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This paper develops a tractable methodology for designing an optimal priority system for assigning agents to

heterogeneous items while accounting for agents’ choice behavior. The space of mechanisms being optimized

includes deferred acceptance and top trading cycles as special cases. In contrast to previous literature, I treat

the inputs to these mechanisms, namely the priority distribution of agents and quotas of items, as parameters

to be optimized. The methodology is based on analyzing large market models of one-sided matching using

techniques from revenue management, and solving a certain assortment planning problem whose objective is

social welfare. I apply the methodology to school choice and show that restricting choices may be beneficial

to student welfare. Moreover, I compute optimized choice sets and priorities for elementary school choice in

Boston, improving upon the results of Ashlagi and Shi (2015).
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1. Introduction

Priorities are used to allocate scarce items in many important contexts, such as public school

choice, subsidized housing assignment, and cadaver organ allocation. In these applications, both the

agents receiving the items and the items being allocated are heterogeneous, and a good allocation

matches each item to an agent who values it highly, while maintaining certain notions of fairness. A

challenge is that the value of assigning an item to a particular agent depends both on the observable

characteristics of the agent as well as on the agent’s private preferences.

An example of an allocation mechanism is the Gale-Shapley deferred acceptance (DA) mech-

anism, which is used for public school choice in Boston, New York City, Chicago, Denver, New

Orleans, Washington DC, among other cities. The mechanism requires the school district to give

each student a priority score to each school, which may take into account the student’s home loca-

tion, socio-economic status, test scores, and whether the student has siblings at the school. Each

student also submits a ranking of schools, indicating his or her relative preferences among eligible

options. Based on these inputs, the mechanism computes a stable matching, which means that no

student is rejected by a school that either has leftover seats or has accepted another student with

a lower priority score to the school. A competing mechanism that was used in New Orleans in

2012-2013 is top trading cycles (TTC), which interprets the priority scores differently and allows

students to trade priorities among themselves. For the allocation of college dormitories, a mecha-

nism that is often used is serial dictatorship (SD), which orders applicants in a list according to
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their priorities and allows those at the top of the list to pick their favorite building whose capacity

has not been depleted. All of these mechanisms are strategyproof, meaning that agents have no

incentives to misreport their preferences.

While there is a large literature that studies the properties of the above mechanisms,1 almost

all previous works treat the priorities as exogenous inputs, whereas priorities in practice are often

determined by policy makers, so can be part of the market design. For example, after changing from

a non-strategyproof assignment mechanism to deferred acceptance (DA) in 2005, Boston Public

Schools (BPS) changed the choice sets and priorities of students under the DA mechanism in 2013,

so that students are assigned closer to home while maintaining equity of access (Shi 2015). As

another example, the Organ Procurement and Transplantation Network (OPTN), which oversees

the allocation of cadaver organs in the US, changed the priorities for allocating kidneys in 2014,

so as to improve the longevity matching2 of patients to kidneys and to improve access for highly

sensitized patients, for whom it is difficult to find a compatible kidney (Israni et al. 2014). Both of

these reforms were based on simulation analyses that compared several priority systems in terms

of their induced outcomes (Pathak and Shi 2013, Thompson et al. 2004).

A natural question is whether a given priority system chosen by policy makers is close to optimal,

or whether a similar system with modified parameters can achieve much better performance with

respect to the metrics that the policy makers care about. This question cannot be addressed in

a computationally tractable way using existing methodology because evaluating a given priority

system in a realistic setting requires a complex simulation model, which needs to predict agents’

choice behavior under the new priorities and calculate the implied allocations. One might be able to

evaluate a few priority systems by simulation, but not all potential systems within any reasonably

rich class. For example, the priority systems considered by Boston Public Schools (BPS) in 2013

are allowed to specify for each school a geographic region of home locations from which a student

can access the school, and since there are many possible configurations of boundary lines and many

schools, the number of possibilities is enormous. Furthermore, there are institutional constraints

on what the priority system can depend on: for BPS, the priorities are allowed to depend on

students’ home location or sibling status, but not on their gender, race, or their preferences for

schools. These restrictions are to ensure that students are not discriminated against based on

protected characteristics, and that they are incentivized to truthfully report their preferences for

schools. Furthermore, the policy makers in Boston preferred to continue to use the DA mechanism,

since families are already familiar with such a system after many years of use. Finding the best

priority system within such institutional constraints is a difficult problem for which no tractable

methodologies existed prior to this paper.

1 For reviews of the matching markets literature, see Abdulkadiroğlu and Sönmez (2013), and Vulkan et al. (2013).

2 Longevity matching means to match the best quality organs to patients with the longest predicted survival.
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1.1. Contributions

This paper develops a tractable framework for solving the aforementioned problem of optimizing

priority systems in realistic settings. Concretely, I propose efficient algorithms for computing the

optimal priority system to be used within the deferred acceptance (DA) mechanism, such that the

priorities may depend only on a limited set of observable characteristics as determined by policy

makers. I apply these techniques to real data from BPS, and quantify the optimality gap between

the priority system chosen by the policy makers in 2013 and the best possible priority system that

depends only on a student’s neighborhood and random tie-breakers. The optimized priority system

has a simple structure similar to the actually implemented system: each neighborhood is associated

with a set of eligible schools, and the priority score of a student to a school is equal to a publicly

announced constant that depends on the student’s neighborhood and the school, plus a randomly

generated tie-breaker for each student. The techniques are based on extending ideas and algorithms

from revenue management (Liu and van Ryzin 2008, Rusmevichientong et al. 2010, Gallego and

Topaloglu 2014, Li et al. 2015, Feldman and Topaloglu 2017) to analyze large market models of

one-sided3 matching (Bogomolnaia and Moulin 2001, Azevedo and Leshno 2016, Abdulkadiroğlu

et al. 2015, Leshno and Lo 2018). While I focus on the DA mechanism for the empirical exercise, the

framework can also be used to find optimal priorities in other mechanisms such as top trading cycles

(TTC) or serial dictatorship (SD), although the conditions for tractability are more restrictive.

The first contribution is characterizing the set of allocation outcomes that can be achieved using

DA, TTC or SD when the priorities can be arbitrarily chosen as long as they depend only on a

given set of observable characteristics. For tractability, the theoretical results are derived in the

context of a large market model with a continuum of agents, who are to be matched to one of

several possible items, each of which has a fixed capacity. A priority-based allocation mechanism

is a function that maps an agent’s action and priorities to an assigned item. To model institutional

constraints on what priorities can depend on, I assume that agents are classified into a finite number

of segments based on observable characteristics, and the priorities of an agent can depend on the

segment of the agent as well as on random tie-breakers, but not on anything else. Formally, a

priority system specifies for each segment of agents a probability distribution from which priorities

are drawn. This setup ensures that any mechanism based on such a priority system offers agents

from the same segment the same opportunities from an ex-ante perspective. In addition, the priority

system is allowed to restrict the amount of each item that can be allocated by setting a quota

lower than the item’s capacity. Theorem 1 shows that under mild regularity conditions, the set

of allocation outcomes that can be achieved using the DA mechanism can be precisely described

3 The matching markets studied in this paper are called one-sided because only agents may behave strategically based
on their private preferences, whereas the items are under the control of the social planner.
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as the feasible region of a linear program with m2n non-negative decision variables and m + n

additional constraints, where m is the number of segments and n is the number of items. The same

feasible region is also the set of outcomes that can be achieved using any priority-based allocation

mechanism, implying that DA is the most flexible mechanism within this class. Theorem 1 also

shows that the set of outcomes achievable using TTC or SD is much more limited, being equal to

the intersection of the above feasible region with certain non-linear constraints that restrict the

subset of decision variables that can be non-zero.4 To make the characterization practically useful,

the proof of Theorem 1 constructs priority distributions and quotas that can be used to implement

any feasible outcome under DA, TTC, and SD.

The second contribution is developing efficient algorithms to compute the optimal priority dis-

tributions and quotas under a wide class of objective functions. This optimization assumes that

the social planner knows the distribution of preferences of each segment, as represented by an

(n+ 1)-dimensional distribution of cardinal utilities for each of the n items plus an outside option.

In the school choice example, each segment may correspond to a local neighborhood, and the

utility distribution can be estimated from the preference rankings that students submitted in pre-

vious years.5 When maximizing any objective function that is concave in the expected utilities

and assignment probabilities of agents, an optimal priority system under DA can be found by

solving a convex program, which is directly tractable if the number of items is small. When the

number of items is large, the convex program can still be efficiently solved by column generation,

as long as one can efficiently solve a certain assortment planning problem whose objective is social

welfare. In school choice, this problem can be interpreted as finding an optimal set of schools for

students from a given neighborhood, so as to maximize the total utility of these students minus the

opportunity cost they impose on others for occupying limited resources. Theorem 2 derives efficient

algorithms for solving this assortment planning problem under a multinomial logit (MNL) utility

distribution, under a d-level nested logit utility distribution, and under a variant of the Markov

chain based model of Blanchet et al. (2016). The algorithms can also handle certain cardinality

constraints, which is important for the school choice application. These algorithms generalize those

of Rusmevichientong et al. (2010), Gallego and Topaloglu (2014), Li et al. (2015), Xie (2016), and

Feldman and Topaloglu (2017) from maximizing revenue to maximizing social welfare.

The third contribution is applying the above methodology to optimize choice sets and priorities

in school choice. In Section 5, I illustrate using stylized examples that having more choices is not

4 The presence of the non-linear constraints in characterizing the feasible outcomes under TTC and SD is why it is
more difficult to compute the optimal priority system under these mechanisms compared to under DA.

5 There is a large literature on how to estimate students’ utility distributions using revealed preference data. See
Agarwal and Somaini (2019) for a recent review.
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necessarily better for student welfare: in some cases limiting students to their own neighborhood

schools may maximize utilitarian welfare, even if one assumes perfect rationality, symmetric utility

distributions, no peer effects, and no transportation costs. The reason is that a student’s choice to

go to a school does not account for the externality imposed on the student who is displaced. The

results can also be interpreted as giving examples in which the DA mechanism under neighborhood

priorities outperforms the TTC mechanism under the same priorities. In Section 6, I compute the

optimal choice sets and priority distributions for elementary school assignment in Boston. While

the optimization is based on the continuum model, the performance is demonstrated in a simulation

model with discrete agents and stochastic demand, similar to that used by the school board during

the 2013 reform (Pathak and Shi 2013, Shi 2015). The results improve upon those of Ashlagi and

Shi (2015) by obtaining similarly good performance in student welfare, assignment predictability,

and average travel distance, while vastly reducing the cost of school busing, as proxied by the areas

schools have to cover to pick up students and the average number of schools in the choice sets

requiring busing. These metrics were salient in the 2013 reform and their tractable optimization is

now possible as a result of the new algorithms in Theorem 2.

1.2. Relationship to Literature

This paper contributes to the growing literature applying optimization to the design of matching

markets without monetary transfers. The most related works are Su and Zenios (2006) and Ashlagi

and Shi (2015), which also model the choice behavior of agents and derive an optimal allocation

mechanism based on the solution to a linear program (LP). The distinction is that the space of

mechanisms being optimized is different in those papers. Su and Zenios (2006) study the allocation

of cadaver kidneys of heterogeneous quality to patients who are differentiated by a privately known

willingness-to-wait for higher quality organs. The mechanisms they consider are those that pool

kidneys of various qualities into queues and allow patients to choose a preferred queue based on

the desired trade-off between waiting time and quality. Ashlagi and Shi (2015) study the allocation

of heterogeneous items to agents who are differentiated both by a publicly known type and a

privately known utility vector. They optimize over the space of ordinal mechanisms6 that are

incentive compatible and ordinal efficient within type,7 which in their model is equivalent to the

6 An ordinal mechanism is one that only elicits agents’ preference rankings but not their preference intensities. Ashlagi
and Shi (2015) also study cardinal mechanisms, which are allowed to elicit preference intensities, but they only
optimize over ordinal mechanisms.

7 Ordinal efficiency within type means that no coalition of agents within a given type can trade probabilities and
all improve in a first-order stochastic dominance sense. This is a form of a Pareto efficiency assumption that is only
required to hold within each agent type.
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space of DA mechanisms with a single tie-breaker (DA-STB).8 In contrast, the space of mechanisms

considered in this paper includes DA mechanisms with arbitrary tie-breaking rules, and is thus

strictly larger than the space of ordinal mechanisms considered in Ashlagi and Shi (2015), and

disjoint with the space of queuing mechanisms studied in Su and Zenios (2006). Nevertheless, I

use the same data as in Ashlagi and Shi (2015) in the empirical portions and the same discrete

simulation engine, so as to be able to compare results. Furthermore, Theorem 2 generalizes the

computational efficiency results in Ashlagi and Shi (2015) for the MNL utility distribution to much

richer utility distributions and constraints.

Other papers that apply optimization in school choice include Ashlagi and Shi (2014), Feigen-

baum et al. (2020), and Bodoh-Creed (2020), all of which optimize another policy lever than what

is considered here. Ashlagi and Shi (2014) optimize the assignment of students to schools so as to

maximize the chance students from the same neighborhood attend the same school, while keeping

fixed everyone’s assignment probability to every school. Feigenbaum et al. (2020) optimize the

assignment of tie-breakers across successive rounds of school assignment so as to minimize the

change in assignment as the DA mechanism is rerun after previously assigned students drop out

to opt for private schools. Bodoh-Creed (2020) optimizes the assignment of students to schools

given the submitted preference rankings of every student, subject to certain constraints imposed by

incentive compatibility and exogenously given priorities. To implement his framework, the school

board would need to change the assignment algorithm to one that solves a sophisticated linear

program. In contrast, I allow the school board to continue using the DA mechanism, but optimize

the priority system that is used as input.

Previous papers that study the design of priority distributions in the DA mechanism focus

on comparing two specific alternatives: using a single tie-breaker (STB) for each student at all

schools, or using multiple tie-breakers (MTB) that are drawn independently for each student at

each school. Abdulkadiroğlu et al. (2009) conduct simulations using data from New York City and

observe that DA-STB gives more students their top choice, while DA-MTB leaves fewer students

unassigned. Arnosti (2016) and Ashlagi et al. (2019) give theoretical explanations of this observation

by analyzing large market models under different asymptotic assumptions.9 Jeong (2018) argues

that DA-MTB is better than DA-STB in promoting school diversity.

8 The characterization result in Ashlagi and Shi (2015) on ordinal mechanisms is closely related to an earlier insight
due to Liu and Pycia (2016) that all symmetric, asymptotically Pareto efficient, and asymptotically strategy-proof
mechanisms lead to the same allocation in large markets. Pycia (2019) extends these ideas and show that if one
evaluates mechanisms only using anonymous summary statistics, then even non-symmetric mechanisms would look
nearly identical, as long as the mechanisms are all Pareto efficient and strategy-proof. This paper does not assume
any notion of Pareto efficiency, and thus the mechanisms studied are outside the characterizations in Liu and Pycia
(2016), Ashlagi and Shi (2015) and Pycia (2019).

9 Ashlagi and Nikzad (2017) refine the story by relating the comparison of DA-STB and DA-MTB to the popularity
of schools: for students assigned to popular schools that are over-demanded, DA-STB dominates DA-MTB. On the
other hand, for students assigned to non-popular schools, neither dominates the other.
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Another strand of literature studies how to implement quotas for various types of students

in order to more effectively implement affirmative action and enforce social-economic diversity

(Kojima 2012, Hafalir et al. 2013, Ehlers et al. 2014, Kominers and Sönmez 2016, Dur et al. 2018).

In contrast, this paper does not consider quotas that apply only to a certain subset of students:

such policy tools are redundant in a large market model with highly flexible priorities, since one

can always manipulate the distributions of priorities to accomplish the same goals.

2. Model: Priority-Based Allocation Mechanisms

There is a unit mass of infinitesimal agents, each of whom is to be matched to one of n possible

items. Let the items be indexed by j ∈ [n] := {1,2, · · · , n}. Multiple agents may be assigned to the

same item, and the maximum mass of agents that can be assigned to item j is given by a capacity

cj. Unmatched agents receive an outside option, which I refer to as item 0, with capacity c0 =∞.

Let J = [n]∪ {0} denote the set of items including the outside option. For succinctness, I refer to

a particular agent using the pronoun “he,” and the social planner using the pronoun “she.”

Based on institutional constraints on what priorities can depend on, the social planner classifies

agents into m possible market segments based on observable characteristics, with λt > 0 denoting

the mass of agents of segment t∈ [m]. While agents from one segment can receive a systematically

different treatment than agents of another segment, agents from the same segment must be treated

in an identical way from an ex-ante perspective.

Each agent i has a (n+ 1)-dimensional utility vector ui ∈Θ, where the component uij denotes

his cardinal utility for being matched to item j ∈ J . Assume that preferences are always strict,

meaning that Θ is the subset of Rn+1 in which no two components are equal. For an agent of

segment t, his utility vector ui is drawn from a segment-dependent utility distribution Ft, which is

a probability measure on Θ. A market is summarized by the tuple M = (m,n,λ, c,F ).

A matching µ for a market M specifies a function µt : Θ× J → [0,1] for each agent segment t,

where µt(u, j) specifies the probability that an agent with utility vector u ∈ Θ matches to item

j ∈ J . The function must satisfy the following constraints: the probabilities must add up to one,∑
j∈J µt(u, j) = 1 for each u∈Θ, and the item capacities must be respected.

(Capacity constraint)
∑
t∈[m]

λtptj(µ)≤ cj for each j ∈ [n], (1)

where ptj(µ) :=

∫
u

µt(u, j)dFt. (2)

ptj(µ) is the proportion of segment t agents assigned to item j ∈ J under the matching µ.

One innovation of the model in this paper is the notion of a priority-based allocation mechanism,

which I formally define in this paragraph and give an intuitive explanation in the next: A priority-

based allocation mechanism for a market M is characterized by a tuple X = (A,Π,G,x), where A is
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a finite set of possible actions, Π is an arbitrary set of possible priorities, Gt is a probability measure

on Π that is indexed by the agent segment t, and x :A×Π→ J is an allocation function that maps

each action a∈A and priority π ∈Π to an assignment outcome x(a,π)∈ J . The allocation function

x must satisfy the following two constraints: First, an agent must always be allowed to take his

outside option: for any priority π ∈Π, there exists an action a ∈A such that x(a,π) = 0. Second,

the allocation must not violate item capacities. Formally, let the matching induced by market M

and mechanism X be defined as µM,X , where

µM,X
t (u, j) := Pπ∼Gt

(
uj = max

a∈A
ux(a,π)

)
. (3)

The allocation function x is such that µM,X satisfies the capacity constraint (1). Note that the

probability expression in (3) uses the assumption that utilities for different items are never equal.

A mechanism X = (A,Π,G,x) can be interpreted as follows. Each agent i of segment t is given

a priority πi drawn independently from the distribution Gt, and chooses an action a ∈ A. His

assignment is a deterministic function of his action and priority. Equation (3) says that each agent

always chooses the utility-maximizing action given his priority realization. This property would be

satisfied if the agent knows his priority realization π at the time of choosing his action, or if the

function x is such that the utility maximizing action a is independent of the priority realization π,

such as in the deferred acceptance or top trading cycles mechanisms as described in Section 2.1.10

Conceptually, one can think of the assignment for each agent as also dependent on the aggre-

gate distribution of actions and priorities of other agents. However, in the continuum model, the

aggregate behavior of the market is deterministic, so can be built into the allocation function x.

Nevertheless, it is convenient to describe preferences and priorities using probability distributions

as this implies certain anonymity and fairness constraints: the social planner does not know the

preferences of individual agents when designing the mechanism, and agents from the same segment

must be given the same opportunities from an ex-ante perspective.

The social planner’s goal is to find a priority-based allocation mechanism X = (A,Π,G,x) for a

given market M = (m,n,λ, c,F ) in order to maximize a certain function of the induced matching

µM,X . Before Section 4, the analysis does not depend on any specific objective function. Section 5

focuses on maximizing the utilitarian welfare, which is the aggregate expected utility of all agents.

In Section 6, the school choice optimization for Boston incorporates not only utilitarian welfare,

but measures of equity and transportation cost. Appendix C shows how to efficiently maximize

any objective function that is jointly concave in the expected utility of each agent segment and the

assignment probabilities ptj(µ).

10 An example of a mechanism outside of the framework in this paper the Boston mechanism used for school
choice (Abdulkadiroğlu and Sönmez 2003, Abdulkadiroğlu et al. 2011), as the optimal action for an agent depends on
his priority realization, which he does not know when choosing his action. However, if the Boston mechanism were to
reveal to agents their priority realizations before they choose their actions, then it would be within the framework.
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2.1. Examples of Mechanisms

2.1.1. Serial Dictatorship (SD) The mechanism is parameterized by segment-dependent

priority distributions Gt and by a n-dimensional quota vector q. Each Gt is a continuous probability

measure on Π = [0,1]. The quota qj specifies the mass of item j to allocate, and may be lower than

the capacity cj, thus allowing the social planner to withhold supply if desired.

Agents are selected in order of decreasing priority and each selected agent picks his favorite

item whose quota has not been depleted by previously selected agents. Formally, the set of actions

is A = J , and for each action a ∈ J and priority π ∈ [0,1], the allocation x(a,π) depends on a

n-dimensional cutoff vector zSD(M,G,q), whose jth component represents the lowest priority needed

to access item j:

x(a,π) =

{
a if a∈ [n] and π≥ zSD(M,G,q)

a ,

0 otherwise.
(4)

The cutoff vector zSD(M,G,q) is uniquely determined by the utility and priority distributions, the

mass of each segment, and the quota of each item. Appendix A gives an algorithmic description of

zSD(M,G,q) based on Bogomolnaia and Moulin (2001).

Random serial dictatorship (RSD) is the special case in which all agent segments share the same

priority distribution, which implies that agents are ordered uniformly randomly regardless of their

segment. Thus, RSD only needs to be parameterized by a quota vector q.11

2.1.2. Agent-Proposing Deferred Acceptance (DA) The mechanism is parameterized

by a n-dimensional quota vector q≤ c, and by segment-dependent priority distributions Gt, each of

which is a probability measure over the space of priorities Π. Unlike in SD, Π is not one-dimensional,

but is a bounded subset of Rn. The priority realization of an agent i is a vector πi ∈Π, where the

component πij denotes his priority score for item j, with higher values being better.

The action space A is the set of permutations over J = [n] ∪ {0}, so that each action a ∈ A
specifies the agent’s complete preference ranking over items, with the understanding that relative

rankings among items ranked worse than the outside option will not be considered. To denote a

permutation, let aj = 1 if item j is the agent’s first choice, aj′ = 2 if j′ is the agent’s second choice,

and so on. Hence, arg minj∈S{aj} denotes the agent’s favorite item among the set S ⊆ J .

Given the market M and the priority distributions G, the (agent-proposing) DA mechanism

specifies a n-dimensional cutoff vector zDA(M,G,q), with the jth component denoting the minimum

priority needed to access item j. The allocation function is simply to match each agent to his

favorite item for which his priority score is at least equal to the cutoff:

x(a,π) = arg min
j∈J

{
aj : j = 0 or πj ≥ zDA(M,G,q)

j

}
. (5)

11 In random serial dictatorship, since everyone shares the same priority distribution G, we can without loss of
generality assume that G= Uniform(0,1), since only relative priorities matter.
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The cutoff vector zDA(M,G,q) is the result of the following iterative procedure: For each j ∈ [n],

initialize the priority cutoff zj to be the lowest possible priority score for the item.

1. Each agent i applies to his favorite item among the set specified in (5), which includes his

outside option 0 and any item j for which his priority score meets the cutoff, πij ≥ zj.
2. For each item j ∈ [n], if the mass of current applicants exceeds the quota qj, then increase the

cutoff zj by the smallest amount so that the mass of applicants whose priority score meets

the cutoff is exactly qj. If any cutoff is updated, go back to Step 1.

The algorithm terminates when the cutoff vector is unchanged between two rounds of iteration. In

a discrete market, the algorithm always terminates after finitely many iterations. In a continuous

market, the algorithm might not terminate, but Azevedo and Leshno (2016) and Abdulkadiroğlu

et al. (2015) show that the cutoff vector z converges to a limit, denoted by zDA(M,G,q). A formal

definition of the cutoff vector is given in Appendix A.

A special case of the mechanism is DA with single tie-breakers (DA-STB), which is parametrized

by the quota vector q and by a deterministic m×n matrix of priority boosts b. The priority score

πij of an agent i of segment t for item j is defined as πij = btj + δi, where btj is denotes the priority

boost of segment t agents for item j and δi ∼Uniform(0,1) is a random tie-breaker that is common

for the same agent across all items.

The agent-proposing DA mechanism is strategyproof for the agents (Dubins and Freedman 1981,

Roth 1982, Abdulkadiroğlu and Sönmez 2003), which implies regardless of an agent’s priority

realization π, the optimal action is to submit his true preference ranking. Hence, the mechanism

fits within the framework of priority-based allocation mechanisms.

