X^{(m_S)}$ $X^{(m_S+1)}$.	$\dots, \chi(m_S+m_B)$		
			new buyer ↓		
	minus		$x^{(1)} \cdots x^{(\nu)} \cdots x^{(m_{\mathcal{S}})} x^{(m_{\mathcal{S}}+1)} \cdots \cdots$		

Model & Background Market Augmentation	Proof: • We will pr OPT(ms	$BTR(m_S, m_B+1) \ge 0$ rove that $m_B+1) - BTR(m_S, m_B+1) \le OPT(r)$	$OPT(m_S, m_B)$ $m_S, m_B+1) - OPT(m_S, m_B).$	
Proof	 Couple th 	e two markets:		
Further	1 Draw	$m_S + m_B + 1$ values i.i.d. from F:		
Research		$x^{(1)} \ge \dots \ge x^{(m_{\mathcal{S}})} \ge x^{(m_{\mathcal{S}}+1)} \ge \dots \ge x^{(m_{\mathcal{S}}+m_{\mathcal{B}}+1)}.$		
	trading buyers & nontrading sellers nontrading buyers & trading sellers			
	2 Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.			
	• For any $x^{(1)} > \cdots > x^{(m_S + m_B + 1)}$, we will prove in expectation over Step 2 that			
	$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] < \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}].$			
	[- abg] [abg] [- abg] [- ong]			
	$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] \qquad \qquad \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}]$			
			new buyer in top m ₅	
	$diff \neq 0 \ if \$		$x^{(1)}x^{(m_S)}x^{(m_S+1)}$	
	$\Pr[diff \neq 0]$		$m_S/(m_S+m_B+1)$	
	$\mathbb{E}[OPT_{\mathit{aug}}]$	$X^{(1)}, \dots, X^{(m_S)}$ $X^{(m_S+1)}$.	$\dots, \chi(m_S+m_B)$	
			new buyer	
	minus		$ [x^{(1)} \cdots x^{(\nu)} \cdots x^{(m_S)} x^{(m_S+1)} \cdots \cdots $	

Model & Background Market Augmentation	Proof: • We will pr OPT(ms	$BTR(m_S, m_B + 1) \ge 0$ rove that $m_B + 1) - BTR(m_S, m_B + 1) \le OPT(r)$	$OPT(m_S, m_B)$ $m_S, m_B+1) - OPT(m_S, m_B).$	
Proof	 Couple th 	e two markets:		
Further	1 Draw	$m_S + m_B + 1$ values i.i.d. from F:		
- Coocaren		$x^{(1)} \ge \dots \ge x^{(m_S)} \ge x^{(m_S+1)} \ge \dots$	$\cdots \geq x^{(m_S+m_B+1)}$	
		trading buyers & nontrading sellers nontrading buy	yers & trading sellers	
	2 Uniformly at random assign $m_{\rm S}$ as sellers, $m_{\rm B}$ as old buyers, 1 as new buyer.			
	• For any $x^{(1)} > \cdots > x^{(m_S + m_B + 1)}$, we will prove in expectation over Step 2 that			
	$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] < \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}].$			
		$\mathbb{E}[OPT_{\mathit{aug}}] - \mathbb{E}[BTR_{\mathit{aug}}]$	$\mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}]$	
			new buyer in top m_S	
	$diff \neq 0 \ if \$	$x^{(1)}$ $x^{(m_{S})}x^{(m_{S}+1)}$	$x^{(1)}x^{(m_S)}x^{(m_S+1)}$	
	$Pr[diff \neq 0]$		$m_S/(m_S+m_B+1)$	
	$\mathbb{E}[OPT_{\mathit{aug}}]$	$X^{(1)}, \dots, X^{(m_S)}$ $X^{(m_S+1)}$.	$\dots, \chi(m_S + m_B)$	
	minus		$ \begin{array}{c} \underset{X^{(1)} \ldots }{\overset{\text{new buyer}}{\underset{x}{\overset{\downarrow}{(\nu)}}} } \\ \overbrace{X^{(1)} \ldots }{\overset{\downarrow}{(\nu)}} \\ \overbrace{\ldots }{\overset{(m_S)}{\underset{x}{(m_S+1)}}} \\ \end{array} \\ \end{array} $	