2.1.3. Top Trading Cycles (TTC) As with DA, this mechanism is parameterized by a quota

vector q ≤ c and segment-dependent priority distributions Gt, each of which is a measure on the

space of priorities Π⊆Rn. The action space A is the set of permutations of J . The difference with

DA is that agents can trade priorities among themselves, so an agent with a good priority score to

a very popular item can trade in his priority to obtain almost any item. For technical reasons, Π

is assumed to satisfy additional regularity conditions as given in Assumption 1 of Appendix A.

In a model with discrete agents, the TTC mechanism repeatedly iterates the following procedure

until every agent is matched:

1. Each agent points to his favorite item among those whose quota has not yet been depleted. If

an agent’s favorite item is his outside option, he is immediately matched to it.

2. Each non-depleted item points to the unmatched agent with the highest priority for the item.

Within the set of directed arrows between agents and items, there must be at least one cycle.

Match each agent in this cycle to the item he points to, and decrease the quota of every item

in this cycle by 1. If not every agent has been matched, go back to the above step.
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The version of the TTC mechanism considered in this paper is the one derived by Leshno and

Lo (2018) for a continuum model, which they show approximates the outcome of the discrete TTC

mechanism in large finite markets. The allocation function for this mechanism can be written as

x(a,π) = arg min
j∈J

{
aj : j = 0 or πk ≥ zTTC(M,G,q)

jk for some k ∈ [n]
}
, (6)

where z
TTC(M,G,q)
jk specifies the minimum priority score for item k that an agent needs in order to

trade in that priority to obtain item j. I give a precise definition of the priority cutoffs zTTC(M,G,q)

in Appendix A. As with DA, the TTC mechanism is strategyproof for agents (Abdulkadiroğlu and

Sönmez 2003), which implies that agents do not need to know their priority realizations to choose

an optimal action.

3. Solution Technique for Optimal Mechanism Design
3.1. Linear Program for Optimal Budget Set Probabilities

Given a priority-based allocation mechanism X = (A,Π,G,x), define the budget set BX
π corre-

sponding to a priority realization π ∈Π to be the set of possible items an agent with priority π can

be matched to under some action BX
π := {x(a,π) : a∈A}.

Definition 1. Given a market M and a mechanism X, define the mechanism’s budget set

probabilities as a m × 2n+1 non-negative matrix yX , in which the entry yXtS ∈ [0,1] denotes the

probability that an agent of segment t ∈ [m] receives a priority that yields the budget set S ⊆ J :

yXtS := Pπ∼Gt (S =BX
π ).

Note that all relevant information for determining the matching µM,X defined in (3) is encoded

in the budget set probabilities yX . Moreover, the same matching can be implemented using the

following reduced-form mechanism: offer each agent of segment t a budget set S with probability

ytS, and let him choose his favorite item within the offered set. I call this the random assortment

mechanism with assortment probabilities y.

The problem of finding the optimal priority-based allocation mechanism is equivalent to finding

the optimal budget set probability matrix y, which can be formulated as a finite-dimensional

mathematical program. Define Ut(S) to be the expected utility of a segment t agent under budget

set S ⊆ J , and Pt(j,S) is the probability that the agent’s favorite item within S is j:

Ut(S) :=Eu∼Ft
[
max
j∈S

uj

]
, (7)

and Pt(j,S) := 1(j ∈ S)Pu∼Ft
(
uj = max

j′∈S
uj′

)
. (8)

Electronic copy available at: https://ssrn.com/abstract=3425348



12 Shi: Optimal Priority-Based Allocation Mechanisms

The following linear program (LP) finds the budget set probability matrix y that maximizes

utilitarian welfare. All summations of segment t are over [m] := {1,2, · · · ,m} and all summations

of set S are over the power set 2J .

Maximizey
∑
t,S

λtUt(S)ytS (9)

s.t. ytS ≥ 0 (10)

(Capacity)
∑
t,S

λtPt(j,S)ytS ≤ cj for each item j ∈ [n]. (11)

(Valid probabilities)
∑
S

ytS = 1 for each segment t∈ [m]. (12)

(Outside option) ytS = 0 if S 63 0. (13)

Definition 2. Define the set Y M of feasible budget set probabilities to be the feasible region

of the above LP. This is the set of m× 2n+1 matrices satisfying Constraints (10)-(13).

The above LP is analogous to the choice-based linear program from the network revenue man-

agement literature (Gallego et al. 2004, Liu and van Ryzin 2008), which optimizes the probability

of offering a customer each subset S of products, so as to not violate the capacity constraint of each

item. The difference is that the objective function (9) represents not revenue but social welfare.

Ignoring the variables that are always zero by (13), the number of decision variables in the above

LP is m2n, which is manageable when n is small. I show in Section 4 that even when n is large,

the LP can be efficiently solved if the utility distribution satisfies certain parametric assumptions.

3.2. Implementation of Desired Budget Set Probabilities

Definition 3. A budget set probability matrix y ∈ Y M is said to be implemented by a mecha-

nism X if y= yX , where yX is defined in Definition 1 and Y M in Definition 2. Moreover, y is said

to be implementable using a given class of mechanisms if there exists a mechanism within the class

that implements y.

For example, a budget set probability matrix y ∈ Y M is implementable using the class of DA

mechanisms if there exists a priority distribution G and a quota vector q that gives the budget

set S to a segment t agent with probability ytS. Every y ∈ Y M is implementable using the class

of random assortment mechanisms. One obstacle to implementability using DA is the multiplicity

of stable matchings, as DA only finds the agent-optimal stable matching. However, Azevedo and

Leshno (2016) have shown that multiplicity of stable matchings almost never occurs in a large

market model, and one technical assumption that rules them out is given in Definition 4. This

assumption is satisfied for example if for each segment, any preference ranking of items is possible.

Definition 4. A market M = (m,n,λ, c,F ) is said to be regular if in each segment, the proba-

bility that the outside option is an agent’s favorite item among a given set S is strictly decreasing

in the set S: if {0} ⊆ S ( S′, then Pt(0, S)>Pt(0, S
′) for every t∈ [m].
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The following theorem characterizes whether a budget set probability matrix y is implementable

using each of the classes of mechanisms described in Section 2.1, depending on whether y satisfies

certain easily verifiable conditions stated in Definition 5.

Definition 5. A budget set probability matrix y ∈ Y M is said to be

a) nested within segment if for all t, ytS > 0 and ytS′ > 0 implies that either S ⊆ S′ or S ⊇ S′;
b) nested if for all t and t′, ytS > 0 and yt′S′ > 0 implies that either S ⊆ S′ or S ⊇ S′;
c) non-degenerate if each item that is allocated with zero probability is either present in all

budget sets or absent from all: let A= {S : ytS > 0 for some t}, then if item j ∈ [n] is such that

the left hand side of (11) is zero, then either j ∈ S for all S ∈A, or j 6∈ S for all S ∈A.

Theorem 1 (Characterization of Mechanisms). Let Y M be the set of feasible budget set

probabilities as in Definition 2.

a) If a market M is regular, then

i) any budget set probability matrix y ∈ Y M is implementable using the class of deferred

acceptance (DA) mechanisms.

ii) a budget set probability matrix y ∈ Y M is implementable using the class of DA-STB mech-

anisms if and only if y is nested within segment.

b) For any market M , a budget set probability matrix y ∈ Y M is implementable using the class

of top trading cycles (TTC) mechanisms if and only if y is nested and non-degenerate. The

same holds if TTC is replaced by serial dictatorship (SD).

All priority based matching mechanisms = DA

DA-STB
SD=TTC

Figure 1 Hierarchy of mechanisms according to Theorem 1 for regular markets. Deferred acceptance (DA)

with arbitrary quotas and priorities is flexible enough to implement any feasible budget set probability matrix. DA

with single tie-breakers (DA-STB) is strictly more flexible than serial dictatorship (SD) or top trading cycles

(TTC), which are equivalent to each other. Intuitively speaking, TTC is less flexible than DA because of its

ex-post Pareto efficiency, which substantially limits the possible budget sets.

Part a-i) of the above theorem implies that deferred acceptance (DA) is a very flexible class of

mechanisms: for regular markets, optimizing over the space of priority distributions and quotas

under DA is equivalent to optimizing over the space of all priority-based allocation mechanisms.12

12 Note that the definition of the set YM in (10)-(13) is based on the definition of segments, so the flexibility of DA
depends on the policy makers’ choice of what observable information the priorities can depend on. If the priorities
must be identically distributed across all agents, then the polyhedron YM of implementable outcomes has 2n− (1+n)
dimensions. If priorities can systematically differ across m segments, then the polyhedron is larger, with m2n−(m+n)
dimensions.
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14 Shi: Optimal Priority-Based Allocation Mechanisms

I show in Appendix H.1.1 that the assumption that the market is regular is necessary for the result

to hold, but the assumption can be removed if we enrich the class of DA mechanisms to allow for

more complex policy levers, such as having a minimum threshold on an agent’s priority score for

him to be eligible for an item.

Parts a-ii) and b) characterize whether DA with single tie-breakers (DA-STB), serial dictatorship

(SD), or top trading cycles (TTC) can be used to implement the desired budget set probabilities.

For example, if the market is regular, then any outcome that can be implemented using TTC can

also be implemented using DA-STB, but not vice versa. This is because in a regular market M ,

every y ∈ Y M is non-degenerate,13 and the condition of being nested within segment is strictly

weaker than being nested. The proof of Theorem 1 in Appendix H.1 is constructive and specifies

in each case the parameters that can be used to implement the desired budget set probabilities.

The equivalence in part b) between TTC and SD is closely related to Lemma 1 of Abdulka-

diroğlu and Sönmez (1998), which states that for one-to-one matching markets, the set of outcomes

implementable by either of these classes of mechanisms is exactly equal to the set of ex-post Pareto

efficient matchings. The condition of nested budget sets is related to Pareto efficiency as non-nested

budget sets imply an opportunity for trade: if sets S and S′ are non-nested, with j ∈ S\S′ and

j′ ∈ S′\S, then an agent who is given budget set S but prefers j′ may trade with another agent

who is given budget set S′ but prefers j. However, the proof in Abdulkadiroğlu and Sönmez (1998)

is in a one-to-one matching model and does not directly carry over to the setting in this paper.

3.3. Relationship to Models with Discrete Agents

All the results so far pertain to the large market model with a continuum of agents. However, the

LP in Section 3.1 can also be used to derive an upper-bound to the welfare achievable in a model

with discrete agents for the DA mechanism under arbitrary priorities and quotas. This is because

in a discrete model, the agent-proposing DA mechanism still matches each agent to his favorite

item within a certain budget set, which is independent of the agent’s own preferences. (This follows

from strategyproofness and is formally shown in Appendix B.) The difference in the discrete model

is that the budget sets may be correlated across agents, whereas in the continuum model they are

independent across agents. Regardless, if one defines ytS in the discrete model to be the probability

that a type t agent receives the budget set S, and λt to be the number of segment t agents, then

the matrix y satisfies the constraints of the LP given by (10)-(13), so the optimal LP objective

is an upper bound to the utilitarian welfare. The same statement also holds for SD and TTC, as

budget sets are also well defined in the discrete versions of these mechanisms.14

13 In a regular market, Pt(j,S)≥ Pt(j, J)≥ Pt(0, J\{j})−Pt(0, J)> 0. Hence, if the LHS of (11) is zero, then ytS = 0
for every S 3 j, so every y ∈ YM is non-degenerate.

14 In the discrete version of SD, an agent’s budget set is the set of items that are not yet depleted. In the discrete
version of TTC, the existence and definition of budget sets are shown in Leshno and Lo (2018). The concept of budget
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4. Efficient Computation

The LP in Section 3.1 for computing the optimal budget set probabilities may be difficult to solve

directly when the number of items n is large, since the number of decision variables is exponential in

n. Nevertheless, Appendix C uses a standard column generation argument to show that the LP can

be efficiently solved provided that the following assortment planning sub-problem can be efficiently

solved. Throughout this section, the subscript t is omitted for simplicity, since the sub-problem

always applies to one agent segment at a time.

Definition 6 (Socially Optimal Assortment Planning). Given a parameter α ≥ 0, a

revenue vector r ∈ Rn, a utility distribution F , which is a probability measure on Θ⊆ Rn+1, and

a constraint set Ψ⊆ 2J , define the socially optimal assortment planning problem as finding a set

S ∈Ψ that maximizes the weighted sum of expected utility and expected revenue:

max
S∈Ψ

αU(S) +
n∑
j=1

rjP (j,S), (14)

where U(S) =Eu∼F [maxj∈S uj] and P (j,S) = 1(j ∈ S)Pu∼F (uj = maxj′∈S uj′) are as in (7) and (8).

When applied to solve the LP in Section 3.1, the quantity −rj is equal to the shadow price of the

capacity constraint (11) for item j, so the objective in (14) can be interpreted as maximizing social

welfare, as it trades off the utilities for one segment with the negative externalities imposed on

others. When α= 0, the above problem is identical to the revenue-maximizing assortment planning

problem that has been well-studied in the revenue management literature. When α > 0, one also

has to consider the utility term U(S), so the problem has a different mathematical structure.

Theorem 2 below shows that even with a large number of items, the socially-optimal assortment

planning problem can be efficiently solved under the following families of utility distributions.

• Multinomial Logit (MNL): The utility of an agent i for item j ∈ J is distributed as

uij = uj + εij, (15)

where uj is a constant representing the average utility of the agent segment for item j, and εij

represents the idiosyncratic component of agent preferences and is i.i.d. drawn from a Gumbel

distribution, which is also known as the type-I extreme value distribution.

• 2-Level Nested Logit: This generalizes the MNL utility distribution to allow for positive

correlations in an agent’s utilities for similar items. The set of items J is partitioned into nests,

set also appears in an earlier analysis in Pycia and Ünver (2017), but there the meaning is different as it refers to the
set of items that can be accessed within a particular round of TTC.
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J =
⋃̇
sJs, with similar items in the same nest s. Moreover, the outside option 0 is always in

its own nest by itself. The utility of agent i for an item j in nest s is

uij = uj + δis + εij, (16)

where uj and εij are analogous to the MNL utility distribution, and the additional term δis

is common for all items within the same nest s. The terms δis and εij are assumed to be

independent, with the sum δis + εij being Gumbel distributed with scale parameter 1, and εij

being Gumbel distributed with scale parameter 0< ηs ≤ 1.

• d-level Nested Logit: This generalizes the 2-level nested logit to allow each nest to be further

partitioned into sub-nests and so on, with d being the maximum length of a chain of sets

J ) Js1 ) Js2 ) · · ·) Jsd−1
. A precise description is given in Appendix H.2.2.

• Markov Chain Based Choice Model: A variant of a model proposed by Blanchet et al.

(2016) that is designed to be a tractable approximation of a general random utility model. A

precise description is given in Appendix H.2.5.

The constraint sets Ψ referred to in Theorem 2 are as follows.

• Trivial: The outside option must always be accessible: Ψ = {S ⊆ J : 0∈ S}.

• Cardinality: In addition to the outside option being included, there exists a constant k≤ n

and a subset of items S0 ⊆ [n] such no more than k items from S0 can be included: Ψ = {S ⊆

J : 0∈ S, |S ∩S0| ≤ k}.

• Cardinality within nest: For the 2-level nested logit utility distribution, the number of items

that can be included from nest s is at most ks: Ψ = {S ⊆ J : 0∈ S, |S∩Js| ≤ ks for each nest s}.

Only trivial constraints are needed for the LP in Section 3.1, but cardinality constraints are used

to limit school busing costs in Section 6. Given functions f(n) and g(n), recall that f(n) =O(g(n))

if there exists a constant C > 0 such that f(n)≤Cg(n) for all sufficiently large n.

Theorem 2 (Efficient Computation). For each of the following combinations of utility dis-

tribution F and constraint set Ψ, there exists an algorithm to compute an optimal solution to the

socially optimal assortment planning problem (14) with the following runtime guarantees:

a) multinomial logit (MNL) utilities and cardinality constraint: O(n2 logn);

b) d-level nested logit utilities and trivial constraint: O(dn logn);

c) 2-level nested logit utilities and cardinality constraint within nest: O(n2 logn);

d) the Markov chain based choice model and trivial constraint: solving a linear program with O(n)

variables and O(n) constraints.

The guarantees in Theorem 2 are asymptotically the same as the best known for the revenue

maximizing special case with α = 0, and the theorem shows that the general case with α ≥ 0
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can also be solved in similar numbers of operations. The efficient algorithms and their proofs of

correctness are presented in Appendix H.2. For parts a) and b), the algorithms are modifications of

those of Rusmevichientong et al. (2010), and Li et al. (2015), which are both based on identifying

a small candidate set out of which an optimal assortment can be found. A key lemma shows that

the same candidate set for the α= 0 case also contains an optimal assortment for any α≥ 0, and

this is true for any Generalized Extreme Value (GEV) utility distribution, which includes the MNL

and nested logit utility distributions as special cases. For part c), the proof combines ideas from

parts a) and b). The overall algorithm is similar to that in Xie (2016), but generalizes it from α= 0

to α≥ 0. For part d), the proof is based on modifying the LP-based solution approach of Feldman

and Topaloglu (2017). A consequence of the proof of part b) is as follows:

Proposition 1 (Setting in which RSD is Optimal). Suppose there is a single segment,

whose utilities follow a d-level nested logit distribution. Random serial dictatorship with quotas

equal to capacities maximizes utilitarian welfare among all priority-based allocation mechanisms.

When priorities cannot depend on agent characteristics but only one random tie-breakers, then

Proposition 1 implies that RSD is optimal if the distribution of utilities follow a d-level nested-logit

structure. When there are multiple agent segments, each of whose utilities follow a d-level nested

logit utility distribution, Proposition 1 implies that there exists a priority boost matrix such that

DA-STB with quotas equal to capacities maximizes utilitarian welfare among all priority-based

allocation mechanisms. The proof of Proposition 1 is in Appendix H.3.

5. More Choices is Not Necessarily Better

An ongoing debate in public school policy is whether to limit students to a neighborhood school, or

to provide additional options under a so-called open enrollment policy (Mikulecky 2013). Among

school districts with open enrollment, another question is how much choice should be provided.

For example, Boston Public Schools (BPS) implemented in 1988 a 3-Zone Plan with about 30

school options for each elementary school student, but there were attempts by the district to cut

down the number of choices in 2004 and in 2009, both of which failed due to resistance by the

public. After much debate, the city finally changed to an assignment plan in 2014 with about half

as many choices as before (Shi 2015). Reasons for limiting choice includes reducing busing costs for

the city, increasing community cohesion, and simplifying the assignment system. Before analyzing

the Boston context in detail in Section 6, I illustrate here using stylized examples that it may be

beneficial to limit choice even if the only consideration is to maximize student welfare.

A potential benefit of open enrollment is that students can be matched to a school that best

tailors to their individual preferences. However, when school capacities are limited, a student’s
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choice to go to a school does not incorporate the externality imposed on the student who is

displaced from the school.15 Therefore, it is possible that implementing open enrollment would

attract new applicants who benefit less from the school than the neighborhood students they

displace. Proposition 2 illustrates this argument using the following two-school example.

Example 1. There are two schools j ∈ {1,2} with equal capacities, c1 = c2, located respectively

in two neighborhoods t ∈ {1,2}. There is a unit mass of students in each neighborhood, each

of whose utility for the neighborhood school is drawn i.i.d. from a distribution F0, and for the

other school from a distribution F1. Each student also has an outside option drawn i.i.d. from a

distribution H. (One can interpret the outside option assumption as every student being eligible

to at least one other school with excess capacity; these other schools may be private options, or

under-demanded public schools not explicitly modeled here.) Assume that the demand of each

neighborhood for each school is strictly positive, and that the expected gain for being assigned to

the neighborhood school is weakly higher than to the other school: if u0 ∼ F0, u1 ∼ F1 and α∼H,

then P(u0 ≥ α)> 0, P(u1 ≥ α)> 0, and E[u0−α|u0 ≥ α]>E[u1−α|u1 ≥ α]. Moreover, assume that

capacities are scarce so that neighborhood applicants alone can fill all seats: c1 = c2 ≤ P(u0 ≥ α).

Figure 2 Illustration of Example 1: the circles represent the two neighborhoods and the rectangles the two

schools. A student’s utility for his neighborhood school is distributed according to F0 and for the other school

according to F1. Outside options are distributed according to H. School capacities are scarce.

Define the neighborhood assignment plan as offering each student from neighborhood t the

budget set {0, t} with probability p and {0} otherwise, where p is the maximum probability that

does not violate the capacity constraint (11). Define the open enrollment plan as running RSD with

quotas equal to capacities. By symmetry and by Theorem 1 b), serial dictatorship or top trading

cycles under any priority distribution yields the same utilitarian welfare as RSD in this example.

Unlike with neighborhood assignment, open enrollment is guaranteed to be ex-post Pareto efficient.

15 See Appendix H.6 for an one-item example in which it is easy to quantify the externality one student’s choice
imposes on another student.
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Proposition 2 (Analysis of Example 1). In Example 1, the neighborhood assignment plan

maximizes utilitarian welfare among all priority-based allocation mechanisms if and only if the

following inequality holds:

E[u0−α|u0 ≥ α]≥E[max(u0, u1)−α|max(u0, u1)≥ α], (17)

where u0 ∼ F0, u1 ∼ F1 and α∼H and the random variables are independent. On the other hand,

the open enrollment plan (RSD) is optimal if and only if the above inequality is reversed.

Inequality (17) can be interpreted as follows. The left hand side (LHS) is the value of being

assigned to one’s neighborhood school conditional on preferring it over one’s outside option. The

right hand side (RHS) is the value of being assigned to one’s favorite school conditional on preferring

it over one’s outside option. Every student by definition weakly prefers his favorite school over his

neighborhood school, but the RHS also includes students with utilities u1 > α > u0, who would

settle for their outside option under a neighborhood assignment plan but would compete for space

under the open enrollment plan. If the proportion of such students is large and their expected gain

E[u1−α|u1 >α>u0] is small compared to the LHS, then the neighborhood assignment plan may

achieve higher aggregate welfare.

For a concrete example in which neighborhood assignment is optimal, consider the following

parameters: the outside option is normalized to zero, α = 0. Every student’s utility for his own

neighborhood school follows a two point distribution, in which u0 = H with probability p and

u0 =L otherwise; every student’s utility for the other school is u1 = ε. The values are such that L<

0< ε<H. As a result, the LHS of (17) is H and the RHS is pH+(1−p)ε <H. In stylized language,

students either love or hate their neighborhood school, and those who hate their neighborhood

school would be happy with their outside option. However, everyone marginally prefers the other

school to his outside option, so those who hate their neighborhood school would still apply to the

other school if given the opportunity. Hence, it is optimal for each school to save its seats for the

neighborhood applicants, as these students benefit the most from being assigned there.

The previous example relies on students having higher expected gains from being assigned to

their neighborhood school. Proposition 3 shows that this assumption is not necessary, as a similar

result holds even with ex-ante symmetric utilities if capacities remain scarce and the outside option

distribution is sufficiently left skewed.

Example 2. There are n schools located in n neighborhoods respectively. School capacities are

possibly unequal but the supply-demand ratio is uniform across neighborhoods: cj/λj = cj′/λj′ for

all j, j′ ∈ [n]. The utility of a student for each school is drawn i.i.d. from a continuous distribution

F . Outside options are drawn i.i.d. from a continuous distribution H, which is assumed to have a
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weakly larger upper support: if F (x) and H(x) are the CDFs, then F (x)< 1 implies that H(x)<

1.16 As in Example 1, there is sufficient demand from within the neighborhood to fill school capacity:

c1/λ1 ≤ Pu∼F,α∼H(u≥ α).

Figure 3 Illustration of Example 2: the circles represent the n neighborhoods and the rectangles the n schools.

School sizes may be unequal, but are assumed to be proportional to respective neighborhood populations.

Student preferences for the n schools are i.i.d. drawn from F , which is the same across schools and

neighborhoods. Outside options are distributed according to H, and capacities are scarce as in Example 1.

Definition 7. A distribution with CDF H(x) and density h(x) has a heavy left-tail if the

left hazard rate h(x)/H(x) is weakly increasing in x ∈ (x,x), where x := inf{x : H(x) > 0} and

x := sup{x :H(x)< 1}. (It is possible that x=−∞ or x=∞.) Conversely, the distribution has a

light left-tail if h(x)/H(x) is weakly decreasing in x∈ (x,x).17

Distributions with a heavy left-tail are left skewed, such that the density h(x) increases at a rate

higher than the CDF H(x). Examples include the negated Pareto distribution, and the negated

Weibull distribution with shape parameter less than or equal to one. Examples of distributions

with light left-tails include the uniform, the normal, or the Gumbel distributions. The negated

exponential distribution is in both classes and represents the borderline between the two.