Model & Background Market Augmentation	Proof: • We will pr OPT(ms	$BTR(m_S, m_B+1) \ge 0$ rove that $m_B+1) - BTR(m_S, m_B+1) \le OPT(m_B)$	$OPT(m_S, m_B)$ $m_S, m_B+1) - OPT(m_S, m_B).$	
Proof	 Couple th 	e two markets:		
Further	1 Draw	$m_S + m_B + 1$ values i.i.d. from F:		
Research		$x^{(1)} \geq \cdots \cdots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \cdots$	$\cdots \ge x^{(m_S+m_B+1)}$.	
		trading buyers & nontrading sellers nontrading buy	yers & trading sellers	
	2 Uniform	mly at random assign m_S as sellers, m_B a	as old buyers, 1 as new buyer.	
	• For any $x^{(1)} > \cdots > x^{(m_S + m_B + 1)}$, we will prove in expectation over Step 2 that			
	$\mathbb{E}[OPT_{avg}] - \mathbb{E}[BTR_{avg}] < \mathbb{E}[OPT_{avg}] - \mathbb{E}[OPT_{avg}]$			
		$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}]$	$\mathbb{E}[OPT_{\mathit{aug}}] - \mathbb{E}[OPT_{\mathit{orig}}]$	
		a seller	new buyer in top m _S	
	$diff \neq 0 \ if \$	$x^{(1)}, \dots, x^{(m_S)}, x^{(m_S+1)}, \dots$	$x^{(1)}x^{(m_{S})}x^{(m_{S}+1)}$	
	$Pr[diff \neq 0]$		$m_S/(m_S+m_B+1)$	
	$\mathbb{E}[OPT_{aug}]$	$X^{(1)}, \dots, X^{(m_S)}$ $X^{(m_S+1)}$.	$\dots, \chi(m_S+m_B)$	
			new buyer	
	minus		$ \begin{array}{ } x^{(1)} \cdots x^{(\nu)} \cdots x^{(m_S)} x^{(m_S+1)} \cdots \end{array} $	

Model & Background Market Augmentation	Proof: • We will pr OPT(ms	$BTR(m_S, m_B+1) \ge 0$ rove that $m_B+1) - BTR(m_S, m_B+1) \le OPT(r)$	$OPT(m_S, m_B)$ $m_S, m_B+1) - OPT(m_S, m_B).$	
Proof	 Couple th 	e two markets:		
Further	1 Draw	$m_S + m_B + 1$ values i.i.d. from F:		
Research		$x^{(1)} \ge \dots \ge x^{(m_S)} \ge x^{(m_S+1)} \ge \dots$	$\cdots \geq x^{(m_S+m_B+1)}$	
		trading buyers & nontrading sellers nontrading buy	yers & trading sellers	
	2 Uniform	mly at random assign m_S as sellers, m_B a	as old buyers, 1 as new buyer.	
	• For any $x^{(1)} > \cdots > x^{(m_S + m_B + 1)}$, we will prove in expectation over Step 2 that			
	$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] < \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{aug}].$			
	$-[-\cdot \cdot aug] -[-\cdot \cdot aug][-\cdot \cdot aug] -[-\cdot \cdot oug]$			
		$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}]$	$\mathbb{E}[OPT_{\mathit{aug}}] - \mathbb{E}[OPT_{\mathit{orig}}]$	
-		a seller (seller q)	new buyer in top m _S	
	$diff \neq 0 \text{ if } \dots$	$x^{(1)}$ $x^{(m_S)}x^{(m_S+1)}$	$\chi^{(1)}$ $\chi^{(m_S)}\chi^{(m_S+1)}$	
	$Pr[diff \neq 0]$		$m_S/(m_S+m_B+1)$	
	$\mathbb{E}[OPT_{\mathit{aug}}]$	$X^{(1)}, \dots, X^{(m_S)}$ $X^{(m_S+1)}$.	$\dots, \chi(m_S+m_B)$	
-			new buyer	
	minus		$ \begin{array}{ } x^{(1)} \cdots x^{(\nu)} \cdots x^{(m_S)} x^{(m_S+1)} \cdots \end{array} $	

Yannai A. Gonczarowski (Harvard) Two-Sided Markets: Bulow-Klemperer-Style Results for Welfare Jun 23, 2023 8 / 10