Proposition 3 (Analysis of Example 2). In Example 2, the neighborhood assignment plan

maximizes utilitarian welfare among all priority-based allocation mechanisms if the outside option

distribution H has a heavy left-tail. The open enrollment plan (RSD) maximizes utilitarian welfare

if H has a light left-tail.

The intuition behind Proposition 3 is as follows. When the school district changes from a neigh-

borhood assignment plan to an open enrollment plan, the students who are assigned to one of the

schools benefit from the better matches, while more students are assigned to an outside option not

16 The proof of Proposition 3 only requires the assumption that H has a weakly larger upper support when H has a
heavy left-tail, but not when H has a light left-tail.

17 An equivalent characterization of a heavy left-tail is that the CDF is log-convex: log(H(x)) is convex in x∈ (x,x).
Similarly, a distribution has a light left-tail if and only if its CDF is log-concave: log(H(x)) is concave in x∈ (x,x).
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because they like it but because they have no other alternative. If the outside option distribution

has a heavy left-tail and its upper support is larger than a student’s utility for any school, then

most students are okay with their outside option, but a few are extremely unhappy about it. Under

these assumptions, it is more important to offer as many students as possible at least one alter-

native to their outside option, rather than to provide a better match for the assigned students, so

the neighborhood assignment plan is better. On the other hand, when outside options are light

left-tailed, the benefit of better matches for the assigned students outweighs the possible harm of

leaving more students with only their outside option, so open enrollment is better.18

The proofs of Propositions 2 and 3 are in Appendices H.4 and H.5, and are based on analytically

solving the LP in Section 3.1 to reveal the structure of the optimal budget sets.

5.1. Comparison of DA and TTC under Neighborhood or Sibling Priorities

The results in the previous section can also be interpreted as stylized comparisons of the DA and

TTC mechanisms. This is because the neighborhood assignment plan in Examples 1 and 2 can be

interpreted as implementing the DA mechanism while prioritizing students from the neighborhood

over non-neighborhood students and breaking remaining ties randomly. Similarly, the open enroll-

ment plan can be interpreted as implementing the TTC mechanism with the same priorities. The

notion of neighborhood can also be replaced by any other affinity between students and schools,

such as having a sibling currently assigned at the school.

As documented in Abdulkadiroğlu et al. (2006), policy makers in Boston were recommended in

2005 to adopt TTC due to its ex-post Pareto efficiency, but decided to choose DA, which is not

ex-post Pareto efficient under neighborhood priorities. Similarly, school officials in New Orleans

chose to migrate to DA after using TTC for one year (Abdulkadiroğlu et al. 2017). Rationales for

choosing DA over TTC that are provided in the literature include the complexity of explaining

TTC and not eliminating justified envy (Abdulkadiroğlu et al. 2006, Pathak 2017, Abdulkadiroğlu

et al. 2017). Propositions 2 and 3 suggest an additional rationale based on maximizing aggregate

welfare: Since students who are given neighborhood or sibling priorities to a school on average have

high values for that school, it may be better for aggregate welfare to respect these priorities.

18 The idea that unequal outside options can disrupt the welfare properties of a seemingly efficient allocation mecha-
nism appears also in Akbarpour and Van Dijk (2018) and Calsamiglia et al. (2019), who argue that moving from an
ordinal allocation mechanism to a cardinal may harm agents with poor outside options, while prior analysis had sug-
gested that such a move can be Pareto improving if outside options are equal (Abdulkadiroğlu et al. 2011). However,
the driving force behind Proposition 3 is different because the mechanisms considered in this paper are all ordinal, as
an agent’s optimal action depends only on his relative rankings of items but not on the intensities of his preferences.
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6. Empirical Application: School Choice in Boston

I now apply the methodologies developed in this paper to real data from Boston Public Schools

(BPS) to compute an optimal priority-based allocation mechanism for elementary school assign-

ment that satisfies certain institutional constraints. Since 2006, BPS has been using the DA mech-

anism to assign students, whose eligibility to schools and distribution of priorities depend on their

home locations. In 2013, policy makers in Boston decided to migrate from a 3-Zone assignment

plan to a Home-Based plan, being guided by a simulation analysis described in Pathak and Shi

(2013) and Shi (2015), which estimated a MNL utility distribution of student preferences using

past data and used it to compare various assignment plans. (See Appendix D for details of the

3-Zone and Home-Based plans.) In this context, an assignment plan specifies a mapping from each

neighborhood t to a certain choice menu Jt ⊆ J , which is the set of eligible schools that students

from that location can include in the preference rankings they submit to the DA mechanism. More-

over, an assignment plan specifies the multivariate distribution Gt of priorities for students of each

neighborhood t. Another important piece of background information is that every neighborhood

has a certain walk-zone, which includes every school within a 1-mile radius. The city is required

to provide school busing only for students assigned to a school outside of their walk-zone.

Table 1 compares various assignment plans based on a simplified version of the simulation model

used in the Boston reform, which is also used in Ashlagi and Shi (2015). As seen in the first two

columns, the Home-Based plan decreases the amount of school busing needed by more than a factor

of two compared to the 3-Zone plan, as measured by all three metrics shown in rows 3 through

5 of Table 1. However, the Home-Based plan also reduces the expected utilities of students as

implied by the MNL utility distribution. Despite this trade-off, policy makers decided to adopt the

Home-Based plan, as it provided other benefits as documented in Shi (2015).

After the policy change, Ashlagi and Shi (2015) proposed an optimized plan that uses the same

average miles of busing as in the Home-Based plan, while achieving better expected utilities for

students and better predictability19 (see the third column of Table 1). However, their methodology

is unable to bound other measures of busing costs, such as the average area from which a school

needs to bus students (row 4 of Table 1), which is a metric that was salient during the Boston

policy reform (Pathak and Shi 2013, Shi 2015). In contrast, the optimized plan in this paper (see

the rightmost column of Table 1) dominates both the 3-Zone plan and the Home-Based plan in all

of the metrics shown, which makes it more viable for implementation.

19 Predictability of the assignment is measured by the chance a student is assigned to one of his top submitted choices
among the schools in his choice menu. Note that a neighborhood assignment plan has 100% predictability according
to this metric as the choice menu is a singleton.
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3-Zone Home-Based Ashlagi & Shi
(2015)

This paper

Descriptive statistics
(1) Av. # of choices 29.24 14.77 21.12 14.61
(2) Av. miles to assigned school 1.79 1.30 1.32 1.29

Busing requirement
(3) Miles bused per student 1.26 0.64 0.63 0.63
(4) Av. bus coverage area 22.63 8.51 13.47 7.77
(5) Av. # of busing choices 22.29 8.17 14.64 8.15

Expected utilities of neighborhoods
(6) Weighted average 7.20 6.95 7.49 7.45
(7) 10th percentile 6.41 6.10 7.31 7.27
(8) Lowest 4.95 4.58 7.03 6.96

% getting top choices in menu
(9) Top 1 61.2% 64.1% 78.7% 78.7%
(10) Top 3 80.4% 84.9% 93.4% 92.8%

Table 1 Comparison of assignment plans for Boston, using the MNL utility distribution and simulation

framework described in Appendix D. Each column corresponds to an assignment plan, which specifies the set of

school options each student can rank in the DA mechanism as well as his priority distribution. The results are for

Kindergarten-2, which is the main entry grade to elementary schools. The rows correspond to metrics of interest

for policy makers during the 2013 Boston student assignment reform. The metrics are respectively (1) the average

number of schools in the choice menu, which is the set of eligible schools each student can rank; (2) the average

distance from a student’s home to his/her assigned school; (3) the total distance from home to school for

students assigned to a school outside of the 1-mile walk-zone, divided by the total number of students; (4) the

average area in square miles from which a school needs to pick up children by school bus; (5) the average number

of schools within the choice menu for which students are eligible for busing (i.e. outside of the 1-mile walk-zone);

(6) the average expected utility of all students; (7) the expected utility of a neighborhood in the bottom 10th

percentile; (8) the minimum expected utility of any neighborhood; (9) the proportion of students assigned to

their top choice within their choice menu; and (10) the proportion of students assigned to one of their top three

choices within their choice menu. All estimates are based on the average of 100,000 independent simulations.

Despite the use of real data and policy relevant metrics, the analysis in this section is not

intended to argue for a policy change, but only to illustrate how to handle the difficult non-linear

constraints that may arise in practice via appropriate approximations. Influencing policy would

require extensive deliberations across stakeholders to decide on the metrics and parameters, as well

as extensive robustness tests. The optimized choice sets and priorities also need to be simplified

so that the reasoning behind them is understandable to parents in Boston, who might not trust a

black box system. Section 7 discusses how these remaining issues can be addressed.

6.1. Optimization Formulation

The optimized plan in the rightmost column of Table 1 is based on finding an exact solution to

the following LP, which at a high level is to find a budget set probability matrix that yields high

expected utilities for the students, subject to staying within the busing requirements of the Home-
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Based plan. As in Ashlagi and Shi (2015), the objective is a weighted sum of the utilitarian welfare

and the expected utility of the worst-off neighborhood, so that students on average are matched

to schools they like and no neighborhood is very badly off. The constraints (25), (26) and (27)

bound the amount of busing by the city according to the three metrics in rows 3 to 5 of Table 1.

Constraint (25) corresponds to the average miles of busing per student, and is also used in Ashlagi

and Shi (2015). Constraints (26) and (27) are linearizations of the constraints corresponding to

rows 4 and 5 of Table 1, and they are what differentiates the optimization here from the one

in Ashlagi and Shi (2015). These two constraints can only be tractably included due to the efficient

algorithm developed in Theorem 2 for solving the socially optimal assortment planning problem

under MNL utilities and cardinality constraints. The input data are as follows:

• m: the number of neighborhoods; m= 868 in the dataset.

• n: the number of schools; n= 77 in the dataset.

• λt: the expected number of applicants from neighborhood t∈ [m]. Define Λ :=
∑

t∈[m] λt.

• Ut(S), Pt(j,S): expected utilities and choice probabilities for a student of neighborhood t

given budget set S, as defined in (7) and (8). They are based on a MNL utility distribution

estimated from past choice data. Their parameters and closed form expressions are given in

Appendix D.2.

• jt: the default school for neighborhood t. (See Appendix D.3 for more details.)

• at: the area of neighborhood t in square miles.

• cj: the number of seats of school j available to students for whom j is not their default school.

• dtj: the Google Map walking distance from the centroid of neighborhood t to school j.

• Swalkt : the set of schools within the one-mile walk-zone of the neighborhood t.

• A,B1,B2,B3: Tuning parameters of the optimization. A ∈ [0,1] corresponds to the relative

weight in the objective function between the average utility of all neighborhoods and the

expected utility of the worst-off neighborhood. B1, B2 and B3 correspond to various forms of

busing budget, and are the right hand sides of constraints (25), (26) and (27).

In the formulation below, all of the summations of t are over [m], of j are over [n] and of S are

over the power set 2[n].

Maximizey A

(
1

Λ

∑
t

λtwt

)
+ (1−A)w (18)

s.t. ytS ≥ 0

(Neighborhood utilities)
∑
S

Ut(S)ytS =wt for each neighborhood t. (19)

(Assignment probabilities)
∑
S

Pt(j,S)ytS = ptj for each t and school j. (20)
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(Default school) ytS = 0 if jt 6∈ S (21)

(Valid probabilities)
∑
S

ytS = 1 for each t. (22)

(Lower bound on utilities) w≤wt for each t. (23)

(School capacity)
∑
t

λt1(j 6= jt)ptj ≤ cj for each school j. (24)

(Miles bused)
1

Λ

∑
t,j

λtptjdtj1(j 6∈ Swalkt )≤B1 (25)

(Bus coverage area)
1

n

∑
t,S

at|S\Swalkt |ytS ≤B2 (26)

(# of busing choices)
1

Λ

∑
t,S

λt|S\Swalkt |ytS ≤B3 (27)

Note that the school capacity in (24) only applies to students not assigned to their default school.

This can be interpreted as the school district subsequently adding enough capacity to the default

schools so as to take in all unassigned students, which it is required to do by mandatory schooling

laws. Moreover, the constraints related to busing (25)-(27) only apply to schools outside of the

walk-zone, as only students assigned to a school outside of their walk-zone are bused.

Constraints (26) and (27) are linearized versions of the following non-linear constraints, which

exactly correspond to rows 4 and 5 of Table 1 but are difficult to optimize directly due to their

non-linear dependence on y.

Exact constraint for bus coverage area:
1

n

∑
t

at|Jt(y)\Swalkt | ≤B2, (28)

Exact constraint for # of busing choices:
1

Λ

∑
t

λt|Jt(y)\Swalkt | ≤B3, (29)

where Jt(y) :=
⋃
{S : ytS > 0}. (30)

Jt(y) is the set of schools to which a student from neighborhood t has a non-zero chance of being

assigned under budget set probabilities y. Therefore, the left hand side (LHS) of (28) is equal to

the average across schools of the area each school needs to cover to pick up students. Similarly, the

LHS of (29) is the average across students of the number of schools outside of the walk-zone that

students can potentially be assigned to. If ytS were binary, then due to (22), constraint (26) would

be equivalent to (28), and (27) would be equivalent to (29). For continuous ytS, the LHS of (26) is

a lower bound on the LHS of (28), and the LHS of (27) is a lower bound on the LHS of (29), so

constraints (26) and (27) in the LP are linear relaxations of the exact constraints (28) and (29).

6.2. Solving the Optimization by Column Generation

The LP in (18)-(27) can be efficiently solved as follows. For each neighborhood t, maintain a set

of assortments At, which is a small subset of the power set of 2[n]. Define Opt(A) to be the LP in
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which all summations of S are over At instead of 2[n], so that only decision variables ytS with S ∈At
need to be included. Given an optimal solution to Opt(A), let the shadow prices of constraints (23)-

(27) be νt, γj, ξ1, ξ2 and ξ3 respectively. For each neighborhood t, define the column generation

sub-problem given (ν, γ, ξ) as the following assortment optimization problem:

max
S∈Ψt

αUt(S) +

∑
j∈[n]

rjPt(j,S)

− ζ|S\Swalkt |

 , (31)

where Ψt := {S ⊆ [n] : jt ∈ S}, (32)

α :=A
λt
Λ

+ νt, (33)

rj :=−λt
[
1(j 6= jt)γj +

dtj
n
1(j ∈ Swalkt )ξ1

]
, (34)

ζ :=
at
n
ξ2 +

λt
Λ
ξ3. (35)

The optimization (31) can be solved using the algorithm in Appendix H.2.1 for socially optimal

assortment planning with MNL utilities and cardinality constraints by constraining the cardinality

of |S\Swalkt | to be no more than k, penalizing the objective by −ζk, and searching through all

k ∈ {0,1, · · · , n− |Swalkt |}. While the algorithm in Appendix H.2.1 runs in O(n2 logn) time for a

given cardinality k, one can modify it so that it optimizes over all possible k’s simultaneously,

so that the whole column generation sub-problem (31) can be solved in O(n2 logn) time. The

optimized budget sets have an intuitive structure that is explained in Appendix H.7.

The full algorithm for solving the LP is as follows.

1. Initialize A arbitrarily so that At ⊆ Ψt and Opt(A) is feasible. For the Boston dataset, I

initialize At to be all assortments of the form {jt, j}, where j ∈ [n].

2. Solve Opt(A) and let the shadow price of (22) be φt. Solve the column generation sub-

problem (31) for each neighborhood t and let the optimal objective value be φ′t. This is

guaranteed to be at least φt, because by duality, φt is equal to the optimal objective value of

the sub-problem (31) with the constraint set Ψt replaced by At ⊆Ψt.

3. If φ′t = φt for all t, then terminate and return an optimal solution to Opt(A). Otherwise, for

each neighborhood t such that φ′t > φt, add an optimal solution S∗ to the sub-problem (31)

to the set At, and go back to step 2.

The correctness of the above algorithm follows from the discussion in Appendix C. For the Boston

dataset, it yields an exact optimal solution y∗ to the LP in (18)-(27) in about 7 minutes, when

implemented using Python 3.7 and Gurobi 8.1 and run using one core of a Intel 2.70GHz CPU.20

20 The majority of the runtime is spent on solving the sub-problem (31) rather than the LP Opt(A).
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6.3. Constructing an Assignment Plan Satisfying Institutional Constraints

Given an optimal solution y∗ to the LP in Section 6.1, I construct an assignment plan using

the following heuristics. (Recall that an assignment plan in the Boston context specifies for each

neighborhood a choice menu of eligible schools, and a distribution of priorities.)

1. Re-solve the LP in Section 6.1 with the following modification: remove constraints (26)

and (27), and alter every summation in S to be over the set Jt(y
∗), which is defined in (30).

Let the optimal solution be y∗∗. Since y∗ is a feasible solution to the modified LP, y∗∗ is guar-

anteed to achieve a weakly higher objective value. By construction, it does not increase the

actual bus coverage area or the number of busing choices as defined by the LHS of the exact

constraints (28) and (29). Moreover, Proposition 1 implies that y∗∗ is guaranteed to be nested

within segment, which implies by Theorem 1 that it can be implemented using DA-STB. This

is convenient as DA-STB is the version of DA implemented in Boston.

2. Define the choice menu of neighborhood t to be Jt(y
∗∗), which is the set of schools that a

student from neighborhood t has a non-zero probability of being assigned to under y∗∗.

3. Define the priority distribution by constructing the priority boost matrix b corresponding to

y∗∗ following the proof of Theorem 1, so that the priority boost of neighborhood t for school

j is equal to btj :=
∑

S3j y
∗∗
tS . For a student i from neighborhood t, his priority score for school

j is defined as πij := btj + δi, where δi ∼Uniform(0,1) is the random tie-breaker for student i,

and higher priorities scores are preferred.

For the final optimized plan, which corresponds to the last column of Table 1, the parameter A

(defined in Section 6.1) is set to 0.5, as this simultaneously yields near optimal utilitarian welfare

and max-min welfare on the dataset. The parameters (B1,B2,B3) are tuned so that the assignment

plan constructed above, when evaluated under the discrete simulation model, yields a lower busing

requirement than the Home-Based Plan as measured by the metrics in rows 3 through 5 of Table 1.21

Appendix E expands on the arguments described in Section 3.3 and uses the LP in Section 6.1

to derive a provable upper bound to the maximum objective value that can be achieved by any

assignment plan under the discrete simulation model. With A= 0.5, the LP objective function is the

unweighted average of utilitarian welfare (average expected utility across students) and max-min

welfare (worst expected utility of any neighborhood). With respect to this metric, the optimized

plan achieves 82% of the possible improvement over the Home-Based plan, subject to not using

more busing resources. This estimate is conservative as the upper bound may not be achievable.

21 The final parameters used are B1 = 0.6, B2 = 8.5 and B3 = 6.2. The bus coverage constraint (26) is not tight at
optimality, as the constraint (27) is the bottleneck. This explains why in Table 1, the average bus coverage area of
the optimized plan is only 7.77, which is significantly below the budget of 8.51 from the Home-Based plan.
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Home-Based Plan (5.77) Theoretical Upper Bound (7.52)

Optimized Plan (7.21)

Figure 4 Comparison in the finite market stochastic model of the objective value achieved by the optimized

plan from Section 6.3 with that achieved by the Home-Based plan and of the theoretical upper bound. The

objective value shown above corresponds to the average of the utilitarian welfare (row 6 of Table 1) and the

lowest expected utility of any neighborhood (row 8 of Table 1). The performance of the Home-Based plan and of

the optimized plan are based on 100,000 independent simulations. See Appendix E for explanation of the

theoretical upper bound.

7. Discussion

This paper suggests the following approach to design a priority-based allocation mechanism for a

given application:

1. Classify agents into segments based on institutional constraints of what the priority system

can depend on, and estimate the size and utility distribution of each segment.

2. Ask policy makers about their desired objectives and formulate a mathematical program for

the optimal budget set probability matrix, as in Sections 3.1 and 6.1.

3. Solve the mathematical program and translate the solution into a concrete priority-based

allocation mechanism of the desired form, as in the proof of Theorem 1 and in Section 6.3.

4. Estimate the performance of the mechanism in a discrete simulation model that takes into

account the stochastic nature of demand and other institutional considerations, and bound

the optimality gap as in Figure 4.

A potential concern is that the estimates of the segment sizes and utility distributions in Step

1 may be subject to estimation error, in which case the optimization would be based on incorrect

inputs. For example, in the context of school choice in Boston, Pathak and Shi (2019) documents

a substantial change in the demand estimates from 2013 to 2014, which corresponds to the first

year of implementation of the Home-Based plan. Appendix F simulates the optimized plan from

Section 6.3 using updated population and utility distributions, and shows that the plan’s perfor-

mance is relatively robust despite having sizable errors in its distributional assumptions. It would

be interesting future work to explicitly account for the possibility of errors in demand estimates,

perhaps using techniques from robust optimization.

Another potential concern is that the optimized priority distributions may be too complex for

practical implementation. While the framework in this paper allows policy makers to designate

which observable characteristics can inform priorities via suitable definition of segments, the opti-

mal mapping between segments and priorities can be quite complex: in the optimized plan in

Section 6.3, there is a priority boost btj for each neighborhood-school pair, so there are many more
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degrees of freedom than in the implemented system. One approach on simplifying the priority

system is to modify the mathematical program to force its solution to exhibit additional structure,

such as by restricting which budget sets can be used. An alternative approach is to start with the

optimal but complex priority system, and then approximate the optimal budget set probabilities

using simpler priorities, or using other policy levers such as agent-specific quotas or set asides.

Since simplicity and interpretability depend on the context, this may need to be done on a case

by case basis using ad-hoc techniques. The benefit of being able to solve for the optimal system

is that one can use it as a benchmark to quantify the loss of optimality incurred by each type of

simplification, so as to rigorously navigate the trade-off between optimality and simplicity.
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Appendix A: Precise Definitions of Priority Cutoffs

A.1. Cutoff Vector for Serial Dictatorship (SD)

Algorithm 1 below defines the cutoff vector zSD(M,G,q) in serial dictatorship. It is an adaptation of the

simultaneous eating algorithm in Bogomolnaia and Moulin (2001). Let gt be the density of the priority

distribution for segment t, and let Pt(j,S) be the choice probability of segment t agents for item j given

budget set S. Given non-negative vector y ∈Rn+, a subset S ⊆ J , and a scalar τ ∈ [0,1], define

zj(y,S, τ) := sup

z :

∫ τ

z

∑
t∈[m]

λtgt(π)Pt(j,S)dπ= yj

 . (A.1)

This is the lowest priority needed to access item j if we assume that after agents with priorities higher than

τ have already picked, the set of available items is S and the remaining quota for item j is yj . If item j is

never depleted, then the set is empty and the supremum is −∞.

Algorithm 1: Computing cutoff vector zSD(M,G,q) in serial dictatorship.

Initialize k← 1, S1← [n]\{j : qj = 0}, z0← 1, y0← q; for each j ∈ [n], if qj = 0 then z∗j ← 1, otherwise
z∗j ← 0;

while |Sk|> 0 and τk > 0 do
zk←max{0,maxj∈Sk{zj(yk, Sk, zk)}};
Sk+1← Sk;
for j ∈ Sk do

yk+1
j ← ykj −

∫ zk−1

zk

∑
t∈[m] λtgt(π)Pt(j,S

k)dπ;

if yk+1
j = 0 then
z∗j ← zk;Sk+1← Sk+1\{j};

end
end
k← k+ 1;

end
Result: Cutoff vector zSD(M,G,q) := z∗.

33
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A.2. Cutoff Vector for Deferred Acceptance (DA)

Following Azevedo and Leshno (2016) and Abdulkadiroğlu et al. (2015), the cutoff vector zDA(M,G,q) in DA

can be defined as the fixed point of a certain monotone operator. Given market M , define the demand

function for item j under cutoff vector z as the mass of agents for whom this item is their favorite within

their budget set,

Dj(z) :=
∑
t∈[m]

λtPu∼Ft,π∼Gt(j ∈ arg max
j′∈J

{uj′ : j′ = 0 or πj′ ≥ zj′}. (A.2)

Without loss of generality, let the space of priorities be Π = [0,B]n, where B > 0 is a constant. Let 1j be

the n-dimensional unit vector with an one in component j. Define the operator DA : Π→ Π according to

Algorithm 2.

Algorithm 2: Single iteration of the DA operator.

Input: old cutoff vector z ≥ 0;
for j ∈ [n] do

if Dj(z)> qj then
z′j← zj + inf{δ :Dj(z+ δ1j)≤ qj};

else
z′j← zj ;

end
end
Result: new cutoff vector DA(z) := z′.

Note that Dj(z) is weakly decreasing in zj and weakly increasing in all other components zj′ with j′ 6= j.

This implies that DA : [0,B]n→ [0,B]n is a monotone operator that maps the complete lattice Π = [0,B]n

to itself, so by the Knaster-Tarski fixed point theorem, the set of fixed points {z :DA(z) = z} is a non-empty

lattice. Define zDA(M,G,q) to be the minimum element in this set.

Note that the above definition is valid even if the priority distribution G has atoms, so that the demand

function (A.2) is not continuous. In this case, the update on z′j in Algorithm 2 will implicitly accept all

agents with priority for j equal to the cutoff, and the final allocation may overshoot the quota q, so the cutoff

vector corresponds to the agent-optimal L-stable matching as defined in Biró and Kiselgof (2015). However,

in all examples in this paper, the demand function (A.2) is continuous, so this phenomenon does not occur.

When the market M is regular, then the serial dictatorship cutoff zSD(M,G,q) = zDA(M,G′,q), where the

utility distribution G′t is defined by taking each realization π∼Gt and mapping it to the n-dimensional vector

with equal components (π,π, · · · , π).22 However, this may not be true if M is not regular: in the market in

Example H.1 of Appendix H.1.1, the SD cutoff is (1/2,0) under priority distributions G1 = Uniform(1/2,1)

and G2 = Uniform(0,1/2), while the DA cutoff is (0,0).

A.3. Cutoff Matrix for Top Trading Cycles (TTC)

The TTC cutoffs in Leshno and Lo (2018) arise from solving a set of differential equations modeling the

trading of priorities among agents. Instead of re-deriving the cutoffs, I apply their existence result as a black

box, which requires bridging the differences in the technical assumptions of the two papers.

22 The is because when M is regular, there is a unique fixed point to the DA operator, as implied by the proof of
Proposition H.1 in Appendix H.1.
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In Leshno and Lo (2018), a continuum economy is given by E = (C, Θ̃, η, q), where C is a set of items,

Θ̃ = ΠC × [0,1]|C| is the space of agent types, where ΠC is the set of permutations of C. Each agent type

θ ∈ Θ̃ is a tuple (�θ, rθ) where �θ is a preference ranking of C and r is a vector of priorities for each item.

η is a measure over Θ̃ and q is a |C|-dimensional vector of quotas for each item with strictly positive entries

in all components. An outside option is not explicitly modeled and they assume for convenience that all

agents and items find each other acceptable, and there is an excess of agents η(Θ̃)>
∑

j∈C qj . Moreover, they

assume that the measure η has a density ν, which is piecewise Lipschitz continuous except on a finite grid.

Moreover, ν is bounded above and away from zero on its support: either ν(θ) = 0 or 0<a≤ ν(θ)≤ b for some

constants a, b. Given such an economy E , their Theorem 2 implies that the TTC mechanism is well-defined,

and there exists a cutoff matrix z∗ such that the mechanism matches each agent type θ to his most preferred

item in the budget set {j : rθk ≥ z∗jk}. The main differences with this paper are that 1) I explicitly model an

outside option, which is always available to every agent; 2) I do not assume an excess of agents; and 3) I

allow certain quotas qj to be zero to make the statement of Theorem 1 cleaner.

I now define the zTTC(M,G,q) in my model based on their z∗, assuming that the priority distributions G

satisfy the regularity conditions in Assumption 1, which is adapted from the assumptions in their paper.

Assumption 1. For the given market M and quota vector q, the priority distribution Gt satisfies the

following requirements for each segment t: Let I = {j ∈ [n] : qj > 0} be the set of items with strictly positive

quota and G̃t be the projection of the measure Gt (originally defined over [0,1]n) unto [0,1]I by integrating

over the components not in I. The measure G̃t is continuous with density g̃t, which is bounded above and

bounded away from zero: for each π ∈ [0,1]I , either g̃t(π) = 0 or a≤ g̃t(π)≤ b, where a, b are positive constants.

Furthermore, gt is piecewise Lipschitz continuous except on a finite grid: there exists a finite set 0 := d0 <d1 <

d2 < · · ·<dL := 1, such that the function g̃t is Lipschitz continuous in each open hyper-rectangle (dk1−1, dk1)×

(dk2−1, dk2)× · · ·× (dk|I|−1, dk|I|), where each kj ∈ [L].

Define I := {j ∈ [n] : qj > 0} to be the set of items with strictly positive quotas. Let R be the set of

permutations of the set I ∪{0}. For each ρ∈R, construct a dummy item 0ρ representing the outside option

of agents with this preference ranking over I ∪ {0}. We need a distinct dummy item for each ranking ρ to

prevent the profitable trading of outside options among agents with different preference rankings over I∪{0}.

Let O= {0ρ : ρ∈R} be the set of these dummy items.

Define the economy E = (C, Θ̃, η, q̃) in the notation of Leshno and Lo (2018), with C = I ∪O, Θ̃ = ΠC ×

[0,1]|C|, and quota vector q̃ such that q̃j = qj for each j ∈ I and q̃0ρ = 1 +
∑

t∈[m] λtht(ρ) for each 0ρ ∈ O,

where ht(ρ) be the probability that a utility vector u ∈Θ drawn according to the utility distribution Ft is

consistent with the ranking ρ, meaning that if ρ= (j1, j2, · · · ), then uj1 >uj2 > · · · . The above quota for the

outside option 0ρ is designed to be sufficiently large so that all of the original agents will be able to access

their own outside option if desired.

Construct the measure η over Θ̃ = ΠC × [0,1]|C| as follows. The idea is to make it consistent with the

original preference distributions F and priority distributions G, while adding a sufficiently large mass of

dummy agents so that there is an excess of agents in the aggregate. To ensure that the dummy agents do
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not interfere with the assignment of the original agents, I make their priority for every item in C to be

worse than the original agents. To do this, define the hypercubes B1 = [0.5,1]|C| and B2 = [0,0.5]|C|. For each

r ∈B1, define π(r) ∈ [0,1]I , such that for each j ∈ I, πj(r) = 2rj − 1. For each permutation ρ over I ∪ {0},

define a corresponding permutation �ρ over C = I ∪O by replacing the entry in ρ for the item 0 with the

item 0ρ ∈O, and by appending the remaining items in O in an arbitrary but fixed order at the end. Let the

set of such �ρ’s be R′, and for each �∈ R′, let the reverse mapping be ρ(�). Define a fixed permutation

�0 over C that ranks every item in O above every item in I. Define the measure η on Θ̃ with density ν as

follows: for each �∈ΠC and r ∈ [0,1]|C|,

ν(�, r) =


2|C|

∑
t∈[m] λtg̃t(π(r))ht(ρ(�)) if �∈R′ and r ∈B1,

2|C|
∑

c∈C q̃c if �=�0 and r ∈B2,

0 otherwise,

(A.3)

where the density g̃t is defined as in Assumption 1 and the term 2|C| is a normalization constant since the

volume of B1 and B2 are 2−|C| each. The economy E = (C, Θ̃, η, q̃) satisfies all the assumptions needed for

Theorem 2 of Leshno and Lo (2018). Therefore, the cutoff matrix z∗ exists. Define the TTC cutoffs in my

model to be

z
TTC(M,G,q)
jk =

{
max(2z∗jk− 1,0) if j, k ∈ I,

1 otherwise.
(A.4)

Note that the cutoff z
TTC(M,G,q)
jk is 1 if qj = 0 or qk = 0, so that no one can access items with zero quota, and

no one can benefit from having a high priority to an item with zero quota.

Appendix B: Structure of DA in a Finite Market Model with Discrete Agents

Consider a model with discrete agents, in which there are lt agents of segment t, where lt is a non-negative

integer, and the capacities are integral. Define the DA mechanism in the discrete model as follows. The

inputs include a non-negative priority score matrix π and an integral quota vector q, where the component

πij denotes the priority score of agent i for item j, and qj denotes the number of copies of item j that

can be allocated. Assume that no two agents have the same priority score to a given item. Moreover, each

agent submits a preference ranking over J = [n]∪{0}. The mechanism follows the two-step iterative process

described in Section 2.1.2: Initialize the priority cutoff zj = 0 for every item j ∈ [n] and each agent i applies

to his favorite item j for which πij ≥ zj . If the number of applicants for an item j exceeds the quota, then

increase the cutoff zj by the smallest amount so that the number of applicants with πij ≥ zj is exactly equal

to qj . This bumps out the applicants with the worst priority scores until the quota is not violated. In the

next iteration, these bumped applicants apply to their next favorite item for which their priority score meets

the cutoff.

In this model, define an agent’s budget set as the set of items he can be assigned to if he ranks that item

first and the outside option second, assuming that everyone else submits their true preference rankings and

the priorities and quotas are fixed. Note that this definition is independent of the agent’s own preferences.

The following proposition is the basis of the argument in Section 3.3 for using the LP in Sections 3.1 to

bound the performance of the DA mechanism in the discrete model.
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Proposition B.1. In the agent-proposing deferred acceptance algorithm, every agent is assigned to his

favorite item among his/her budget set.

Proof of Proposition B.1 The desired result is implied by the strategyproofness of agent-proposing DA

for the agents (Roth 1982, Dubins and Freedman 1981, Abdulkadiroğlu and Sönmez 2003). To see this,

suppose that in the agent-proposing DA, agent i is rejected by item j1, · · · , jk−1 and finally assigned to item

jk. By the strategyproofness of agent-proposing DA, if i had ranked jk first, i would still be matched to jk.

This is because if i cannot get jk by ranking it first, but can get it by ranking other items first, then the

agent has incentives to misreport preferences if jk happened to be his true first choice.

It suffices to show that none of the previous items, j1, · · · , jk−1 are in the budget set. This again follows

from strategyproofness, because if i can get any of these items by ranking it first, then i would have an

incentive to deviate because that improves upon i’s current assignment of jk. �

Appendix C: Decomposition Technique for a General Objective Function

Let w be a m-dimensional vector, and p a m× (n+ 1) matrix. Let Ω(w,p) be a concave function that is

weakly increasing in each component of w. For each agent segment t ∈ [m], let Ψt ⊆ 2J be a constraint set

specifying the valid budget sets. Let Ut and Pt be defined as in (7) and (8). Consider the following convex

program, which generalizes the LP in Section 3.1:

Maximize:
y

Ω(w,p) (C.1)

subject to: ytS ≥ 0 for each segment t∈ [m] and S ∈Ψt, (C.2)

(Expected utility)
∑
S∈Ψt

Ut(S)ytS =wt for each t∈ [m], (C.3)

(Assignment probability)
∑
S∈Ψt

Pt(j,S)ytS = ptj for each t∈ [m], j ∈ J , (C.4)

(Valid probabilities)
∑
S∈Ψt

ytS = 1, for each t∈ [m]. (C.5)

The above convex program has a large number of decision variables. A standard approach to solve such

problems is simplicial decomposition, which is a generalization of the column generation technique from

linear programming. This is an iterative algorithm that maintains for each segment t a subset Ψ̃t ⊆Ψt, which

is initialized to be a small set of assortments that makes the above convex program feasible. For the LP in

Section 3.1, one can initialize Ψ̃t to contain only the outside option assortment {0}.

In each iteration, we first solve a master problem, which is the same as the original formulation above

except that we replaces Ψt by the smaller set Ψ̃t, which greatly simplifies the optimization as the cardinality

of Ψ̃t is small by construction. Given an optimal solution of the master problem, compute a super-gradient

(α, r) of the concave objective Ω(w,p), such that αt is the component of the super-gradient for wt and rtj

is the component for ptj . (In the special case in which the concave objective can be expressed as a linear

objective subject to linear constraints, a super-gradient naturally arises as the dual LP variables.) Note

that αt ≥ 0 by the assumption that W is weakly increasing in the component of wt. Consider the following
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sub-problem for segment t, which is equivalent to the socially optimal assortment planning problem (14)

except for the additive constant of rt0,

max
S∈Ψt

αtUt(S) + rt0 +
∑
j∈[n]

(rtj − rt0)Pt(j,S)

 . (C.6)

Suppose that the optimal objective value to the sub-problem (C.6) does not exceed zero for every segment t,

then terminate the algorithm and return the solution y∗ to the master problem. Otherwise, for each segment

t such that the optimal objective to (C.6) is strictly above zero, append the optimal solution S∗t to (C.6) to

the set Ψ̃t, and iterate again to resolve the master problem.

The above approach is guaranteed to find an optimal solution to the original convex program upon ter-

mination. In practice, the number of iterations needed is often small, making it a practical approach to

solve large scale optimization problems. See Von Hohenbalken (1977) for the development of the theory of

simplicial decomposition and proof of correctness. For a more recent exposition, see Chapter 4 of Bertsekas

(2015). In the special case in which the convex program can be formulated as the LP, the above technique

is called column generation, which is explained in Chapter 6 of Bertsimas and Tsitsiklis (1997).

Appendix D: Details of the Simulation Model for Boston

This section describes the distributional assumptions behind the simulation results of Table 1. The same

assumptions and parameters are used in Ashlagi and Shi (2015), and the following descriptions are reproduced

here for completeness.

D.1. Student Population

The BPS data partitions students based on geographic location into 868 small neighborhoods, called geocodes.

I model each neighborhood as a segment t.23 The data also groups the 868 neighborhoods into 14 larger

regions, which are based on natural divisions of the city. (For example, downtown is a region by itself.)

The number of students who apply from each neighborhood t is modeled as follows: Define a normal

random variable with mean 4294 and standard deviation 115. This represents the total number of applicants

and is estimated from four years of data from 2010-2013. To accommodate medium-scale regional variations,

generate an independent normal random variable for each of the 14 regions, which represents the proportion

of students who come from this region. The means and standard deviations are shown in Table 2, and

are based on the sample means and sample standard deviations from the four years. The total number of

students of each region is the product of the overall normal variable with the region-specific term, rounded

to the nearest integer. Having computed this regional total, sample the neighborhood t of each student

based on the historic density in 2010-2013. Generated in this way, the simulated number of applicants from

each neighborhood is positively correlated both across the city and within each region, with the levels of

correlation matching the historic data.

23 It is also possible to consider other differences across students, such as race, older siblings, special education needs,
and language learning needs. However, for clarity of analysis, I focus on the geographic aspects following Ashlagi and
Shi (2015).
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Neighborhood Mean Standard Deviation Neighborhood Mean Standard Deviation

Allston-Brighton 0.0477 0.0018 North Dorchester 0.0522 0.0047
Charlestown 0.0324 0.0024 Roslindale 0.0771 0.0048
Downtown 0.0318 0.0039 Roxbury 0.1493 0.0096
East Boston 0.1335 0.0076 South Boston 0.0351 0.0014
Hyde Park 0.0588 0.0022 South Dorchester 0.1379 0.0065
Jamaica Plain 0.0570 0.0023 South End 0.0475 0.0022
Mattapan 0.0759 0.0025 West Roxbury 0.0638 0.0040

Table 2 Means and standard deviations of the proportion of Kindergarten-2 applicants from each region,

estimated using the sample means and standard deviations from four years of historical data from 2010-2013.

D.2. Utility Distributions

The preferences of students are modeled using a MNL utility distribution, where the utility of a student i

from neighborhood t for school j is modeled as

uij = ūtj +βεij , (D.1)

ūtj =Qj − dtj + γ ·1(j ∈ Swalkt ). (D.2)

The data in the above equations are dtj , and Swalkt , and the parameters are Qj , γ and β. As in Section 6.1,

dtj is the walking distance from the centroid of neighborhood t to school j according to Google Maps, and

Swalkt is the set of schools within the walk-zone of neighborhood t. Qj is an estimated school-specific fixed

effect capturing overall school popularity, which is called the inferred quality of school j. β > 0 is the scale of

the random term in the utility. γ is a coefficient for living within one-mile. The expected utilities and choice

probabilities under budget set S are given by the following closed form expressions, where γEuler = 0.5772...

is Euler’s constant.

Ut(S) = β

[
log

(∑
j∈S

eutj/β

)
+ γEuler

]
, (D.3)

Pt(j,S) =
eutj/β∑

j′∈S e
utj′/β

. (D.4)

Equation (D.2) normalizes the distance coefficient to one, instead of the scale parameter of the Gumbel

distribution, so that the utilities can be interpreted in terms of distance. The parameters Qj , γ and β are

estimated from submitted preference rankings from 2013, using the maximum likelihood technique of Haus-

man and Ruud (1987). The estimates are shown in Table 3. The inferred qualities of schools are plotted on

a map in Figure D.1b, and the lowest quality Qj is normalized to zero.

Parameter Value Interpretation
Qj 0–6.29 Quality of schools. For a school of ∆Q additional quality, holding fixed other

components, a student would be willing to travel ∆Q miles further. The
value for each school is graphically displayed in Figure D.1b.

γ 0.86 Additional utility for going to a school within the walk-zone.
β 1.88 Scale parameter of the Gumbel term.

Table 3 Parameters of the MNL utility distribution, estimated from preference data from 2013. The values can

be interpreted in units of miles (how many additional miles a student is willing to travel for one unit of this

variable).
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This model estimates preference intensities from data on preference rankings. The logic is as follows:

assuming that the differences in how students from different neighborhoods rank schools can entirely be

explained by distances to schools, then one can infer students’ preference intensities by observing how quickly

they trade these preferences for distance. For example, suppose that students generally prefer school A over

school B. In neighborhoods equidistant from the two schools, then one would expect more students rank

A before than B. However, as one moves through neighborhoods going closer to B, one may see students

preferring B more. By observing the speed at which their preference rankings change, one would have a

rough estimate of how strongly students on average prefer A over B without considerations of distances.

It is possible also to add non-linear terms of distance as well as interactions between students’ race and

income and the school’s demographics and test-scores, as in Pathak and Shi (2013), Shi (2015) and Pathak

and Shi (2019). Pathak and Shi (2019) also compare the MNL utility distribution to a mixed MNL utility

distribution, which allows for rich correlations in the unobserved component εij across schools, and they

show that the models perform similarly in prediction accuracy in the Boston data.

D.3. Schools and Quotas

There are m= 77 schools in the dataset, each of which has a capacity constraint cj . Figure D.1a plots the

school capacities and locations. The plot also shows the location of 19 so-called capacity schools, which are

schools at which BPS can expand capacities at to accommodate excess demand. To reflect the fact that all

applicants must be eventually offered a seat due to mandatory schooling laws, I assign each neighborhood t

a default school, which is the closest capacity school.24 For simplicity, I treat the default school as the only

outside option of each neighborhood, thus ignoring the possible substitution to non-BPS schools. Moreover,

I do not count students assigned to the default school against the capacity of the school, which guarantees

that every student can at least be assigned to his/her default school.

D.4. Student Assignment Plans

Each assignment plan in Table 1 of Section 6 specifies the set of school options that a student can rank,

as well as the distribution of his/her priorities at the schools. Each student submits a ranking of schools

in their choice set of arbitrary length, and the assignment is by the student-proposing deferred acceptance

algorithm. As in Ashlagi and Shi (2015), I do not model the assignment of siblings and students with special

needs, so the priorities structure being simulated is simplified.

D.4.1. The 3-Zone Plan In the 3-Zone plan in Table 1, the choice sets are as follows. The city is

partitioned into three geographic zones as in Figure D.2, and every student can rank any school within the

zone where they live, as well as any school within a one-mile radius of their home, called their walk-zone.

From 1988 to 2013, elementary school assignment in Boston was based on these three zones.

The priorities are as follows. Except for a few citywide schools, each school is divided into two virtual

halves, a walk-zone half and an open half. The capacity of the walk-zone half is rounded up and the open half

rounded down. The preference ranking of each student is extended to a ranking over halves, with students in

24 In the Home-Based and optimized plans, the default school for a neighborhood is the closest capacity school out
of all such schools. In the 3-Zone plan, it is the closest capacity school within the zone-based choice menu.
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(a) Schools and Students
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(b) School Quality

Figure D.1 The diagram on the left shows the distribution of students and the capacities of schools. Each blue

circle represents a neighborhood, with its size proportional to the expected number of students from that

neighborhood. Each yellow circle represents a school, with its size proportional to the number of available seats

for the grade Kindergarten-2 in 2013. The shaded schools are those at which BPS is able to expand capacity if

needed, and are referred to as the capacity schools. The right shows estimates of Qs (inferred quality) from the

2013 data. The size of the circle is proportional to the estimated Qs, with higher quality schools having larger

circles.
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Figure D.2 Illustration of the 3-Zone student assignment plan implemented in Boston from 1988-2013.
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a school’s walk-zone applying to the walk-zone half first and the open half second, and students outside the

walk-zone applying to the open-half first and the walk-zone half second. The walk-zone half prioritizes all

walk-zone students over all non-walk zone students, while the open-half treats both kind of students equally.

To break remaining ties, each student i is given an i.i.d. random number δi.

D.4.2. The Home Based Plan Since 2014, BPS has been using a Home-Based plan for elementary

school assignment, which has undergone minor modifications since it was first implemented. The Home-Based

plan in Table 1 corresponds to the original version in 2014, in which the choice set of each student is the

union of the following sets: any school within 1 mile straight line distance; the closest 2 Tier 1 schools;25 the

closest 4 Tier 1 or 2 schools; the closest 6 Tier 1, 2 or 3 schools; the closest school with Advanced Work Class

(AWC); the closest Early Learning Center (ELC); the 3 closest capacity schools;26 the city-wide schools,

which are available to everyone in the city. Furthermore, for students living in parts of Roxbury, Dorchester,

and Mission Hill, their choice set also includes the Jackson/Mann school in Allston/Brighton.

The priorities are as follows: Students living in East Boston have priority for East Boston schools. Students

outside of East Boston have priority for non-East Boston schools. To break remaining ties, each student i is

given an i.i.d. random number δi.

Appendix E: Theoretical Upper Bound for the Finite Market Stochastic Model

This section explains the theoretical upper bound used in Figure 4 to bound the optimality gap of the

optimized plan of Section 6.3 in the finite market stochastic model. The ideal (but intractable) optimization

in the finite market model would involve evaluating all possible combinations of choice menus and priority

distributions by simulation. The continuum model is only an approximation, and the optimized plan from

section 6.3 may not be optimal in the finite market model due to the following discrepancies:

1. The number of agents and capacities of items may not be large enough for the continuum model to be

an adequate approximation of the discrete model. This concern is explored in detail in Appendix G,

where it is shown that market size is not the issue.

2. The mass of students from each neighborhood is deterministically equal to λt in the continuum model,

whereas in the discrete model, they are randomly drawn and are positively correlated across the city,

as described in Appendix D.1.

3. The ideal optimization would be using the exact constraints for the bus coverage area and the number

of busing choices (28) and (29), rather than the linearized versions (26) and (27).

4. The construction in the proof of Theorem 1 requires controlling both the quotas and priority boosts in

DA-STB to implement the budget set probability matrix y∗∗, whereas the assignment plan considered

in the Boston reform are not allowed to set arbitrary quotas.

25 Since 2013, BPS has been partitioning schools into four tiers based on standardized test-scores, with Tier 1 being
the best.

26 Capacity schools are those which BPS has committed to expanding capacity as needed to accommodate all students.
In the 2014 implementation of the Home Based Plan, the capacity schools are exactly the Tier 4 schools.
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Nevertheless, as explained in Section 3.3 and formally established in Appendix B, budget sets are well

defined in the DA mechanism even in the finite market model. Moreover, constraints (26) and (27) are

relaxations of the exact busing constraints (28) and (29), so anything that satisfies the latter satisfies the

former. This implies that if λtytS is interpreted as the expected number of neighborhood t students who

receive a budget set S, then y would be a feasible solution to the LP (18)-(27) in Section 6.1, if the bounds

(B1,B2,B3) are set to be above the simulated busing requirements of the Home-Based plan in rows 3 through

5 of Table 1. The optimal objective value of the LP is an upper bound to what can be achieved in the

finite market stochastic model by any combination of choice menus and priorities, and is the bound used in

Figure 4.

Appendix F: Robustness of the Optimization to Errors in Parameters

The optimization in Section 6 depends on distributional assumptions on the student population and prefer-

ences. In this section, I evaluate the robustness of the optimized plan to errors in these assumptions.

The population distribution from Appendix D.1 is based on data from 2010-2013, and the utility distri-

bution from Appendix D.2 is estimated from students’ submitted preferences from 2013 under the 3-Zone

plan. In this section, I re-evaluate the various plans by using the actual application population from 2014

and by using a utility distribution estimated from 2014 preferences under the Home-Based plan. The amount

of perturbation in parameters from this computational experiment represents the typical perturbation one

may observe after an assignment plan reform.

The magnitude of the perturbation in parameters is significant. For the population, instead of a forecasted

total of 4294 students, only 3964 students applied in 2014. This difference is about 3 times the standard

deviation of 115 students in the original population distribution. For the utility distribution, the inferred

qualities of schools changed, with the average absolute change being about 0.69. (Recall that in the utility

distribution, magnitudes are normalized to distance, so this is equivalent to changing students’ travel dis-

tances to a school by ±0.69 miles.) The estimated scale of the Gumbel distribution β changed from 1.88 to

1.64, and the estimated effect of coefficient for the walk-zone term γ changed from 0.86 to 0.37.