Model & Background Market Augmentation	Proof: • We will pr OPT(ms	$BTR(m_S, m_B+1) \ge 0$ rove that $m_B+1) - BTR(m_S, m_B+1) \le OPT(m_B)$	$OPT(m_S, m_B)$ $m_S, m_B+1) - OPT(m_S, m_B).$	
Proof Further Research	• Couple the two markets: • Draw $m_S + m_B + 1$ values i.i.d. from F : $x^{(1)} \ge \dots \ge x^{(m_S)} \ge x^{(m_S+1)} \ge \dots \ge x^{(m_S+m_B+1)}$.			
	trading buyers & nontrading sellers nontrading buyers & trading sellers 2 Uniformly at random assign m_5 as sellers, m_B as old buyers, 1 as new buye • For any $x^{(1)} \ge \cdots \ge x^{(m_5+m_B+1)}$, we will prove in expectation over Step 2 that $\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] \le \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}].$			
	diff \neq 0 if Pr[diff \neq 0]	$x^{(1)}, \dots, x^{(m_S)}, x^{(m_S+1)}, \dots, x^{(m_S+1)}, \dots, x^{(m_S+1)}$	$\underbrace{\begin{array}{c} \underset{\chi(1),\ldots,\chi(m_{S})}{\text{new buyer in top }m_{S}} \chi(m_{S}+1),\ldots,} \\ m_{S}/(m_{S}+m_{B}+1) \end{array}}$	
	E[OPT _{aug}] minus	$x^{(1),\ldots,x(m_5)}x^{(m_5+1)}$	$(m_{X}(m_{S}+m_{B}))$ new buyer $(x(1),x(\nu)),x(m_{S}),x(m_{S}+1))$	

Model & Background Market Augmentation	Proof: • We will pr OPT(ms	$BTR(m_S, m_B+1) \ge 0$ from that $(m_B+1) - BTR(m_S, m_B+1) \le OPT(m_B)$	$OPT(m_S, m_B)$ $m_S, m_B+1) - OPT(m_S, m_B).$	
Proof	Couple th	Couple the two markets:		
Further Research	1 Draw	1 Draw $m_S + m_B + 1$ values i.i.d. from F :		
		$\underline{x^{(1)} \geq \cdots \geq x^{(m_{\mathcal{S}})}} \geq \underline{x^{(m_{\mathcal{S}}+1)}} \geq \cdots$	$\cdots \geq x^{(m_S+m_B+1)}$.	
		trading buyers & nontrading sellers nontrading buy	yers & trading sellers	
	2 Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.			
	• For any $x^{(1)} \ge \cdots \ge x^{(m_S + m_B + 1)}$, we will prove in expectation over Step 2 that $\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] \le \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{aug}].$			
		$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}]$	$\mathbb{E}[OPT_{\mathit{aug}}] - \mathbb{E}[OPT_{\mathit{orig}}]$	
		a seller (seller q)	new buyer in top m _S	
	$diff \neq 0 \ if \ \ldots$	$x^{(1)}$ $x^{(m_S)}x^{(m_S+1)}$	$\chi^{(1)}$ $\chi^{(m_S)}\chi^{(m_S+1)}$	
	$Pr[diff \neq 0]$	$m_S/(m_S+m_B+1) =$	$= m_S/(m_S+m_B+1)$	
	$\mathbb{E}[OPT_{aug}]$	$X^{(1)}, \dots, X^{(m_S)}$ $X^{(m_S+1)}$.	$\dots, \chi(m_S+m_B)$	
	minus		$ \begin{array}{c} \underset{X^{(1)} \ldots }{\overset{\text{new buyer}}{\underset{x(\nu)}{\overset{\text{how }}{\underset{x(m_{\mathcal{S}})}{\underset{x(m_{\mathcal{S}}+1)}{\underset{x(m_{\mathcal{S}}+1)}{\underset{x(m_{\mathcal{S}}+1)}}}}} \\ \end{array} \\ \end{array} $	