The simulation results using these updated parameters are in Table 4. Note that although the parameters

for evaluation changed, the optimized plan (from Section 6) is based on parameters from before, and has

not been re-optimized. As seen in Table 4, the optimized plan still dominates the 3-Zone and Home-Based

plans in busing savings, expected utilities of students and predictability, despite having sizable errors in its

demand estimates.

However, the magnitude of its improvements over the Home-Based plan for the lowest and the 10th

percentile expected utilities are less than before. Figures F.1a and F.1b compare the expected utility for

each neighborhood based on the original and the updated demand estimates. One can see that much of

the decrease is in the Hyde Park region of Boston, which is shown using a red oval. To understand what

happened, I compare the school qualities from the original and updated utility distributions. As can be

seen in Figures F.2a and F.2b, the inferred qualities of schools (defined in Appendix D.2) in Hyde Park is

much lower in 2014 than in 2013. This shows that the equity performance of the optimized plan is sensitive

to systematic changes in school quality in a particular region, which is unavoidable for any location based

assignment plan.
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3-Zone Home-Based Optimized
Descriptive statistics

(1) Av. # of choices 29.21 14.78 14.46
(2) Av. miles to assigned school 1.66 1.21 1.23

Busing requirement
(3) Miles bused per student 1.15 0.60 0.63
(4) Av. bus coverage area - - -
(5) Av. # of busing choices 22.26 8.17 8.02

Expected utilities of neighborhoods
(6) Weighted average 6.68 6.30 6.73
(7) 10th percentile 5.77 5.48 6.10
(8) Lowest 4.42 4.73 5.33

% getting top choices in menu
(9) Top 1 59.8% 60.9% 76.5%
(10) Top 3 82.0% 82.7% 93.9%

Table 4 Re-evaluation of the 3-Zone, Home-Based, and optimized plans using the actual population data from

2014 and a re-estimated utility distribution. The optimized plan is based on the old parameters and has not been

re-optimized using the new data. All the results are averages from 100,000 independent simulations. The average

bus coverage area (row 4) is omitted because coverage areas are not affected by the update in demand estimates.

(a) Original parameters (b) Updated parameters

Figure F.1 These plots show the expected utilities of neighborhoods under the optimized plan. Each circle

represents a neighborhood and the size of the circle is proportional to the expected utility. The left plots the

expected utilities under the demand estimates in Appendix D. The right plots the expected utilities under the

actual 2014 population and re-estimated utility distribution. The red oval in the plot on the right shows the

biggest area of utility decrease. This corresponds to the Hyde Park region of Boston.
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Figure F.2 These plots show the inferred qualities of schools in the utility distribution. Each circle represents a

school and the size of the circle is proportional to the inferred quality. The left plots the original quality estimates

based on 2013 data. The right plots the updated quality estimates based on 2014 data. The red oval shows the

decrease in quality estimates for the Hyde Park region.

Appendix G: Accuracy of the Large Market Approximation

The continuum model in this paper corresponds to the limit of a discrete model in which the number of

agents of each segment goes to infinity. However, in the school choice application in Section 6, the expected

number of students is 4294, and there are 868 segments, so the average number of students per segment is

about 5. Nevertheless, there are reasons to expect the large-market approximation to be reasonable. First,

neighborhoods that are close to one another tend to have similar choice sets, utility distributions, and priority

distributions, so there are regional pooling effects. Second, the independence in preferences make it so that

the number of students who prefer a school from a certain area converges quickly to its expectation.

In this section, I empirically test how well the large-market approximation performs on the Boston dataset,

by comparing the outcomes of interests in the optimized plan of Section 6.3 as predicted by the continuum

model with the outcomes from discrete simulations.

There are three sources of discrepancy between the two types of estimates. The first is that the market size

in the Boston data is not large enough for the large-market approximation to set in. The second is that the

simulations involve randomness in the student population (see Appendix D.1), while the continuum model

assumes the size of each agent segment is fixed. The third is that ideally, the quotas for the optimized plan
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Continuum model Discrete model % Difference
Descriptive statistics

(1) Av. # of choices 14.610 14.610 0.00%
(2) Av. miles to assigned school 1.274 1.278 0.27%

Busing requirement
(3) Miles bused per student 0.600 0.611 1.89%
(4) Av. bus coverage area - - -
(5) Av. # of busing choices 8.155 8.155 0.00%

Expected utilities of neighborhoods
(6) Weighted average 7.555 7.488 0.89%
(7) 10th percentile 7.394 7.293 1.37%
(8) Lowest 7.394 7.193 2.72%

% getting top choices in menu
(9) Top 1 81.83% 79.19% 3.22%
(10) Top 3 93.36% 93.15% 0.23%

Table 5 Comparison of the predictions from the continuum model with the estimates from discrete simulations

when evaluating the optimized plan from Section 6.3. The percentage difference is equal to the absolute

difference between columns 1 and 2, divided by the value in column 1. The numerical estimates for the discrete

model are based on 100,000 independent simulations, and they are different from those of Table 1 because in

order to focus on market size aspect of the approximation, I use the school quotas as prescribed in

Proposition H.3, and I reduce the randomness in the applicant population. See Table 1 for explanation of the

rows. The average bus coverage area (row 4) is omitted as it is identical in the two models by construction.

should be determined from the left hand side of (24) as in Proposition H.3, whereas in the simulations I use

the capacities as quotas due institutional constraints.

In the exercise below, I focus on the first issue of market size. To do this, I modify the population

distribution and quotas in order to remove the latter two sources of discrepancy. For the quotas, I use the

left hand side of (24) at the optimal y∗∗ (defined in Section 6.3), rounded to the nearest integer. For the

number of students of each neighborhood, I set it to be as close to the expectation λt. Precisely speaking, if

Nt is the number of applicants from neighborhood t, I define Nt to be a random variable that takes one of

the values {bλtc, dλte} withits expectation being equal to λt.

Table 5 tabulates the simulation results of the optimized plan using the modified population distribution

and quotas, and compare with the predictions from the continuum model. As can be seen, the estimates are

all very similar between the continuum model and the discrete model, with the largest discrepancies coming

from the minimum expected utility of neighborhoods, as well as the probability of getting their top choice

within menu. For all metrics, the simulation results are within 3% of the large market estimates. This shows

that the market size in Boston is large enough for the continuum model to be an adequate approximation.
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Appendix H: Proofs

H.1. Proof of Theorem 1: Characterization of Mechanisms

Part a-i) of Theorem 1 follows from Proposition H.1, and part a-ii) from Proposition H.2 and H.3. Part b)

follows from Proposition H.2, H.4 and H.5. The necessity of the assumption that M is regular for part a) is

explained in Appendix H.1.1.

Proposition H.1 (Flexibility of the DA Mechanism). Given a market M and an arbitrary budget

set probability matrix y ∈ Y M , define the priority distribution Gt for each segment t as follows. For an agent

i, sample a set Si ⊆ J according to the probability vector yt (with probability ytSi). Define the agent’s priority

score for item j as

πij = 1(j ∈ Si) + δi, (H.1)

where δi ∼Uniform(0,1). Define quota qj as the left hand side of (11), which is the mass of agents assigned

to j under budget set probabilities y. If M is regular, then the DA mechanism with priority distributions G

and quota vector q implements y.

Proof of Proposition H.1. Let z be the n-dimensional vector with all components equal to 1. Note that

z is a fixed point of the DA operator defined in Algorithm 2 of Appendix A.2, DA(z) = z. This is because

the demand function (A.2) evaluates to

Dj(z) =
∑
t∈[m]

λtPt(j,S)ytS = qj , (H.2)

for every item j ∈ [n] by the construction of the quota vector q. The space of priorities is Π = [0,2]n. Let X

be the priority-based allocation mechanism associating each priority π ∈Π with the budget set

BX
π := {j ∈ J : j = 0 or πj ≥ zj}. (H.3)

For any agent segment t and set S ⊆ J , note that the budget set is equal to S with probability exactly ytS.

Let z′ = zDA(M,G,q) be the DA cutoff as defined in Appendix A.2. This is the minimum element of the

lattice of fixed points, {z′ ∈Π :DA(z′) = z′}. Define X ′ to be DA mechanism with priority distribution G

and quota q. This mechanism associates each priority π ∈Π with the budget set BX′

π , which is as in (H.3)

but with z replaced by z′. If the two mechanisms have the same budget set probabilities, yX = yX
′
, then we

are done.

Suppose on the contrary that yX 6= yX
′
, then since z′ ≤ z element wise, we have that the set inclusion

BX′

π ⊇BX
π holds for every priority realization π ∈Π. Moreover, the inclusion is strict with positive probability

for at least one segment t. By the assumption that M is regular, we have

Λ−
∑
j∈[n]

Dj(z
′) =

∑
t∈[m]

λtEπ∼Gt [Pt(0,BX′

π )]<
∑
t∈[m]

λtEπ∼Gt [Pt(0,BX
π )] = Λ−

∑
j∈[n]

qj , (H.4)

where Λ :=
∑

t∈[m] λt is the total mass of agents and Dj is the demand function defined in (A.2). The two

quantities in the middle are respectively the mass of agents assigned to the outside option in X ′ and X.

Equation (H.4) implies that
∑

j∈[n] qj <
∑

j∈[n]Dj(z
′), which is a contradiction since Dj(z

′) ≤ qj for each

j ∈ [n]. This is because the DA mechanism always respects the quotas if the demand function Dj defined

in (A.2) is continuous, which is true for the priority distribution specified in the proposition. �
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Proposition H.2 (Properties of Mechanisms).

a) The budget set probabilities arising from DA-STB are always nested within segment.

b) The budget set probabilities arising from TTC are always nested and non-degenerate.

c) The budget set probabilities arising from SD are always nested and non-degenerate.

Proof of Proposition H.2. For a), if priorities are parameterized as πij = btj + δi as described in Sec-

tion 2.1.2, and z is the cutoff vector, then the budget set of an agent of type t with tie-breaker δi ∈ [0,1] is

{j ∈ J : j = 0 or δi ≥ zj − btj}, which is weakly increasing in δi with respect to set inclusion.

For b), Corollary 1 of Leshno and Lo (2018) states that the TTC cutoffs z∗jk in their model for an economy

E = (C, Θ̃, η, q) are such that there exists a relabeling of items under which z∗1k ≥ z∗2k ≥ · · · ≥ z∗kk = z∗(k+1)k =

· · ·= z∗|C|k for each k ∈C. This implies that whenever item j ∈C is in the budget set, every item j′ ≥ j is also

in the budget set, so the budget sets are nested. Now, the TTC cutoffs in my model inherits this property

by their construction in Appendix A.3, so budget sets are nested in TTC. For non-degeneracy, observe that

the definition of the cutoffs in (A.4) is that that qj = 0 implies that j is removed from everyone’s budget set.

Moreover, if qj > 0 but the left hand side of (11) is zero, then the construction in Appendix A.3 embedding

my model into that of Leshno and Lo makes j present in the budget set of all agents with certainty.

For c), if the cutoff vector is z, then the budget set for an agent with priority π is {j ∈ J : j = 0 or π≥ zj},

which is weakly increasing in π with respect to set inclusion, so budget sets are nested. Moreover, if qj = 0

then the SD cutoff zj = 1 by the first line of Algorithm 1. On the other hand, if qj > 0 but the left hand side

of (11) is zero, then zj = 0 and the item is present in all budget sets. �

Proposition H.3 (Implementation using DA-STB). For a regular market M , let y ∈ Y M be a bud-

get set probability matrix that is nested within segment. If priority boost btj is set to be
∑

S3j ytS and quota

qj is set to be the left hand side of (11), then the corresponding DA-STB mechanism implements y.

Proof of Proposition H.3 The proof is analogous to that of Proposition H.1. Let z be the n-dimensional

vector with all ones, then the demand function defined in (A.2) satisfies Dj(z) = qj for every j ∈ [n], and z

is a fixed point of the DA operator defined in Appendix A.2. Let X be the mechanism that offers each agent

i of segment t with tie-breaker δi ∈ [0,1] the budget set BX
δ := {j ∈ J : j = 0 or δ ≥ 1− bts}. Note that X

implements y by construction, yX = y. Since M is regular, we can apply the same argument as in the proof

of Proposition H.1 and get that if X ′ is the DA-STB mechanism with the given priority boosts and quotas,

then yX
′
= yX . �

Proposition H.4 (Implementation using Serial Dictatorship). For any market M , let y ∈ Y M be

a budget set probability matrix that is nested and non-degenerate. Let the budget sets that occur with positive

probability, {S : ytS > 0 for some t∈ [m]}, be parameterized as {S1, S2, · · · , SK}, where S1 ) S2 ) · · · · · ·) SK

and K is the number of distinct sets. Define the priority distribution Gt for each segment t as follows: let

the priority of an agent i be

πi =
1

K
(K − bi + δi), (H.5)
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where δi ∼ Uniform(0,1) and bi is a discrete random variable that equals k with probability ytSk for each

k ∈ [K]. All random variables are independent. Let dj be the total mass of item j assigned under y, which is

equal to the left hand side of (11). Define the quota for each item j ∈ [n] as

qj =


dj if dj > 0,

1 if dj = 0 and j ∈ S1,

0 otherwise.

(H.6)

Serial dictatorship (SD) with priority distributions G and quota vector q implements y.

Proof of Proposition H.4 Let J ′ = S1. For each j ∈ J ′, define k(j) = max{k′ : Sk
′ 3 j}. Let z be the

SD cutoff vector defined in Appendix A.1. It suffices to show that for each j ∈ J\J ′, zj = 1, and for each

j ∈ J ′\{0}, zj = (K − k(j))/K. The former claim follows from the assumption that y is non-degenerate, so

j 6∈ J ′ = S1 and dj = 0 imply that qj = 0 by (H.6), and the item is assigned a cutoff of 1 in the first line of

Algorithm 1. The latter claim follows from the observation that the sets S1, · · ·SK defined in the statement

of the proposition correspond exactly to the sets defined with the same notation in Algorithm 1, and the

quantity zk in Algorithm 1 is equal to (K − k)/K for each k ∈ [K]. Hence, in iteration k of Algorithm 1

(k= 1,2, · · · ,K), the items in Sk\Sk+1 are depleted and are assigned cutoff (K − k)/K. �

In a finite market, the TTC mechanism in which all items share the same priority ordering over agents

is identical to SD, so the above result indicates that the TTC mechanism can also implement the desired

budget set probability matrix y using the same priorities and quotas as above. Technically speaking however,

the definition of the TTC mechanism based on Leshno and Lo (2018) requires priority distributions to be

continuous, so items cannot share the same priorities for all agents. The following proposition resolves the

issue by modifying the construction so that the tie-breakers are independently drawn across items.

Proposition H.5 (Implementation using TTC). For any market M , let y ∈ Y M be a budget set prob-

ability matrix that is nested and non-degenerate. Define the sets S1, S2, · · · , SK and quota vector q as in

Proposition H.4. Define the priority distribution Gt for each segment t as follows: let the priority score of

an agent i for item j be

πij =
1

K
(K − bi + δij), (H.7)

where the random variable bi is defined as in Proposition H.4 and δij ∼ Uniform(0,1) are independently

drawn. The TTC mechanism with priority distributions G and quota vector q implements y.

Proof of Proposition H.5 Let J ′ = S1. For each j ∈ J ′, define k(j) = max{k′ : Sk′ 3 j}. Let z = zTTC(M,G,q)

be the TTC cutoff matrix as defined in Appendix A.3. Since every item j 6∈ J ′ has quota qj = 0 by (H.6),

the definition of cutoffs in (A.4) sets zjl = 1 if j 6∈ J ′ or if l 6∈ J ′. It suffices to show that for j, l ∈ J ′,
zjl = (K − k(j))/K.

Let z∗ be the cutoff matrix for the economy E = (C, Θ̃, η, q̃) as defined in Appendix A.3 using the notation

of Leshno and Lo (2018), with C = I ∪O where I = {j : qj > 0} is identically equal to J ′, and O is a set of

dummy items representing outside options. It suffices to show that

a) z∗jl = (2K − k(j))/2K if j ∈ SK−1, l ∈ J ′.

b) z∗jl ≤ 1
2

if j ∈ SK\SK−1, l ∈ J ′.
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Let ζ be the projection of the measure η (which is defined on the space Θ̃ = ΠC × [0,1]C) onto the set

[0,1]I , then the support of ζ is contained in the set

Z :=B(0,
1

2
)∪B(

1

2
,
K + 1

2K
)∪B(

K + 1

2K
,
K + 2

2K
) · · · ∪B(

2K − 1

2K
,1), (H.8)

where B(a, b) := [a, b]I , in which the components represent the priority score for each item in I ( C. By

Definition 2 of Leshno and Lo (2018) and the definition of the marginal distribution Hc
a in their paper, the

projection of their TTC path γ(t) onto the subspace [0,1]I will always stay within the set Z. Hence, it must

pass through the intermediate points xk := 1(2K − k)/2K for each k ∈ [K], where 1 is the |I|-dimensional

vector with all ones. For each k ≤K − 1, when the projection of the TTC path passes through the point

xk, all of the items j ∈ Sk\Sk+1 are depleted for the first time, so the cutoff z∗jl = (2K − k)/2K for all l ∈ I.

When the curve passes through xK = 0.51, all of the items j ∈ SK\SK−1 are either just depleted or still with

excess quota. In either case, the cutoff z∗jl ≤ 1
2

for every l ∈ I. �

H.1.1. Limitations of the DA mechanism in non-regular markets The following example shows

that when M is not regular, there are certain nested and non-degenerate budget set probabilities that cannot

be implemented using the DA mechanism under any priorities or quotas.

Example H.1. There are two items of capacities 1/3 and 1 respectively, and two agent segments of unit

mass. Segment 1 agents have uniformly random preferences for items 1, 2 and their outside option 0. Segment

2 agents prefer item 2 to item 0 to item 1 with 2/3 probability, and prefer outside option 0 best with

remaining probability. The budget set probability matrix y with non-zero entries y1{0,1,2} = 1 and y2{0,2} = 1

cannot be implemented using the DA mechanism with any priority distributions and quotas. This is because

if q1 < 1/3, then y1{0,1,2} < 1. However, if q1 ≥ 1/3, then the cutoff z1 = 0, since the capacity is not violated

when item 1 is offered to all agents. Such a cutoff is incompatible with y2{0,2} = 1.

However, if we enrich the DA mechanism with additional policy levers, then it can implement arbitrary

budget set probabilities in all markets. In the above example, one can implement y by eliminating the option

of ranking item 1 for segment 2 agents. Such restrictions in choice sets are often implemented for school

choice, as illustrated by the Boston application in Section 6.

Another policy lever that would enrich the space of outcomes that can be implemented by DA is to require

agents to have a sufficiently high priority score to be eligible for an item. For example, if we set 1 to be the

minimum priority score to be eligible for an item, then for any budget set probabilities y, the DA mechanism

with priority distributions and quotas defined in the statement of Proposition H.1 implement y in any market,

regular or non-regular. This is because the cutoff z′ in the proof of Proposition H.1 would now have a lower

bound of 1 in every component, so must equal to the all-1 vector. Having such a lower bound in priority score

would also allow the DA-STB mechanism constructed in Proposition H.3 to implement arbitrary budget set

probabilities that are nested within segment without requiring the market to be regular.

H.2. Proof of Theorem 2: Efficient Algorithms for Socially Optimal Assortment Planning

Throughout this section, I define r0 = 0 for convenience, and denote the expected revenue of assortment S as

R(S) :=
∑

j∈S rjP (j,S). The socially optimal assortment planning problem is maxS∈Ψ{αU(S)+R(S)}. Part

a) of Theorem 2 follows from Proposition H.7, part b) from Proposition H.11, part c) from Proposition H.12,

and part d) from Proposition H.14.
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H.2.1. MNL Utilities and Cardinality Constraint Without loss of generality, let the Gumbel dis-

tributed random term εij in the MNL utility equation (15) have scale parameter 1. Define attraction weight

vector v ∈ (0,∞)J with component vj := exp(uj) for each j ∈ J = [n]∪{0}. The socially optimal assortment

planning problem (14) under the MNL utility distribution can be written as

max
S∈Ψ

{
α log

(∑
j∈S

vj

)
+

∑
j∈S rjvj∑
j∈S vj

}
, (H.9)

where log(·) is the natural logarithm and Ψ⊆ 2J is the set of feasible assortments.27 For (H.9) to be well-

defined, the constraint set Ψ must not contain the empty set. This is satisfied by the constraint sets described

in Section 4 as they all require the outside option 0 to be in every assortment.

The efficient algorithm for solving (H.9) under cardinality constraints is based on Proposition H.6, which

says that to find an optimal assortment, it suffices to check through a certain candidate set A ⊆ Ψ of

assortments. The proposition generalizes a result of Rusmevichientong et al. (2010), who take a similar

approach to solve the revenue maximizing assortment planning problem (α= 0). The candidate set A they

define is identical to that in Proposition H.6, and they show that A can be found in O(n2 logn) time and

has cardinality at most k(n+ 1− k). While their analysis requires additional regularity assumptions on v

and r, I present a complete algorithm that removes all such assumptions at the end of this section.

Proposition H.6 (Candidate Set for MNL). For the MNL utility distribution and any constraint set

Ψ that does not contain the empty set. Let A⊆Ψ be such that it contains an assortment from the set

A(λ) = arg max
S∈Ψ

{∑
j∈S

vj(rj −λ)

}
, (H.10)

for every λ ∈ R. Then A contains an optimal solution to the socially optimal assortment planning prob-

lem (H.9) for any α≥ 0. Furthermore, for a given α≥ 0, the set of all socially optimal assortments is equal

to
⋃
λ∗∈Λ∗(α)A(λ∗) for some set Λ∗(α)⊆R.

Proof of Proposition H.6 Define x(S) =
∑

j∈S vj , y(S) =
∑

j∈S vjrj , D = {(x(S), y(S)) : S ∈ Ψ},
and g(x, y) = α log(x) + y/x. The socially optimal assortment planning problem can be written as

max(x,y)∈D g(x, y).

Define R = (0,∞)× (−∞,∞), which is an open and convex subset of R2. For any α ≥ 0, the function

g(x, y) in the domain R is quasi-convex and continuous, and it is strictly increasing in y. The desired result

follows from the following lemma, which is based on the duality of convex sets in R2. Note that the set A(λ)

in (H.10) is equal to that in (H.14) of the lemma. �

Lemma H.1 (Duality Lemma). Let R be an open convex subset of R2 and D a non-empty and finite

set of points from R. Let g(x, y) :R→ R be a continuous function that is strictly increasing in y, with the

following lower level set B being a convex subset of R2,

B = {(x, y)∈R : g(x, y)≤ z∗} (H.11)

where z∗ := max
(x,y)∈D

g(x, y) (H.12)

27 The objective function in (H.9) differs from the objective function in (14) by an additive constant of αγEuler, where
γEuler = 0.5772... is Euler’s constant.
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Define

f(λ) = max
(x,y)∈D

{y−λx}, (H.13)

A(λ) = arg max
(x,y)∈D

{y−λx}, (H.14)

h(λ, f) = inf
(x,y)∈R

{g(x, y) : y= f +λx}. (H.15)

Then the following supremum is attainable and equal to z∗,

sup
λ∈R

h(λ, f(λ)). (H.16)

Furthermore, (x∗, y∗) is an optimal solution to the optimization problem in (H.12) if and only if (x∗, y∗) ∈

A(λ∗) for some optimal solution λ∗ to the optimization problem in (H.16).

Proof of Lemma H.1. For convenience, denote the value of the supremum in (H.16) by z∗∗. First, I show

that z∗ ≥ z∗∗. This is because for any λ0 ∈R, let (x0, y0)∈A(λ0), then (x0, y0)∈ {(x, y)∈R : y= f(λ0)+λ0x}.

This implies that z∗ ≥ g(x0, y0)≥ h(λ0, f(λ0)). Taking the supremum of both sides, we get z∗ ≥ z∗∗.

Conversely, I show that z∗ ≤ z∗∗. Consider the lower level set B in (H.11). Let (x∗, y∗) be an optimal solution

to the optimization problem in (H.12). By the definition of z∗ in (H.12), it must be that B ⊃D 3 (x∗, y∗).

Since g is strictly increasing in y, (x∗, y∗) cannot be in the interior of B, but must lie on its boundary. By

the duality of convex sets, there exists an outward pointing normal of B at (x∗, y∗) with direction (−λ0,1),

for some λ0 ∈R. (The y-coordinate is 1 without loss of generality because g is strictly increasing in y.) Let

f0 = y∗−λ0x
∗, then we have that both B and D are contained in the half-plane:

{(x, y) : y−λ0x≤ f0}. (H.17)

I now show that h(λ0, f(λ0)) = g(x∗, y∗), from which it would follow that z∗ ≤ z∗∗ since z∗ = g(x∗, y∗) and

z∗∗ ≥ h(λ0, f(λ0)). First, note that D being contained in the half-plane (H.17) implies that f(λ0) = f0, so

(x∗, y∗)∈A(λ0). This in turn implies by the definition of h that h(λ0, f(λ0))≤ g(x∗, y∗). Now, suppose on the

contrary that h(λ0, f(λ0))< g(x∗, y∗), then there must exist (x0, y0) ∈R such that g(x0, y0)< c := g(x∗, y∗)

and y0 − λ0x0 = f(λ0). Since R is open and g is continuous and increasing in y, there exists a sufficiently

small ε0, such that if y1 = y0 + ε, then (x0, y1) ∈R, g(x0, y1)< c and y1− λ0x0 > f0. Therefore, (x0, y1) ∈B

but y1 − λ0x > f0, which is a contradiction because B is contained in the half-plane specified by (H.17).

Therefore, h(λ0, f(λ0)) = g(x∗, y∗), as desired.

This shows that z∗ = z∗∗. If (x∗, y∗) is an optimal solution to (H.12), then construct λ0 as above from

the outward pointing normal of B at the boundary point (x∗, y∗). We have that λ0 is an optimal solution

to (H.16), with (x∗, y∗)∈A(λ0). On the other hand, for any optimal solution λ∗ to (H.16), for any (x0, y0)∈

A(λ∗), the argument in the first paragraph implies that (x0, y0) is also an optimal solution to (H.12). �

For cardinality constraint Ψ = {{0}∪S : S ⊆ [n], |S ∩S0| ≤ k}, the optimization in (H.10) to construct the

candidate set A can be represented geometrically as in Figure H.1, where each item j ∈ [n] is represented

by a line fj(λ) = vj(rj − λ) in R2. Under the assumption that the lines have distinct slopes and no three

lines meet at a point, Rusmevichientong et al. (2010) derive a O(n2 logn) algorithm for finding A by first

sorting the pairwise intersections of the lines and the x-axis. When λ is restricted to an interval between
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Figure H.1 Geometry of the optimization in (H.10) for computing the candidate sets A under cardinality

constraints. Each item j ∈ [n] is represented by a line fj(λ) with x-intercept rj and slope −vj . For any λ∈R, an

optimal assortment would be to take the top k items within S0 with the highest and non-negative fj(λ), along

with any item in S\S0 with a non-negative fj(λ).

two adjacent intersection points, the order of the lines is fixed, along with optimal assortments for (H.10):

for each λ, an optimal assortment is to take the set of k highest non-negative lines among j ∈ S0, and the

non-negative lines among j ∈ [n]\S0.

The following algorithm uses the same idea to solve the socially optimal assortment planning problem (H.9),

and includes additional details to handle generic data. In particular, it allows different items to have the

same vj , and allows arbitrarily many lines fj(λ)’s to meet at the same point.

Algorithm 3: Socially Optimal Assortment Planning under MNL utilities and cardinality con-

straint

Data: attraction weight vj > 0 for j ∈ J = [n]∪{0}; revenue rj for j ∈ [n]; parameter α≥ 0; set S0 ⊆ [n] and

maximum cardinality k ∈ {0,1, · · · , |S0|}.

Step 1 (Sorting the intersection points): Define τ to be the ordered list from sorting the following set of

tuples in lexicographically increasing order (comparing first component first, breaking ties using the second

component, and so on):{(
viri− vjrj
vi− vj

,−i, j
)

: i, j ∈ S0, vi > vj

}
∪{(ri,−i,0) : i∈ [n]} . (H.18)

Each tuple in the first set encodes the intersection point of line fi(λ) and fj(λ) (see Figure H.1), with line

j being higher to the left of the intersection and i being higher to the right. Each tuple in the second set

encodes the intersection of line fj(λ) with the x-axis.

Step 2 (Ordering the items): Sort the items j ∈ S0 according to the tuple (vj , rj ,−j) in lexicographic

decreasing order. Let oj denote the sorted order, with oj = 1 if its tuple is the largest and oj = 2 if it is the

second largest, and so on. Set oj← 0 for j ∈ [n]\S0.
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Step 3 (Computing the optimal objective value)

Data: τ from step 1, a copy of o from step 2, and parameters k and n.
Initialize S←{j ∈ [n] : oj ≤ k}; a←

∑
j∈S vjrj ; b←

∑
j∈S vj ; z

∗← α log(a)− a/b;
for (λ,−i, j)∈ τ do

if j = 0 and i∈ S // Crossing between line i and the x-axis

then
a← a− viri; b← b− vi;
z← α log(a) + a/b;
S← S\{i};

else if j > 0 and oi < oj // Crossing between lines i and j, with vi > vj but oi < oj.

then
Swap oi and oj ; // Ensure that the oi’s are sorted as the vi’s after a crossing

if oj = k and i∈ S then
a← a− viri + vjrj ; b← b− vi + vj ;
z← α log(a) + a/b;
S← S ∪{j}\{i};

end
end
if z > z∗ then z∗← z, λ∗← λ ;

end
Result: Optimal objective z∗ and corresponding λ∗.

Step 4 (Obtaining the optimal assortment by retracing Step 3)

Data: τ from step 1, a copy of o from step 2, λ∗ from step 3, and parameters k and n.
Initialize S←{j ∈ [n] : oj ≤ k};
for (λ,−i, j)∈ τ do

if j = 0 and i∈ S then
S← S\{i};

else if j > 0 and oi < oj then
Swap oi and oj ;
if oj = k and i∈ S then

S← S ∪{j}\{i};
end

end
if λ= λ∗ then

S∗← S;
break (exit the for loop);

end
end
Result: Optimal assortment S∗.

The above algorithm has the property that the optimal assortment found is minimal according to a certain

ordering over S, and the existence of such an ordering guarantees that the column generation algorithm

based on the above for solving the LP in (18)-(27) will not cycle, as it is a version of the revised Simplex

algorithm based on Bland’s pivot rule (see Sections 3.4 and 6.1 of Bertsimas and Tsitsiklis (1997)).

The ordering is as follows: we say that set S1 ⊆ J is lexicographically less than S2 ⊆ J if either

a) it has more elements, |S1|> |S2|; or

b) it has the same number of elements (|S1|= |S2|), and the tuple from sorting the labels of the elements

of S1 in increasing order is lexicographically smaller than the analogous tuple from S2. (If the smallest
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label in S1 is less than the smallest in S2, then S1 is lexicographically smaller; if there is a tie in the

smallest labels, compare the second smallest, and so on.)

For example, the assortment {1,3,5} is lexicographically smaller than {1,2} because it has more elements,

but it is bigger than {1,2,6} as the latter has the same number of elements, and the tuple (1,2,6) is

lexicographically smaller than (1,3,5).

Proposition H.7 (Analysis of Algorithm 3). Algorithm 3 (steps 1 through 4) can be implemented in

O(n2 logn) time and solves the socially optimal assortment planning problem (H.9) with cardinality constraint

set Ψ = {{0} ∪ S : S ⊆ [n], |S ∩ S0| ≤ k}. In particular, the z∗ from Step 3 is the optimal objective value

of (H.9) and the S∗ from Step 4 is an optimal assortment. Moreover, if the items in S0 are labelled in weakly

decreasing order of vj, with vi ≥ vj if i < j for i, j ∈ S0, then the S∗ from Step 4 is lexicographically the least

out of all optimal assortments.

Proof of Proposition H.7 The cardinality of the list τ from Step 1 is at most
(|S0|

2

)
+ n=O(n2), so the

sorting in Step 1 takes O(n2 logn) time, and Steps 3 and 4 can both be completed in O(n2) time as each

iteration of the for loop can be done in a constant number of operations. (Note that the set S can be

maintained as a binary array, so that checking set membership, and adding or removing an element can all

be done in constant time.) Step 2 is sorting a set of cardinality O(n), so can be completed in O(n logn) time.

The total run time is O(n2 logn).

The optimality of z∗ from Step 3 follows from Proposition H.6 as follows. Let S0 be the initial set S in

Step 3. For each t≥ 1, define St and λt to be the value of S and λ at the end of the tth iteration of the for

loop in Step 3. For each λ∈R, define

A(λ) = arg max
S:|S∪S0|≤k

{∑
j∈S

vj(rj −λ)

}
. (H.19)

The sorting in Step 2 implies that the initial assortment S0 ∈A(λ) for all λ∈ (−∞, λ1): for these values of λ,

the lth highest line i has order oi = l. Moreover, the updates in the for loop of Step 3 ensures that the vector

o always maintains a correct rank ordering of the lines above the x-axis: for each value of λ corresponding to

a crossing between lines, a swap is made between oi and oj whenever vi > vj but oi < oj , implying that after

the crossing point λ, lines that are flatter (lower vi’s) are recognized as being higher (lower oi’s). Moreover,

the set St always contains the k largest positive lines j ∈ S0 at λ = λt and any positive line j ∈ [n]\S0,

and it never contains any negative lines. Hence, for each t ≤ |τ | − 1, St ∈ A(λ) for all λ ∈ [λt, λt+1], and

S|τ | = {0} ∈ A(λ) for all λ ∈ [λ|τ |,∞). Therefore, the set A = {St : 0≤ t ≤ |τ |} satisfies the assumptions of

Proposition H.6, so z∗ is the optimal value of (H.9) because it achieves the highest objective among S ∈A.

Moreover, Step 4 mirrors Step 3, and terminates in the same iteration of t as when the optimal objective z∗

was set, so that S∗ is an optimal assortment.

Finally, if the items in S0 are initially labeled in weakly decreasing order of vj , then S∗ is lexicographically

the least among all optimal assortment due to the following observations:

1. The set St is lexicographically increasing in t: this is because the cardinality |St| is weakly decreasing.

Moreover, whenever there is a swap, the item i being swapped out has a smaller label than the item j

being swapped in, since vi > vj in the definition of the tuples in (H.18).
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2. For any λ ∈ R, the set A contains the lexicographically least element in A(λ). This is true for λ ∈

(−∞, λ1] by the sorting in Step 2, which breaks ties among coincident lines to favor lines with smaller

indices. (By coincident lines, I mean that they have identical slopes and x-intercepts.) Moreover, any

other assortment in A(λ1) either has a lower cardinality than S0 or replaces certain items i ∈ S0 with

items j with higher indices. Observe now that among a group of coincident lines, their relative order is

maintained throughout the algorithm, because at each λ ∈ Λ := {λ1, λ2, · · · }, when there are multiple

lines intersecting and a swap in S is to be made, the sorting of τ in Step 1 always swaps out the

element i with the largest index and replaces it with the element with the smallest index. The above

arguments imply that whenever λt < λt+1, the set St is lexicographically the least among all sets in

A(λ) for λ∈ (λt, λt+1].

3. Any optimal assortment S′ to the socially optimal assortment planning problem (H.9) is either equal

to or lexicographically larger than an optimal assortment in A. This is because lemma H.1 used in

the proof of Proposition H.6 implies that any optimal solution S′ to (H.9) belongs to the set A(λ′) for

some λ′ ∈R, and all assortments in A(λ′) are also optimal. By point 2 above, A contains the minimal

element of A(λ), which is an optimal assortment that is equal to or lexicographically smaller than S′.

Since Step 4 terminates as soon as it hits an optimal λ∗ and St is lexicographically increasing, the resultant

assortment S∗ is lexicographically the least among all those in A that achieves the objective z∗. By point 3

above, it must also be lexicographically the least among all optimal assortments. �

H.2.2. d-Level Nested Logit and Trivial Constraints The d-level nested logit utility distribution

is a generalization of the MNL utility distribution in (15), in which the random terms εij are allowed to be

correlated across items. For the 2-level nested logit, the description of the correlation structure in (16) is due

to Cardell (1997). For general d, the random terms εij ’s in the the utility equation (15) are positive correlated

with one another, with the correlation structure following a rooted tree as illustrated in Figure H.2, with d

being the maximum depth of the tree. Each item in J := [n] ∪ {0} is represented by a leaf node and each

internal node i represents a nest of items that are positively correlated in their utilities.

root

0 7

1 2 3

8

4 9

5 6

Figure H.2 Illustration of a 3-level nested logit utility distribution with 7 leaves and 4 internal nodes. Each leaf

represents an item j ∈ J = {0,1, · · · ,6} and each internal node i∈N = {7,8,9, root} represents a nest, with

dissimilarity parameter ηi ∈ (0,1], and ηroot = 1. Note that the outside option 0 is always directly connected to the

root.
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A formal definition of a joint CDF that distribution of the εij ’s is deferred to (H.38) and (H.42) of

Appendix H.2.4. For the analysis in this section, I do not work with the joint CDF directly but adopt the

following mathematical simplifications due to Li et al. (2015).

The following notation is helpful for keeping track of the structure of the tree: Let N be the set of nests,

which are represented by the internal nodes of the tree. Denote the root of the tree as root, and the other

internal nodes by {n+1, n+2, · · · , n+ |N |−1}. Each non-root internal node i∈N\{root} has a dissimilarity

parameter ηi ∈ (0,1], where ηi = 1 corresponds to zero correlation within nest, and ηi→ 0 represents near

perfect correlation. Define ηroot := 1. Let I =N ∪J be the set of all nodes. Each node i∈ I\{root} has a unique

parent node, denoted as Parent(i). Each internal node i ∈ N has a non-empty set of direct descendants,

denoted as Children(i). These are i’s immediate neighbors when traversing away from the root. Denote

the set of leaf nodes that are either direct or indirect descendants of an internal node i ∈ N as Ji ⊆ J ,

and for each leaf node i ∈ J , define Ji = {i}. For each leaf node i ∈ J , define Ancestors(i) to be the set of

internal nodes when traversing from i in a direct path to the root. In the example in Figure H.2, Jroot = J =

{0,1,2,3,4,5,6}, J7 = {1,2,3}, J8 = {4,5,6}, and J9 = {5,6}. Moreover, Parent(8) = root, Parent(4) = 8,

Children(8) = {4,9}, Children(9) = {5,6}, Ancestors(4) = {root,8}, and Ancestors(5) = {root,8,9}.

Following Li et al. (2015), assume that the outside option 0 is a direct descendant of the root, so

Parent(0) = root. This is equivalent to assuming that the utility of the outside option is independent from

the utilities of all other items. Given any assortment S ⊆ J and any node i ∈ I, define the set Si := S ∩ Ji.

For each leaf j ∈ J , define the attraction weight

vj = exp

uj ∏
i∈Ancestors(j)

η−1
i

 , (H.20)

where uj is the constant term in (15). For each node i∈ I, define the following functions recursively:

Vi(Si) =

{(∑
j∈Children(i) Vj(Sj)

)ηi
if i∈N ,

vi1(i∈ Si) if i∈ J .
(H.21)

Ri(Si) =


∑
j∈Children(i) Vj(Sj)Rj(Sj)∑

j∈Children(i) Vj(Sj)
if i∈N and |Si| ≥ 1,

0 if i∈N and |Si|= 0,

ri1(i∈ Si) if i∈ J .

(H.22)

For a d-level nested logit utility distribution, the socially optimal assortment planning problem (14) can be

formulated in terms of the above functions as

max
S∈Ψ

α log(Vroot(S)) +Rroot(S). (H.23)

This equivalent representation of (14) can be derived from (H.39), (H.40) and (H.42) in Appendix H.2.4.28

The efficient algorithm for solving (H.23) is based on the following two propositions. Proposition H.8 gen-

eralizes Proposition H.6 to the d-level nested logit utility distribution. It shows that one can solve the socially

optimal assortment planning problem for any α≥ 0 by considering a candidate set A of assortments, which

28 As with the MNL utility distribution, the objective function in (H.23) differs from that in (14) by an additive
constant of αγEuler, where γEuler = 0.5772... is Euler’s constant.
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is identical to the candidate set in Li et al. (2015) for the revenue maximizing case (α= 0). Proposition H.9

provides a way of recursively constructing candidate sets at each internal node of the tree, which is similar to

the approach in Section 5 of Li et al. (2015). However, the following analysis is based on new proof techniques

arising from the Duality Lemma H.1.

Proposition H.8 (Candidate Set for Nested Logit). For the d-level nested logit utility distribution

and any constraint set Ψ that does not contain the empty set. Let A⊆Ψ be such that it contains an assortment

from the set

A(λ) = arg max
S∈Ψ

{Vroot(S)(Rroot(S)−λ)} , (H.24)

for every λ ∈ R. Then A contains an optimal solution to the socially optimal assortment planning prob-

lem (H.23) for any α≥ 0. Furthermore, for a given α≥ 0, the set of all socially optimal assortments is equal

to
⋃
λ∗∈Λ∗(α)A(λ∗) for some set Λ∗(α)⊆R.

Proof of Proposition H.8 Define x(S) = Vroot(S) and y(S) = Vroot(S)Rroot(S). The rest of the proof is

identical to that of Proposition H.6 in Appendix H.2.1, and the desired results follow from Lemma H.1. �

Proposition H.9 (Recursive Structure of Candidate Sets). For any internal node i ∈N of the d-

level nested logit utility distribution, any constraint set Ψi ⊆ 2Ji that contains the empty set, and any given

λ∈R, if an assortment S is an optimal solution to the optimization problem

max
S∈Ψi
{Vi(S)[Ri(S)−λ]}, (H.25)

then there exists a λ′ ∈R such that S is also an optimal solution to the following optimization problem:

max
S∈Ψi
{V 1/ηi

i (S)[Ri(S)−λ′]} ≡
∑

j∈Children(i)

max
Sj∈(Ψi∩Jj)

{Vj(Sj)[Rj(Sj)−λ′]} . (H.26)

Moreover, for this value of λ′, any other optimal solution S′ to (H.26) is also an optimal solution to (H.25).

For the root node, the same statements trivially hold if the maximizations in (H.25) and (H.26) are taken

over an arbitrary constraint set S ∈Ψ, because ηroot = 1.

Proof of Proposition H.9 Note that the equation in (H.26) is an identity by the definitions of Vi(S) and

Ri(S) in (H.21) and (H.22). Moreover, the statement for the root node is trivially true as when ηi = 1 and

λ′ = λ, the equations (H.25) and (H.26) are identical.

Let f(λ) and f ′(λ′) be the optimal objective values to (H.25) and (H.26) respectively. Note that for any

λ ∈ R, f(λ) ≥ 0 and f ′(λ) ≥ 0 since the empty set S = ∅ achieves the objective value of 0 in both (H.25)

and (H.26). Moreover, f(λ) > 0 if and only if f ′(λ) > 0 since either holds if and only if there exists an

assortment S ∈Ψi with Vi(S)> 0 and Ri(S)>λ. As a result, if f(λ) = 0, then f ′(λ) = 0, and an assortment

S is an optimal solution to (H.25) if and only if Vi(S) = 0 or Ri(S) = λ, and the same is true for (H.26).

It remains to consider the case in which f(λ)> 0. Define x(S) = V 1/ηi
i (S), y(S) = V 1/ηi

i (S)Ri(S), g(x, y) =

yxηi−1−λxηi , R= (0,∞)×R, and D= {(x(S), y(S)) : S ∈Ψi, x(S)> 0} ⊂R. Since f(λ)> 0, the optimization

problem (H.25) is equivalent to

max
(x,y)∈D

g(x, y). (H.27)
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In particular, the optimal objective value of (H.27) is equal to f(λ) and an assortment S is an optimal solution

to (H.25) if and only if (x(S), y(S)) is an optimal solution to (H.27). Moreover, the function g(x, y) on the

domain R is continuous and strictly increasing in y, and the lower contour set {(x, y)∈R : g(x, y)≤ f(λ)} is

convex. Therefore, we can apply Lemma H.1, which implies that any optimal solution (x(S∗), y(S∗)) to (H.27)

is also an optimal solution to

f ′′(λ′) := max
(x(S),y(S))∈D

{y(S)−λ′x(S)}, (H.28)

for some λ′ ∈R, which is guaranteed to exists and is such that

inf
(x,y)∈R

{g(x, y) : y−λ′x= f ′′(λ′)}= f(λ). (H.29)

Moreover, any other optimal solution (x(S′), y(S′)) to (H.28) at this λ′ is also an optimal solution to (H.27).

Note that (H.28) is identical to (H.26) except that it excludes assortments S with Vi(S) = 0.

To complete the proof, it suffices to show that f ′′(λ′) > 0, as this would imply that the constraint in

the definition of D that Vi(S) > 0 is extraneous, so the set of optimal solutions to (H.26) is the same as

the set of optimal solutions to (H.28). Now, observe that for each point (x, y) ∈ R with y ≤ λ′x, we have

g(x, y) = yxηi−1−λxηi ≤ (λ′−λ)xηi . This implies that if f ′′(λ′)≤ 0, then the infimum in (H.29) is less than

or equal to zero, which contradicts f(λ)> 0. Therefore, f ′′(λ′)> 0, as desired. �

Denote the trivial constraint set by Ψ0 := {S ⊆ J : 0∈ S}. For each node i∈ I, define Ψ0(i) := {S ∩Ji : S ∈
Ψ0} and

fi(λ) = max
S∈Ψ0(i)

{Vi(S)[Ri(S)−λ]}. (H.30)

The function is the upper envelope of a finite set of linear functions of λ, each of which corresponds to an

assortment S, and has y-intercept Vi(S)Ri(S) and slope −Vi(S). Hence, fi(λ) is convex, piecewise linear

and weakly decreasing. Note that Vi(S) = 0 implies that |S ∩Ji|= 0 by (H.21). Therefore, froot(λ) is strictly

decreasing everywhere; for every other node i∈ I\{root}, fi(λ) is strictly decreasing in the range λ∈ (−∞, λ]

for some λ<∞, and it is identically zero in the range [λ,∞).

The main idea behind the efficient algorithm in this section is to compute a piecewise linear representation

of froot(·), from which one can construct a candidate set A satisfying the requirements of Proposition H.8

by including an assortment S corresponding to each each linear piece of froot(·). Proposition H.8 states that

it suffices to look within this candidate set A to identify a socially optimal assortment. Proposition H.9

suggests the following recursive procedure for computing a piecewise linear representation of the function

fi(·) for each node i∈ I:

1. For each leaf node i∈ J , the desired representation is trivial to compute: if i∈ [n], fi(λ) = max{vi(ri−
λ),0}; if i= 0, fi(λ) =−v0λ.

2. For each internal node i ∈N , the desired representation can be computed from those of its children

using Proposition H.9. Define the piecewise linear and convex function

f ′i(λ) :=
∑

j∈Children(i)

fj(λ). (H.31)

Each linear piece of f ′i also corresponds to an assortment S, which is the disjoint union of the assortments

corresponding to the corresponding linear pieces from the children fj ’s. Suppose the linear piece in f ′i
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corresponding to assortment S ∈ Ji ∩Ψ0 is g′S(λ) = aS − bSλ, define the updated line gS(λ) = aSb
ηi−1
S −

bηiS λ, and compute the upper envelope of the updated lines. By Proposition H.9, this new upper envelope

is equal to fi(λ).

The above procedure for computing froot(·) can be implemented in O(dn logn) time because a straightfor-

ward induction shows that the function fi(λ) has at most |Ji| non-zero linear pieces. The sum in (H.31) can

be computed by simply sorting all the breakpoints from the children fj ’s and adding the corresponding lines

between two adjacent breakpoints, so can be done in O(|Ji| log |Ji|) time. The re-computing of the upper

envelope to transform f ′i into fi can be done in O(|Ji|) time using a standard algorithm from computational

geometry (the dual of the monotone chain algorithm for computing the upper convex hull in R2). Hence, the

recursive step for computing fi from its children takes O(|Ji| log |Ji|) time, and adding this across all nodes

yields the O(dn logn) bound.

Algorithm 4 is a concrete implementation of the above ideas. It represents each piecewise linear function

fi(λ) as a doubly linked list L of K ≤ |Ji| elements, where the kth element is a tuple (λk, ak, bk,Dk). The list

is always sorted so that −∞< λ1 < · · ·< λK = λ. Define λ0 =−∞. The kth non-zero linear piece of fi(λ)

is given by the line ak− bkλ in the range λ∈ (λk−1, λk), and corresponds to the assortment Sk :=
⋃K

k′=kDk.

See Figure H.3 for an illustration. The reason that we maintain the set difference Dk = Sk\Sk+1 instead of

the assortment Sk is that it makes the set operations in computing the sum H.31 more efficient. Moreover,

one can show by induction that the recursive procedure above always results in nested sets. A generalization

of this observation is rigorously derived in Lemma H.2 at the end of this section.

Figure H.3 Illustration of the meaning of the doubly linked list data structure L= (λk, ak, bk,Dk) in Algorithm

4 for encoding a piecewise linear convex function fi(λ). In this example, i is a non-root internal node and has 3

non-zero linear pieces, so L has K = 3 elements.