Model & Background Market Augmentation	Proof: • We will pr OPT(ms	$BTR(m_S, m_B+1) \ge 0$ For that $(m_B+1) - BTR(m_S, m_B+1) \le OPT(m_B+1)$	$OPT(m_S, m_B)$ $m_S, m_B+1) - OPT(m_S, m_B).$	
Proof	 Couple th 	e two markets:		
Further	1 Draw	$m_S + m_B + 1$ values i.i.d. from F:		
Research		$x^{(1)} \ge \dots \ge x^{(m_S)} \ge x^{(m_S+1)} \ge \dots$	$\cdots \ge x^{(m_S+m_B+1)}.$	
		trading buyers & nontrading sellers nontrading bu	yers & trading sellers	
	 Uniform 	mly at random assign $m_{\rm S}$ as sellers, $m_{\rm B}$ a	as old buyers, 1 as new buyer.	
	• For any $x^{(1)} > \ldots > x^{(m_5+m_B+1)}$ we will prove in expectation over Step 2 that			
	$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] \leq \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}].$			
	$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}]$ $\mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{aug}]$			
		a seller (seller q)	new buyer in top m_S	
	$diff \neq 0 \ if \ \ldots$	$x^{(1)}$ $x^{(m_S)}x^{(m_S+1)}$	$\chi^{(1)}$ $\chi^{(m_S)}\chi^{(m_S+1)}$	
	$Pr[diff \neq 0]$	$m_S/(m_S+m_B+1) =$	$= m_S/(m_S+m_B+1)$	
	$\mathbb{E}[OPT_{aug}] \qquad \qquad$		$\dots \chi^{(m_S+m_B)}$	
-		buyer q	new buyer	
	minus	$X^{(1)} \cdots X^{(\alpha)} \cdots X^{(m_S)} X^{(m_S+1)} \cdots$	$X^{(1)} x^{(\nu)} x^{(\nu)} x^{(m_S)} x^{(m_S+1)} \dots$	

8 / 10

Model & Background Market Augmentation	Proof: • We will pr OPT(ms	$BTR(m_S, m_B+1) \ge 0$ rove that $m_B+1) - BTR(m_S, m_B+1) \le OPT(m_B)$	$OPT(m_S, m_B)$ $m_S, m_B+1) - OPT(m_S, m_B).$	
Proof	 Couple th 	e two markets:		
Further	1 Draw	$m_S + m_B + 1$ values i.i.d. from F:		
Research		$x^{(1)} \geq \cdots \cdots \geq x^{(m_S)} \geq x^{(m_S+1)} \geq \cdots$	$\cdots \ge x^{(m_S+m_B+1)}$.	
		trading buyers & nontrading sellers nontrading buy	yers & trading sellers	
	2 Uniformly at random assign m_S as sellers, m_B as old buyers, 1 as new buyer.			
	• For any $x^{(1)} \ge \cdots \ge x^{(m_5+m_B+1)}$, we will prove in expectation over Step 2 that $\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] \le \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{orig}].$			
	$\mathbb{E}[OPT_{aug}] - \mathbb{E}[BTR_{aug}] \qquad \qquad \mathbb{E}[OPT_{aug}] - \mathbb{E}[OPT_{o}]$			
		a seller (seller q)	new buyer in top m _S	
	$diff \neq 0 \ if \$	$x^{(1)}, \dots, x^{(m_S)}, x^{(m_S+1)}, \dots$	$x^{(1)}x^{(m_{S})}x^{(m_{S}+1)}$	
$\Pr[diff \neq 0]$		$m_S/(m_S+m_B+1) =$	$= m_S/(m_S+m_B+1)$	
	$\mathbb{E}[OPT_{aug}] \qquad \qquad$		$\dots, \chi(m_S+m_B)$	
	minus	buyer q $\chi(1)\chi(\alpha)$ $\chi(m_5)\chi(m_5+1)$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

8 / 10

Market Augmentation

Proof

Further Research

Result Summary and Open Questions

(#S,#B)	Condition	Sufficient #buyers [*] to add	Insufficient #buyers [*] to add
m_S, m_B	i.i.d. $(F_B = F_S)$	1	0 (MS'83)
m_S, m_B	any F_B, F_S	impossible, by \Rightarrow	any finite number
1,1	F _B FSD F _S	4	1
$1, m_B$	F _B FSD F _S	$4\sqrt{m_B}$	$\lfloor \log_2 m_B \rfloor$
m_S, m_B	F _B FSD F _S	$m_S(m_B+4\sqrt{m_B})$	↑

 * Exactly the same bounds also if adding sellers rather than buyers.

Market Augmentation

Proof

Further Research

Result Summary and Open Questions

(#S,#B)	Condition	Sufficient #buyers [*] to add	Insufficient #buyers [*] to add
m_S, m_B	i.i.d. $(F_B = F_S)$	1	0 (MS'83)
m_S, m_B	any F_B, F_S	impossible, by \Rightarrow	any finite number
1,1	F _B FSD F _S	4	1
$1, m_B$	F _B FSD F _S	$4\sqrt{m_B}$	$\lfloor \log_2 m_B \rfloor$
m_S, m_B	F _B FSD F _S	$m_S(m_B+4\sqrt{m_B})$	↑

* Exactly the same bounds also if adding sellers rather than buyers.

Open: all gaps

Market Augmentation

Proof

Further Research

Questions?

"Sorry, no trades. Cash only."