The algorithm makes use of several standard data structures. It manipulates a doubly linked list L using

the following notation:

• (): create an empty list.

• L.insertEnd(x): insert the element x at the end of the list.

• L.insertBeginning(x): insert the element x at the beginning of the list.

• L.removeEnd(): remove the last element of the list.
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• L[k]: access the kth entry of the list.

The algorithm manipulates a priority queue Q using the following notation:

• Q.top(): obtain the smallest element in the queue.

• Q.pop(): obtain the smallest element and remove it from the queue.

• Q.push(x): insert a new element x into the queue.

• Q.pushAll(L): insert each element x of the list L into the queue.

The algorithm makes use of several functions, as summarized below:

• generateCandidates(i): recursively compute a piecewise linear representation of the function fi(λ)

for each node i ∈ I\{0, root}. For the root node, the result is a piecewise linear representation of

froot(λ)− f0(λ) = froot(λ) + v0λ.

• firstDifference(L): replace each ak and bk in the doubly linked list L= (λk, ak, bk,Dk) by ak − ak+1

and bk− bk+1. The purpose is to make the function sum in (H.31) easier to compute.

• cumulativeSum(L′): the inverse of firstDifference(L).

• reCompute(ηi,L): given ηi ∈ (0,1] and a representation of f ′(λ) as in (H.31), compute a representation

of f(λ) by updating each line and computing the upper envelope.

• upperEnvelope(A,B): given two linked lists A= (ak) and B = (bk) encoding a set of lines ak−bkλ, with

B sorted in strictly decreasing order, compute the upper envelope of the lines. By the duality of points

and lines in R2, the correctness of this algorithm follows from that of the Monotone Chain algorithm

(a.k.a. Andrew’s algorithm) for computing the convex hull of the points (ak, bk).

The priority queue Q used below sorts tuples of the form (λk, ak, bk,Dk) by the first component λk in

weakly increasing order, and break ties arbitrarily.

Function generateCandidates(i)

Data: Node i∈ I\{0}, and all the parameters of the nested logit utility distribution: v, r, η, and
Children(·).

Initialize L← ();
if i∈ [n] then

L.insertEnd((ri, rivi, vi,{i}));
else if i∈N then

Q←empty priority queue that orders tuples by the first component;
for j ∈Children(i)\{0} do Q.pushAll(firstDifference(generateCandidates(j)));
while |Q|> 0 do

(λ,a, b,D)←Q.pop(); (λ′, a′, b′,D′)←Q.top();
while λ= λ′ do

a← a+ a′; b← b+ b′; D←D∪D′;
Q.pop(); (λ′, a′, b′,D′)←Q.top();

end
L.insertEnd((λ,a, b,D));

end
if i= root then L.insertEnd((∞,0, v0,{0}));
L← cumulativeSum(L);
L← reCompute(ηi,L);

end
Result: Doubly linked list L of cardinality |L| ≤ |Ji|.
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Function firstDifference(L)

Data: A doubly linked list L of the aforementioned format.
Initialize L′← (); a′← 0; b′← 0;
for (λ,a, b,D)∈L in reverse order of λ do

L′.insertBeginning((λ,a− a′, b− b′,D));
a′← a, b′← b;

end
Result: Doubly linked list L′ of cardinality |L′|= |L|.

Function cumulativeSum(L′)

Data: A doubly linked list L′ of the aforementioned format.
Initialize L← (); a′← 0; b′← 0;
for (λ,a, b,D)∈L in reverse order of λ do

a′← a′+ a, b′← b′+ b;
L.insertBeginning((λ,a′, b′,D));

end
Result: Doubly linked list L of cardinality |L|= |L′|.

Function reCompute(η,L)

Data: Dissimilarity parameter η ∈ (0,1], and a doubly linked list L of the aforementioned format.
if ηi = 1 then L∗←L;
else

Initialize A← (); B← (); D← (), L∗← ();
for (λ,a, b,D)∈L do

A.insertEnd(abηi); B.insertEnd(bη); D.insertEnd(D);
end
T ← upperEnvelope(A,B);
A.insertEnd(0); B.insertEnd(0); T.insertEnd(|L|+ 1);
for k= 1,2, · · · , |T | − 1 do

L∗.insertEnd(A[T [k]]−A[T [k+1]]

B[T [k]]−B[T [k+1]]
,A[t],B[t],

⋃T [k+1]−1
t=T [k] D[t]);

end
end
Result: Doubly linked list L∗ of cardinality |L∗| ≤ |L|.

Function upperEnvelope(A,B)

Data: Two lists of real numbers of equal cardinality |A|= |B|. The list B is sorted in strictly
decreasing order.

Initialize T ← ();
for i= 1,2, · · · , |A| do

while |T | ≥ 2 and A[T [−2]]−A[T [−1]]

B[T [−2]]−B[T [−1]]
≥ A[T [−2]]−A[i]

B[T [−2]]−B[i]
do

T.removeEnd();
end
T.insertEnd(i);

end
Result: Doubly linked list T of indices, with cardinality |T | ≤ |A|.
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Algorithm 4: Socially optimal assortment planning under d-level nested logit utilities and
trivial constraint
Data: Parameter α≥ 0, and attraction weight v0 = exp(u0).
Initialize z∗←−∞; L← generateCandidates(root);
for (λ,a, b,D)∈L do

z← α log(b) + b/a;
if z > z∗ then z∗← z, λ∗← λ;

end
S∗←

⋃
{D : (λ,a, b,D)∈L and λ≥ λ∗};

Result: Optimal objective value z∗ and optimal assortment S∗.

The following structural result is used in Proposition H.11 to state an additional property of the assortment

S∗ obtained by Algorithm 4. Moreover, it is the basis of the proof of Proposition 1 in Appendix H.3.

Proposition H.10 (Lattice Structure of Optimal Assortments). For the d-level nested logit utility

distribution and the trivial constraint set Ψ0 = {S ⊆ J : 0 ∈ S}, the set of optimal solutions to the socially

optimal assortment planning problem (H.23) forms a complete lattice: if S and S′ are optimal assortments,

then so are their union S ∪S′ and their intersection S ∩S′.

Proof of Proposition H.10 The desired result follows from Proposition H.8 and the following lemma, since

the set of optimal assortments can be written as
⋃
λ∗∈Λ∗ Aroot(λ

∗) for some set Λ∗ ⊆ R, where Aroot(·) is

defined in (H.32) in the lemma. �

Lemma H.2. Let Ψ0 = {S ⊆ J : 0 ∈ S} be the trivial constraint set. For any node i ∈ I of a d-level nested

logit utility distribution, define the following set, which is parameterized by λ∈R,

Ai(λ) = arg max
S∈Ψ0(i)

{Vi(S)[Ri(S)−λ]}. (H.32)

Suppose that S ∈Ai(λ) and S′ ∈Ai(λ′). If λ′ <λ, then S ⊆ S′. If λ′ = λ, then S∪S′ ∈A(λ) and S∩S′ ∈A(λ).

Proof of Lemma H.2 The proof is by induction. The above property is trivially true for the outside

option node as Ψ0(0) = {{0}} has cardinality one. It is true for every leaf node i ∈ [n] since the assortment

{i} ∈Ai(λ) if and only if λ∈ (−∞, ri] and the empty assortment ∅ ∈Ai(λ) if and only if λ∈ [ri,∞).

For an internal node i ∈N , suppose that for all its children nodes j ∈ Children(j), the above property

is true for the parameterized set Aj(·), I show that it is also true for Ai(·). Suppose that S ∈ Ai(λ) and

S′ ∈Ai(λ′) with λ′ ≤ λ. Define the parameterized set

Ãi(λ) :=

 ⋃
j∈Children(i)

Tj : Tj ∈Aj(λ)

 . (H.33)

By Proposition H.9, there exists λ̃, λ̃′ ∈ R such that S ∈ Ãi(λ̃) ⊆ Ai(λ) and S′ ∈ Ãi(λ̃′) ⊆ Ai(λ′). Define

the function fi(λ) as in (H.30) and the function f ′i(λ) as in (H.31). Both functions are convex and weakly

decreasing. Moreover, −Vi(S) is a subderivative of fi at λ and −Vi(S′) is a subderivative of fi at λ′ ≤ λ,

so Vi(S
′) ≥ Vi(S). By the identity in (H.26), −V 1/ηi

i (S) is a subderivative of f ′i at λ̃ and −V 1/ηi
i (S′) is a

subderivative of f ′i at λ̃′, so λ̃′ ≤ λ̃ since Vi(S
′)1/ηi ≥ Vi(S)1/ηi .

Suppose that λ̃′ < λ̃, then S ⊆ S′ by (H.33) and the induction hypothesis. This makes S and S′ satisfy the

desired property regardless of whether λ′ <λ or λ′ = λ.
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Suppose that λ̃′ = λ̃, then we have by the induction hypothesis and (H.33) that S′ ∪ S,S′ ∩ S ∈ Ãi(λ̃),

which is a subset of both Ai(λ) and Ai(λ
′). This already shows the desired result if λ′ = λ. If λ′ < λ, then

observe that for any assortment S̃ ∈ Ãi(λ̃), −Vi(S̃) must be a subderivative to fi at both λ and λ′, so its

value is pinned down:

−Vi(S̃) =
fi(λ)− fi(λ′)

λ−λ′
. (H.34)

The above argument implies that Vi(S∩S′) = Vi(S∪S′). But S∩S′ ⊆ S∪S′, so the definition of the function

Vi in (H.21) implies that these sets must equal, so S = S′, which satisfies S ⊆ S′, as desired. �

Proposition H.11. For any d-level nested logit utility distribution and any α≥ 0, Algorithm 4 solves the

socially optimal assortment planning problem (H.23) under the trivial constraint set Ψ = {S ⊆ J : 0 ∈ S},

and is guaranteed to run in O(dn logn) time. In particular, it returns the correct objective value z∗, as well

as the optimal assortment S∗ with the largest cardinality, which is unique by Proposition H.10.

Proof of Proposition H.11 The run time guarantee follows from the observation that the linked list L in

generateCandidates(i) has a maximum cardinality of |Ji|, so each priority queue push or pop takes O(log |Ji|)

time. Moreover, the sets D are disjoint and the only operations needed on them is union, so they can be

implemented efficiently using linked lists with each union D∪D′ taking constant time. Furthermore, observe

that the functions firstDifference(L), cumulativeSum(L), reCompute(η,L) can all be implemented in

O(|L|) time and upperEnvelope(A,B) can be implemented in O(|A|) time. Hence, the total run time of

algorithm 4 is upper bounded by∑
i∈I

O(|Ji| log |Ji|)≤
∑
i∈I

O(|Ji| logn) =O(dn logn). (H.35)

The rest of the proposition follows from Proposition H.10 and the following property of the function

generateCandidates(i) for each node i∈ I\{0}: if the list returned is L= (λk, ak, bk,Dk) and Sk :=
⋃
k′≥kDk,

then L is a piecewise linear representation of fi(λ) (see Figure H.2) and Sk is the assortment in Ai(λ) of

largest cardinality for each λ∈ (λk−1, λk]. (See (H.30) and (H.32) for definitions of fi and Ai.) This property

can be shown by induction: it is true for each leaf node i∈ [n] by construction. Suppose that it is true for all

nodes in Children(i), then it is true for node i because by the end of the line L← cumultativeSum(L) in

generateCandidates(i), the linked list L is a piecewise linear representation of f ′i(λ) as defined in (H.31). By

the induction hypothesis, the associated assortment Sk is the member of Ãi(λ) of highest cardinality for each

λ ∈ (λk−1, λk], where the set Ãi is defined in (H.33). The desired property for node i follows from Proposi-

tion H.9 and the correctness of the upperEnvelope((ak), (bk)) function for computing the upper envelope of

the lines (ak − bkλ), thus completing the induction. Moreover, the result of the reCompute function at the

end of generateCandidates(i) is a representation of the upper envelope fi(λ) using the minimum possible

number of lines, so that no three lines pass through the same point.

Finally, note that after obtaining the candidate assortments (Sk) from generateCandidate(root), Algo-

rithm 4 identifies the assortment S∗ = Sk∗ that achieves the highest objective value (H.23), and in case of a

tie, it returns the one with the smallest k∗, which is the one with the highest cardinality since S1 ⊃ S2 ⊃ · · · .

The optimality of S∗ and its maximality among all optimal assortments follow from Proposition H.8. �
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H.2.3. 2-Level Nested Logit Utilities and Cardinality Constraint within Nest When d = 2,

define N ′ =N\{root}, so that [n] =
⋃
s∈N′ Js. For any set Ψ⊆ 2J and any nest s∈N ′, define Ψ(s) = {S∩Js :

S ∈ Ψ}. Suppose that the constraint set Ψ is such that Ψ ⊆ Ψ0 and the empty set ∅ ∈ Ψ(s) for each nest

s ∈N ′, Propositions H.8 and H.9 imply that the socially optimal assortment planning problem (H.23) can

be solved as follows:

1. For each nest s∈N ′, construct a candidate set As that for each λ∈R, contains an optimal solution to

max
S⊆Ψ(s)

{
∑
j∈S

vj(rj −λ)}. (H.36)

2. Compute a piecewise linear representation of the convex function

froot(λ) =−v0λ+
∑
s∈N′

max
S∈As
{Vj(S)[Rj(S)−λ]}. (H.37)

Each linear piece corresponds to an assortment S which is the union of {0} and an element of As for

each nest s∈N ′. By Proposition H.8, one of these assortments is guaranteed to be an optimal solution

to (H.23) regardless of the parameter α.

For the cardinality within nest constraint set Ψ = {S ⊆ J : 0 ∈ S, |S ∩ Js| ≤ ks for each nest s ∈N ′}, the

candidate set As can be found using a modification of Algorithm 3, and a piecewise linear representation

of (H.37) can be found using a modification of the generateCandidates(root) function. A full implementation

is given in Algorithm 5 below.

One difference from Algorithm 4 is that the sets Sk are no longer nested due to the cardinality con-

straints, so the algorithm encodes a piecewise linear representation by a list L= (λk, ak, bk,Dk,Ek), where

the associated assortment Sk for the kth piece satisfies Sk = Sk+1 ∪Dk\Ek. Moreover, define the functions

firstDifference′(L), cumultativeSum′(L′) and reCompute′(η,L) to be the trivial modifications of the cor-

responding functions from Algorithm 4 in which whatever is done to the fourth component D of each tuple

is also done to the fifth component E.29

Function solveNest(s)

Data: Nest s∈N ′, along with the parameters ks ≤ |Js|, ηs ∈ (0,1], and (vj , rj) for each j ∈ Js.
τ ← the result of step 1 of Algorithm 3 with the set S0 replaced by Js and k replaced by ks;
o← the result of step 2 of Algorithm 3 with the sets S0 and [n] replaced by Js;
Initialize L← (); S←{j ∈ [n] : oj ≤ k}; a←

∑
j∈S vjrj ; b←

∑
j∈S vj ;

for (λ,−i, j)∈ τ do
if j = 0 and i∈ S then

L.insertEnd((λ,a, b,{i},{}));
a← a− viri, b← b− vi;

else if j > 0 and oi < oj then
Swap oi and oj ;
if oj = k and i∈ S then

L.insertEnd((λ,a, b,{i},{j}));
a← a− viri + vjrj , b← b− vi + vj ;

end
end

end
L← reCompute′(ηs,L);
Result: Doubly linked list L of cardinality |L| ≤

(|Js|+1
2

)
.

29 For example, in reCompute′(η,L), one would create a list E analogous to D, and the tuple inserted to L∗ would

have its last component being
⋃T [k+1]−1

t=T [k] E [t].
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Algorithm 5: Socially optimal assortment planning under 2-level nested logit utilities and
cardinality within nest constraint

Data: All the parameters of the 2-level nested logit utility distribution: v, r, η, Js for each nest
s∈N ′. Parameter α≥ 0.

Initialize L← 0; Q← empty priority queue that orders tuples by the first component; z∗←−∞;
for s∈N ′ do Q.pushAll(firstDifference′(solveNest(s)));
while |Q|> 0 do

(λ,a, b,D,E)←Q.pop(); (λ′, a′, b′,D′,E′)←Q.top();
while λ= λ′ do

a← a+ a′; b← b+ b′; D←D∪D′; E←E ∪E′;
Q.pop(); (λ′, a′, b′,D′,E′)←Q.top();

end
L.insertEnd((λ,a, b,D,E));

end
L.insertEnd((∞,0, v0,{0},{}));
L← cumulativeSum′(L);
for (λ,a, b,D,E)∈L do

z← α log(b) + a/b;
if z > z∗ then z∗← z, λ∗← λ;

end
Dsum←{}; Esum←{};
for (λ,a, b,D,E)∈L if λ≥ λ∗ do Dsum←Dsum ∪D, Esum←Esum ∪E;
S∗←Dsum\Esum;
Result: Optimal objective value z∗ and assortment S∗

Proposition H.12. Algorithm 5 can be implemented in O(
∑

j∈N′ |Js|2 logn) =O(n2 logn) time and solves

the socially optimal assortment planning problem (H.23), with z∗ being the optimal objective value and S∗ an

optimal assortment. Moreover, if within each nest s∈N ′, the items are labelled in weakly decreasing order of

vj, with vj ≥ vj′ if j′ < j for j, j′ ∈ Js, then the assortment S∗ is lexicographically the least out of all optimal

assortments. (The lexicographic ordering for assortments is defined immediately before Proposition H.7.)

Proof of Proposition H.12 The time guarantee follows from the observation that the solveNest(s) func-

tion can be implemented in O(|Js|2 log |Js|) time as with Algorithm 3, and the list returned has at most as

many elements as there are intersection points between the lines vj(rj − λ) and the zero function, which is

bounded by
(|Js|+1

2

)
. Hence, the total number of linear segments to froot is O(

∑
s∈N′ |Js|2), which implies

that each push or pop of the priority queue in Algorithm 5 can be implemented in O(logn) time, and the

whole algorithm takes O(
∑

s∈N′ |Js|2 logn) time.

The rest of the proposition follows from Propositions H.8 and H.9 and the following observations:

1. By the correctness of Algorithm 3, the function solveNest(s) for each nest s ∈N ′ returns a piecewise

linear representation of the function fs(λ) = maxS⊆Js,|S|≤ks{Vi(S)[Ri(S) − λ]}. Moreover, when the

items in each nest are labeled in weakly decreasing order of vj , then as in the proof of Proposition H.7,

the assortment Sk corresponding to the kth piece is the lexicographically smallest assortment in As(λ) =

arg maxS⊆Js,|S|≤ks{Vi(S)[Ri(S)−λ]}. Moreover, the sequence (Sk) is lexicographically increasing.

2. The list L in Algorithm 5 after the line L← cumulativeSum′(L) is a piecewise linear representation of

the function froot(λ) from (H.37). Moreover, if (Sk) is the sequence of assortments corresponding to this
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piecewise linear representation, the assortments are lexicographically increasing in k by construction,

and the S∗ returned by Algorithm 5 is the first Sk that achieves the optimal objective value.

�

H.2.4. Generalization for GEV Utility Distributions The MNL and d-level Nested logit utility

distribution are both special cases of Generalized Extreme Value (GEV) utility distributions, which are first

studied in McFadden (1978). The utility of an agent i for item j ∈ J is parameterized as uij = uj + εij as in

the MNL utility distribution, except that the random term εij ’s are allowed to be richly correlated across

items, so that the (n+ 1)-dimensional vector εi is distributed according to a joint CDF F : Rn+1→R with

the following form:

F (x) = P({εij ≤ xj for all j ∈ J) = exp(−G(e−x0 , e−x1 , · · · , e−xn)), (H.38)

where G :Rn+1→R is called a GEV generating function and satisfies the following properties:

1. Non-negativity on the positive orthant: G(x)≥ 0 for each non-negative |J |-dimensional vector x≥ 0.

Moreover, G(1j)> 0 for each unit vector 1j , which has 1 in component j and 0 elsewhere.

2. Homogeneous of degree one: for all α≥ 0, G(αx) = αG(x).

3. Differentiable, with non-positive even and non-negative odd mixed partial derivatives: for any k ≥ 1

and any distinct indices j1, j2, · · · , jk ∈ J , the partial derivative (−1)k ∂G
∂j1 ···∂jk

(x)≤ 0 for all x∈Rn+1.

McFadden (1978) shows that (H.38) is a valid CDF, and the expected utilities and choice probabilities for

the corresponding utility distribution are given by,

U(S) = log(G(ν(S)) + γEuler, (H.39)

P (j,S) =
νj(S)∂jG(ν(S))

G(ν(S))
, (H.40)

where νj(S) =

{
exp(uj) if j ∈ S,
0 otherwise,

(H.41)

and ν(S) is a (n+ 1)-dimensional vector with the jth component equal to νj(S). γEuler = 0.5772... is Euler’s

constant.

For the MNL utility distribution, the generating function is G(x) =
∑n

j=0 xj . For the 2-level nested logit

utility distribution with nests {Js}, it is G(x) = x0 +
∑

s

(∑
j∈Js x

1/ηs
j

)ηs
. For the d-level nested logit utility

distribution,30 G(x) =Groot(x), where for each node of the tree i∈ I :=N ∪J , the function Gi(x) : Rn+1→R

is defined recursively as follows

Gi(x) =


(∑

j∈Children(i)Gj(x)
)ηi

if i∈N ,

x
1/

∏
j∈Ancestors(i) ηj

i if i∈ J .
(H.42)

The following result generalizes Propositions H.6 and H.8 to arbitrary GEV utility distributions, and

characterizes the optimality conditions for the parameter λ.

30 See Appendix H.2.2 for explanation of the tree notation in the d-level nested logit utility distribution.
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Proposition H.13. For any GEV utility distribution, any constraint set Ψ that does not contain the

empty set, and any α≥ 0, an assortment S is an optimal solution to the socially optimal assortment planning

problem

max
S∈Ψ

αU(S) +R(S), (H.43)

if and only if S is an optimal solution to the optimization problem

f(λ) := max
S∈Ψ
{G(v(S))(R(S)−λ)}, (H.44)

for some λ belonging to the set

Λ∗α :=

{
arg maxλ′∈R{f(λ) exp(λ/α)} if α> 0,

{λ′ : f(λ′) = 0} if α= 0.
(H.45)

Moreover, the set Λ∗ can be rewritten as {R(S)−α : S is an optimal solution to (H.43)}.

Proof of Proposition H.13 As in the proof of Proposition H.6 and H.8, define x(S) = G(v(S)), y(S) =

G(v(S))R(S), D= {(x(S), y(S)), S ∈Ψ}, g(x, y) = α log(x)+y/x, and R= (0,∞)×R. Note that the function

g(x, y) on the open convex domain R is quasi-convex, continuous, strictly increasing in y. The socially optimal

assortment planning problem (H.43) can be written as max(x,y)∈D g(x, y).

Define the function

h(λ, f) = inf
x∈(0,∞)

{
α log(x) +

f +λx

x

}
. (H.46)

Note that when α> 0, h(λ, f) = α log(f/α) +α+λ. When α= 0,

h(λ, f) =

{
λ if f ≥ 0,

−∞ if f < 0.
(H.47)

The desired result follows from Lemma H.1 and the observation that the function f(λ) in (H.44) is equal to

max(x,y)∈D{y−λx} and is strictly decreasing in λ. The last statement on the equivalent representation of Λ∗

when α> 0 follows from the first order condition for the optimization in λ for the function log(f(λ)) +λ/α,

which is the logarithm of (H.45). When α= 0, the desired result follows from the observation that f(λ) = 0

is equivalent to R(S∗) = λ, where S∗ is an optimal solution to (H.43). �

H.2.5. Markov Chain Based Choice Model and Trivial Constraint The Markov chain based

choice model is proposed by Blanchet et al. (2016) as a tractable approximation to the mixed MNL utility

distribution, which McFadden et al. (2000) show can approximate any random utility model to any degree

accuracy. (The mixed MNL utility distribution itself is intractable for assortment optimization even with

α = 0, as shown by Bront et al. (2009) and Rusmevichientong et al. (2014).) In this section, I modify

the Markov chain based choice model to add a measure of preference intensity, and adapt the algorithm

of Feldman and Topaloglu (2017) for solving the revenue-maximizing assortment planning problem (α= 0)

to the socially optimal case (α≥ 0).

The modified Markov chain based utility model is as follows: each agent has an initial utility v, which

is an arbitrary constant. Let J = [n] ∪ {0}. Define a Markov chain with n+ 1 states, in which each state

corresponds to an item j ∈ J . There are three sets of parameters in the utility distribution:

1. an arrival rate aj ≥ 0 for each state j ∈ J , with their sum being equal to one;
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2. a transition probability ρkj ≥ 0 from each state k ∈ [n] to each state j ∈ J , with
∑

j∈J ρkj = 1;

3. a disappointment cost ckj ≥ 0 for each transition from k ∈ [n] to j ∈ J .

Note that there are no transitions out of the outside option 0.

Given any assortment S ⊆ J containing the outside option 0, consider the following stochastic process:

agents arrive at each state according to the arrival rates. Whenever they arrive at a state j ∈ S, they leave the

system. Otherwise, at each time step, they follow the transition probabilities to their next state, and continue

in the system until they arrive at one of the states in S. The expected utilities and choice probabilities are

defined as follows:

V (S) = v−E[total disappointment cost incurred before leaving] (H.48)

P (j,S) =

{
P(The state when they leave the system is j) if j ∈ S,

0 otherwise.
(H.49)

Proposition H.14. Consider a Markov chain based utility model with arrival probabilities a, transition

probabilities ρ, and disappointment costs c. For any α≥ 0 and any revenue vector r, let (x∗, z∗) be an optimal

basic solution to the linear program:

Maximize:
x,z

α

v− ∑
k∈[n],j∈J

ckjρkjzk

+
∑
j∈[n]

rjxj (H.50)

subject to: xj + zj = aj +
∑
k∈[n]

ρkjzk for each j ∈ [n]. (H.51)

xj , zj ≥ 0 for each j ∈ [n]. (H.52)

Then the assortment S∗ = {j ∈ [n] : x∗k > 0} ∪ {0} is an optimal solution to the socially optimal assortment

planning problem (14) under the trivial constraint set Ψ0 = {S ⊆ J : 0 ∈ S}, and the optimal LP objective

value (H.50) is the optimal objective value of (14).

Proof of Proposition H.14. As in Section 1 of Feldman and Topaloglu (2017), for any assortment S ⊆ J ,

let R(j,S) be the steady state rate of agents leaving state j. We have that

P (j,S) =

{
aj +

∑
k∈[n] ρkjR(k,S) if j ∈ S,

0 otherwise.

R(j,S) =

{
aj +

∑
k∈[n] ρkjR(k,S) if j ∈ [n]\S

0 otherwise.

Therefore, for any assortment S, setting xk = P (k,S) and zk = R(k,S) yields a feasible solution to the

LP. The social welfare of this assortment according to the objective function (14) is exactly the LP objec-

tive (H.50), so the maximum social welfare of any assortment S ∈Ψ0 is upper bounded by the optimal LP

objective value. Moreover, by Lemma 1 of Feldman and Topaloglu (2017), the polyhedron described by the

constraints (H.51) and (H.52) is such that for any vertex and any j ∈ J , either xj = 0 or zj = 0. This implies

that if S∗ are as defined in the theorem, then P (j,S∗) and R(j,S∗) are exactly given by xj and zj , so we

can attain the optimal LP objective value with assortment S∗. �
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H.3. Proof of Proposition 1: Setting in which RSD is Optimal

Let Ψ0 = {S ⊆ J : 0∈ S} be the trivial constraint set, and Λ be the total mass of agents. Since there is only

one agent segment, the LP in Section 3.1 can be simplified as follows, with the subscript t omitted everywhere,

and the vector pS ∈ [0,1]n defined to be equal to the choice probability P (j,S) in its jth component.

Maximizey
∑
S∈Ψ0

U(S)yS (H.53)

s.t.
∑
S∈Ψ0

yS = Λ (H.54)∑
S∈Ψ0

pSj yS ≤ cj for each item j ∈ [n] (H.55)

yS ≥ 0 (H.56)

The remainder of the proof shows that if cj > 0 for every j ∈ [n], then there exists an optimal solution y∗

to the above LP with

y∗J = min(1,min
j∈[n]
{cj/pJj }). (H.57)

Once this is established, then the optimality of RSD follows from induction on the number of items with

positive capacity, as by the induction hypothesis, RSD would be optimal when (Λ, c) is replaced by (Λ−
y∗J , c− pJy∗J), in which case the number of items with positive capacity strictly decreases, as {j : cj − pJj y∗J >
0}( {j : cj > 0}.

Let φ be the dual variable for constraint (H.54) and γj for constraint (H.55). The dual LP is

Minimizeφ,γ Λφ+ c · γ (H.58)

s.t. φ+ pS · γ ≥U(S) for every S ∈Ψ0. (H.59)

γ ≥ 0 (H.60)

For a given optimal dual solution (φ,γ), let A be the set of budget sets S for which the constraint (H.59) is

tight. I show that J ∈A. This is because the optimality of (φ,γ) implies that φ= maxS∈Ψ0
{U(S)− pS · γ},

which means that φ is the optimal objective value of the socially optimal assortment planning problem with

constraint set Ψ0, parameter α = 1 and revenue rj = −γ∗j . Moreover, A is the set of optimal assortments.

Now, for any j such that γj = 0, it must be that j ∈ S for every optimal assortment S ∈ A, as including

the item in any assortment would increase the expected utility without incurring any penalty. If γj > 0,

then by complementary slackness, (H.55) is tight at the optimal primal solution y∗, so there exists a S 3 j
with y∗S > 0, which implies that S ∈A. Thus, J =

⋃
S∈A S. By Proposition H.10 in Appendix H.2.2, A is a

complete lattice, which implies that J ∈A.

Define f(Λ, c) to be the optimal objective of the dual LP with coefficients (Λ, c) in the objective function.

Let x∗ be the right hand side (RHS) of (H.57). For any x< x∗, we have

f(Λ, c) =U(J)x+ f(Λ−x, c− pJx). (H.61)

This is because if (φ,γ) is an optimal dual solution for parameters (Λ, c) and (φ′, γ′) is an optimal dual

solution for parameters (Λ−x, c− pJx) with x< x∗, then the argument in the above paragraph shows that

φ+ pJ · γ =U(J) = φ′+ pJ · γ′, (H.62)
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so the left hand side (LHS) of (H.61) is less than or equal to the RHS by the optimality of (φ,γ), and the

RHS is less than or equal to the LHS by the optimality of (φ′, γ′). Since f(Λ, c) is a finite and concave

function for any non-negative inputs, we have by continuity that (H.61) holds also for x= x∗, which is what

we needed to prove, as the desired y∗ can be constructed from any optimal solution of the primal LP with

constraint bounds (Λ−x∗, c− pJx) and setting y∗J = x∗. �

H.4. Proof of Proposition 2: Analysis of Example 1

I analytically solve the LP in (9)-(13) for the market M in Example 1. Define the sets S0 = {0}, S1 =

{0,1}, S2 = {0,2}, S3 = {0,1,2}. Without loss of generality, it suffices to consider feasible solutions y ∈ Y M

satisfying the following symmetry condition: y1S3
= y2S3

, y1S0
= y2S0

, and y1S1
= y2S2

, y1S2
= y2S1

. This is

because if y is not symmetric, then define y′ so that the two neighborhoods and two schools have labels

switched, then y′′ = (y+ y′)/2 is symmetric. Moreover, y′′ satisfies all the constraints of the LP, and yields

the same objective value as y.

By symmetry, we can rewrite the LP in the following simpler way, in which the decision variable zk

corresponds to y1Sk for k ∈ {1,2,3}.

Maximize

3∑
k=1

[U(Sk)−U(S0)]zk (H.63)

s.t. [P (1, S3) +P (2, S3)]z3 +P (2, S2)z2 +P (1, S1)z1 ≤ c (H.64)

z1 + z2 + z3 ≤ 1 (H.65)

z1, z2, z3 ≥ 0 (H.66)

In the above, c := c1 = c2 is the common capacity of the two schools, and U and P are defined as in (7) and (8)

for neighborhood 1 except that the subscript t= 1 is omitted here for simplicity. The original objective in (9)

is equal to (H.63) plus U(S0) then multiplied by 2. By the assumptions in Example 1, P (1, S1)> 0, P (2, S2)>

0, and U(Sk) − U(S0) > 0 for each k ∈ {1,2,3}. Moreover, c ≤ P (1, S1), and [U(S1) − U(S0)]/P (1, S1) >

[U(S2)−U(S0)]/P (1, S2).

Observe that in any optimal solution z, it must be that z2 = 0: if it were not so, then z′ := ([P (2, S2)z2 +

P (1, S1)z1]/P (1, S1),0, z3) would be a strictly a better feasible solution. This is because z′ satisfies (H.64)

by construction, and satisfies (H.65) since

z1 + z3 ≤ z1 +
P (1, S3) +P (2, S3)

P (1, S1)
z3 ≤

c

P (1, S1)
≤ 1, (H.67)

where the first inequality follows from P (1, S3)+P (2, S3) = 1−P (0, S3)≥ 1−P (0, S1) = P (1, S1), the second

inequality from (H.64), and the third inequality from the assumption that capacities are scarce. The above

argument also shows that under the assumptions of Proposition 2, z2 = 0 implies (H.65).

After setting z2 = 0 and observing that constraint (H.65) is always fulfilled, the feasible region is now

a triangle with three vertices. The vertex (z1, z2, z3) = (0,0,0) is never optimal since its objective value is

zero while the other two are strictly positive. The remaining two vertices are (z1, z2, z3) = (c/P (1, S1),0,0)

and (0,0, c/[P (1, S3)+P (2, S3)]). The first corresponds to the neighborhood assignment plan, with objective

value equal to c times the left hand side of (17). The second corresponds to the open enrollment plan, with

objective value equal to c times the right hand side of (17). �

Electronic copy available at: https://ssrn.com/abstract=3425348



72 Shi: Optimal Priority-Based Allocation Mechanisms

H.5. Proof of Proposition 3: Analysis of Example 2

The proof is based on analytically solving the LP in (9)-(13), and making use of the following lemma, whose

proof is given at the end of this section.

Lemma H.3. Let X1,X2, · · · be i.i.d. random variables with CDF F and Yk := max1≤i≤k{Xi}. Let Z be a

random variable with continuous CDF H, such that P(X1 ≥Z)> 0. For each k ∈ {1,2, · · · }, define

φk :=E[Yk−Z|Yk ≥Z]. (H.68)

a) Suppose that H has a light left-tail, then φk is weakly increasing in k.

b) Suppose that H has a heavy left-tail and its upper support is weakly larger than that of F : for any x∈R,

H(x) = 1 implies that F (x) = 1. Then φk is weakly decreasing in k.

Without loss of generality, normalize the outside option distribution H so that it has mean zero, and

label the schools so that capacities are weakly decreasing, c1 ≥ c2 ≥ · · · ≥ cn. Define the function φk as in

the statement of Lemma H.3, based on the utility distribution F and the outside option distribution H.

Define pk = P(Yk ≥ Z), where Yk and Z are as in the statement of Lemma H.3, with 0< p1 ≤ p2 ≤ · · · ≤ pn.

Define Ψ = {S ⊆ [n] : |S|> 0}. For any budget set probability matrix y ∈ Y M for the market M in Example 2,

define a corresponding (2n−1)-dimensional vector x such that for every S ∈Ψ, xS :=
∑

t∈[m] yt(S∪{0}). Define

Λ =
∑

t∈[m] λt. By symmetry, the LP in (9)-(13) can be equivalently formulated in terms of x as follows:

Maximize
∑
S∈Ψ

φ|S|p|S|xS (H.69)

s.t.
∑
S∈Ψ

1

|S|
p|S|1(j ∈ S)xS ≤ cj for each j ∈ [n]. (H.70)∑

S∈Ψ

xS ≤Λ (H.71)

x≥ 0 (H.72)

The neighborhood assignment plan corresponds to

xS =

{
cj/p1 if S = {j},
0 otherwise,

(H.73)

with objective value W neighbor := Cφ1, where C :=
∑n

j=1 cj . For convenience, define cn+1 = 0. The open

enrollment plan (RSD) corresponds to

xS =

{
k(ck− ck+1)/pk if S = {1,2, · · · , k} for 1≤ k≤ n,

0 otherwise,
(H.74)

with objective value W open :=
∑n

k=1 k(ck− ck+1)φk. It suffices to show that under the assumptions of Exam-

ple 2, W neighbor is the optimal objective value when H has a heavy left-tail and W open is optimal when it

has a light left-tail.

First, observe that the constraint (H.71) is extraneous given the assumption in Example 2 that capacities

are scarce: C/Λ≤ p1. This is because if we sum (H.70) for all j ∈ [n] and use the fact that pk ≥ p1 for all

k≥ 1, we get

p1

∑
S∈Ψ

xS ≤
∑
S∈Ψ

p|S|xS ≤C, (H.75)
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so
∑

S∈Ψ xS ≤C/p1 ≤Λ is implied.

Let γj be the shadow price of the constraint (H.70). The dual to the above LP without the extraneous

constraint (H.71) is as follows.

Minimize

n∑
j=1

cjγj (H.76)

s.t. φ|S| ≤
1

|S|
∑
j∈S

γj for each S ∈Ψ. (H.77)

γ ≥ 0 (H.78)

Observe that if γ is a feasible solution to the above, and if the components are permuted, then the resultant

vector γ′ is also a feasible solution. Therefore, the optimal γ must be in reverse order from the cj ’s, so

γ1 ≤ γ2 ≤ · · · ≤ γn. Given this ordering, it suffices to consider the constraints (H.77) in which S = {1,2, · · · , k}

for some k ∈ [n]. Hence, the above dual LP is equivalent to the following:

Minimize

n∑
j=1

cjγj (H.79)

s.t. φk ≤
1

k

k∑
j=1

γj for each k ∈ [n]. (H.80)

γj ≤ γj+1 for each j ∈ [n− 1]. (H.81)

γ ≥ 0 (H.82)

By Lemma H.3, when H has a heavy left-tail, we have φ1 ≥ φ2 ≥ · · · ≥ φn, in which case an optimal

solution to the above LP will have all constraints (H.81) tight and γ1 as small as possible, so γj = φ1 for all

j ∈ [n]. The objective value is equal to W neighbor. When H has a light left-tail, we have φ1 ≤ φ2 ≤ · · · ≤ φn,

in which case an optimal solution will have every constraint (H.80) tight, and the constraints (H.81) will be

extraneous. Solving, we get γj = jφj − (j − 1)φj−1, where we define φ0 = 0 for convenience. The objective

value is equal to W open. �

The proof of Lemma H.3 makes use of the following basic property of light and heavy tailed distributions.

Lemma H.4. Let H be the CDF of a continuous distribution and let x := sup{x : H(x) = 0} and x :=

sup{x :H(x) = 1} be the lower and upper bounds to its support. (Note that x may be −∞ and x may be ∞.)

Define the function ζ : (x,∞)→R,

ζ(x) := EZ∼H [x−Z|x≥Z]. (H.83)

a) If H has a light left-tail, then ζ(x) is weakly increasing on (x,∞).

b) If H has a heavy left-tail, then ζ(x) is weakly decreasing on (x,x) and strictly increasing on (x,∞).

Proof of Lemma H.4 If H has a light left-tail, then log(H(x)) is weakly increasing and concave for x ∈

(x,∞). Therefore, for any x> x, y ∈ [x,x] and δ > 0,

H(y)

H(y+ δ)
≤ H(x)

H(x+ δ)
, (H.84)
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Thus, ∫ x

x

H(y)dy=

∫ x

x−δ
H(y)dy=

∫ x

x−δ

H(y)

H(y+ δ)
H(y+ δ)dy≤ H(x)

H(x+ δ)

∫ x+δ

x

H(y)dy, (H.85)

which rearranges to

ζ(x) =

∫ x
x
H(y)dy

H(x)
≤

∫ x
x+δ

H(y)dy

H(x+ δ)
= ζ(x+ δ). (H.86)

On the other hand, if H has a heavy left-tail, then log(H(x)) is weakly increasing and convex for x∈ (x,x)

and identically zero for x ∈ (x,∞). For δ > 0, x ∈ (x,x − δ], y ∈ [x,x], (H.84) holds with the inequality

reversed, and similarly (H.85) and (H.86) hold with ≤ changed to ≥. So ζ(x) is weakly decreasing for

x∈ (x,x). When x≥ x, ζ(x) = (x−x) + ζ(x), so ζ(x) is strictly increasing in x. �

Proof of Lemma H.3 Consider the conditional distribution of Yk given Yk ≥Z. It has CDF,

Γk(y) :=

∫ y
−∞H(x)dF k(x)∫∞
−∞H(x)dF k(x)

. (H.87)

The denominator is positive since P(Yk ≥Z)≥ P (X1 ≥Z)> 0. Let Ỹk be a random variable with the above

CDF, then φk = E[ζ(Ỹk)], where the function ζ is defined as in Lemma H.4. Moreover, note that the upper

support of Ỹk is no more than that of F : F (x) = 1 implies that Γk(x) = 1. Therefore, it suffices to show that

Ỹk′ first order stochastically dominates Ỹk if k′ >k≥ 1: Γk′(y)≤ Γk(y) for all y ∈R.

If Γk(y) = 1, then there’s nothing to show. If Γk(y) = 0, then Γk′(y) = 0 because the numerator∫ y

−∞
H(x)dF k′(x) =

k′

k

∫ y

−∞
H(x)F k′−k(x)dF k(x)≤ k′

k

∫ y

−∞
H(x)dF k(x) = 0. (H.88)

If 0< Γk(y)< 1, then we have∫ y
−∞H(x)dF k′(x)∫ y
−∞H(x)dF k(x)

=
k′

k

∫ y
−∞H(x)F k′−k(x)dF k(x)∫ y
−∞H(x)dF k(x)

≤
∫∞
y
H(x)dF k′(x)∫∞

y
H(x)dF k(x)

. (H.89)

The above inequality holds because the fraction to left of the “≤” sign is equal to E[s(Ỹk)|Ỹk ≤ y] and the

fraction to the right is equal to E[s(Ỹk)|Ỹk ≥ y], where the function s(x) = k′F k′−k(x)/k is weakly increasing

in x. Note that the denominator in the left most term of(H.89) is strictly positive, as well the denominator

of the right most term. Moreover, the sum of the numerator of the left most term and that of the right most

term is P(Ỹk′ ≥ Z)> 0, so the numerator of the right most term is also strictly positive. Therefore, (H.89)

can be rearranged to Γk′(y)≤ Γk(y), as desired. �

H.6. Negative Externality of Choice

While the examples in Section 5 illustrate the tradeoff between the benefit and cost of allowing more choices,

the following one-item example more clearly illustrates the negative externality of choice.

Proposition H.15 (Optimal Mechanism with Homogeneous Items). Suppose that there are m

segments but only one type of item (n = 1), then a priority-based allocation mechanism that maximizes

utilitarian welfare is as follows. Prioritize agents based on their segment t, in decreasing order of the seg-

ment’s average marginal value φt for obtaining the item conditioning on desiring it over the outside option:

if (α,v)∼ Ft represents the agent’s utility for the outside option and the item, then

φt :=

{
0 if P(v > α) = 0,

E[v−α|v > α] otherwise.
(H.90)
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In the above result, φt is the expected welfare loss for withholding one unit of supply to interested agents

from segment t, and is a precise measure of the negative externality incurred when someone’s decision to

choose the item displaces an agent from segment t.

Proof of Proposition H.15 Since there is only one item, we can simplify the LP in (9)-(13) by defining

the change of variables: zt = λtytS1
/Pt(1, S1), where S1 = {0,1}. Define S0 = {0}. Note that φt = (Ut(S1)−

Ut(S0))/Pt(1, S1). Let c be the capacity of the one item, and let K =
∑

t∈[m]U(S0) be the utilitarian welfare

when everyone is assigned the outside option. The simplified LP is as follows:

Maximize: K +
∑
t∈[m]

φtzt (H.91)

s.t.
∑
t∈[m]

zt ≤ c (H.92)

0≤ zt ≤ λt for each segment t∈ [m]. (H.93)

This is exactly the LP for the fractional knapsack problem, and the solution is to initialize zt = 0 for all

segments, then update zt segment by segment in decreasing order of φt: for each segment t, set zt = λt if

capacity allows, and otherwise set zt to be the maximum value that doesn’t violate the capacity constraint∑
t
zt ≤ c. This solution corresponds exactly to the mechanism described in Proposition H.15. �

H.7. Intuitive Interpretation of Optimized Budget Sets

The optimal budget sets from the LP (18)-(27) have the following intuitive structure: each school j is

associated with a certain costj ≥ 0, which is proportional to the shadow price of the capacity constraint (24),

and is higher for schools that are more popular but have lower capacities. Each neighborhood t is given a

certain endowment et ≥ 0 of points, as well as an allowance kt ≥ 0 of schools outside of its walk-zone. The

parameter costj is deterministic, whereas et and kt may be random for each student from the neighborhood.

The following proposition summarizes the dependence of the budget sets on the parameters costj , et and kt.

Proposition H.16 (Structure of Optimal Budget Sets). Let y∗ be an optimal solution to the

LP (18)-(27) for the MNL utility distribution, and ξ1, ξ2 and ξ3 be the corresponding shadow prices for the

constraints (25)-(27). Suppose ξ1 is strictly positive, and at least one of ξ2 or ξ3 is strictly positive. For

any neighborhood t and budget set S such that y∗tS > 0, there exists parameters et, kt ≥ 0 such that S can be

expressed as the union of

• the default school jt;

• all schools j within the one-mile walk-zone with costj < et;

• The top kt other schools with the highest score σtj, defined as

σtj = ūtj +β log(et− costj − dtj). (H.94)

where ūtj is the average utility of students from neighborhood t for school j, β is the scale parameter of

the MNL utility distribution, and dtj is the distance in miles from neighborhood t to school j. If fewer

than kt schools have a positive sum within the logarithm, then include only the ones that do.
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Figure H.4 These plots illustrate the parameters that encode the optimal budget sets for Boston. Subfigure

(a) plots the schools as circles, with the size of the circle for school j being proportional to costj , which is

proportional to the shadow cost of its capacity constraint (24). Subfigure (b) plots the distribution of expected

endowments across neighborhoods, with each circle representing a neighborhood and the size of the circle

proportional to E[et]. A larger endowment gives a neighborhood higher access to over-demanded and faraway

schools. Subfigure (c) plots the distribution of the expected number of additional school options in the budget set

outside of the walk-zone. Each circle represents a neighborhood and the size of the circle is proportional to E[kt],

with the exception of the largest circle at the top right corner, which should be larger than what is shown but is

capped for visibility of nearby neighborhoods.

• In the knife-edge case in which costj = et for some school j within the walk-zone, then S may or may

not include the school j.31

A high endowment et allows a neighborhood to access over-demanded schools that are faraway. For schools

within the one-mile walk-zone, busing is not required, so such schools are included as long as they are not

too over-demanded, costj < et. For schools outside of the walk-zone, the parameters et and kt limit the

size of the coverage area as well as the number of busing options. The score σtj defined in (H.94) favors

schools that the neighborhood likes on average, and penalizes schools that are faraway or highly desired by

other neighborhoods, thus optimally balancing the expected utility of students from neighborhood t with

the negative externalities they impose on others when they occupy seats at a school. Figure H.4 plots the

geographic distribution of the values costj , E[et] and E[kt] for the Boston dataset.

Proof of Proposition H.16 Consider the equivalent formulation of the LP in (18)-(27) in which con-

straints (19)-(21) are substituted into the rest, and all summations of S are taken over Ψt as defined in (32).

By writing down the dual of this LP and applying complementary slackness, we get that if y∗ is an optimal

solution, then y∗tS > 0 implies that S is an optimal solution to the assortment planning problem (31) with νt,

31 This knife-edge case is theoretically possible but does not occur in the Boston dataset.
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γt, ξ1, ξ2, and ξ3 being the shadow prices of (23)-(27) at y∗. By Proposition H.13, S is an optimal solution

to (31) only if it is an optimal solution to the following optimization for some k∗ ∈Z and x∈R,

max
S:jt∈S,|S\Swalkt \{jt}|≤k∗

{∑
j∈S

(rj −x)eutj/β

}
, (H.95)

where rj is defined in (34). Due to the linear structure of (H.95), any optimal assortment S contains jt,

as well as every school j ∈ Swalkt for which rj > x, and may or may not contain schools for which rj < x.

Moreover, it contains no school j ∈ [n]\{jt} for which rj <x. Out of schools within the set Lt = [n]\Swalkt \{jt}

for which rj − x > 0, it contains the k∗ schools with the highest and positive (rj − x)eutj/β. Now, when

|{j : rj >x, j ∈Lt}|< k∗, it is possible that an optimal solution to (H.95) includes a school j ∈Lt for which

rj = x. However, this will not arise as an optimal solution to (31) as Proposition H.13 implies that removing

the schools with rj = x yields an assortment with a smaller cardinality |S\Swalkt | yielding the same value for

the first two components of (31) but incurring a strictly smaller penalty in the third component, since the

coefficient ζ is strictly positive if one of ξ2 and ξ3 is strictly positive by (35). The rest of Proposition H.16

follows from the formula for rj in (34) and by defining costj = nγj/ξ1, et =−nx/(λtξ1) and kt = k∗. �
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