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1. Prove the following evolution equations on a mean curvature flow of hypersur-
faces Σt ⊂ Rn+1:

(i)
(

d
dt −∆

)
|x|2 = −2n,

(ii)
(

d
dt −∆

)
H = H|A|2,

(iii)
(

d
dt −∆

)
|A|2 = −2|∇A|2 + 2|A|4,

(iv)
(

d
dt −∆

)
|∇mA|2 ≤ −2|∇m+1A|2+C(m,n)

∑
i+j+k=m |∇iA||∇jA||∇kA||∇mA|.

2. Let {Σt}t∈[0,T ) ⊂ Rn+1 be a mean curvature flow starting from a closed hyper-
surface Σ0. Show that

(i) If H ≥ 0 on Σ0, then H ≥ 0 on Σt for t ∈ [0, T ).
(ii) If x · ν ≤ 0 on Σ0, then 2tH − x · ν ≥ 0 on Σt for t ∈ [0, T ). Here ν is the

unit normal of Σt.

3. If {Σt} is an n-dimensional mean curvature flow in Bn+1
ρ (x0)× (t0 − ρ2, t0) such

that

|A(x)|2 ≤ C0

ρ2

for x ∈ Σt∩Bn+1
ρ (x0) and t ∈ (t0−ρ2, t0), then, for each m ≥ 1, there is a constant

Cm = Cm(n,C0) so that

|∇mA(x)|2 ≤ Cm

ρ2(m+1)

for x ∈ Σt ∩Bn+1
ρ/2 (x0) and t ∈ (t0 − ρ2/4, t0).

4. Suppose {Σt}t∈[0,T ) is a mean curvature flow on a maximal time interval [0, T )
starting from a closed hypersurface Σ0. Prove that

max
Σt

|A|2 ≥ C

T − t

for some constant C > 0.

5. Let M = {Σt}t∈[0,T ) be a mean curvature flow of hypersurfaces in Rn+1. If
X0 = (x0, t0) is a spacetime point of M such that

Θ(M, X0, r) = 1

for all r > 0, then M is a static hyperplane through X0. Here

Θ(M, X0, r) = (4πr2)−
n
2

∫
Σt0−r2

e−
|x−x0|2

4r2 .
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6. Let {Σt}t<0 be a mean curvature flow of hypersurfaces in Rn+1. Show that

Σt =
√
−tΣ−1 for all t < 0 if and only if H⃗ − x⊥

2t = 0 on Σt for all t < 0.

7. Let {Σt} be an n-dimensional mean curvature flow in Bn+1√
4nρ

(x0)× (t0 − ρ2, t0).

(i) If ηρX0
(x, t) =

(
1− |x−x0|2+2n(t−t0)

ρ2

)3

+
, then(

d

dt
−∆

)
ηρX0

≤ 0.

(ii) Show that

d

dt

∫
Σt

ηρX0
ΦX0 ≤ −

∫
Σt

∣∣∣∣H⃗ +
(x− x0)

⊥

2(t0 − t)

∣∣∣∣2 ηρX0
ΦX0

where ΦX0
(x, t) = (4π(t0 − t))−n/2 exp( |x−x0|2

4(t−t0)
).

8. For a hypersurface Σ ⊂ Rn+1, the Colding-Minicozzi entropy of Σ is given by

λ(Σ) = sup
x0∈Rn+1,t0>0

(4πt0)
−n

2

∫
Σ

e−
|x−x0|2

4t0 .

Show that

(i) λ(ρΣ+ y) = λ(Σ) for any ρ > 0 and y ∈ Rn+1.
(ii) If {Σt}t∈[0,T ) ⊂ Rn+1 is a mean curvature flow starting from a closed hy-

persurface, then t 7→ λ(Σt) is nonincreasing.

9. Verify certain hyperplanes, round sphere, and generalized cylinders are self-
shrinkers. Specifically,

(i) Find all hyperplanes that are self-shrinkers.
(ii) If Snr (x0) is the round n-sphere with radius r and center x0, find all (r, x0)

so that Snr (x0) is a self-shrinker.
(iii) For 0 < k < n, if Skr (x0)×Rn−k is a generalized cylinder, find all (r, x0) so

that Skr (x0)× Rn−k is a self-shrinker.

10. If γ ⊂ R2 is a simple self-shrinking curve, prove that

x · νe−
|x|2
4

is constant on γ, where ν is the unit normal on γ.

11. Prove that, on a hypersurface Σ ⊂ Rn+1,(
1 +

2

n+ 1

)
|∇|A||2 ≤ |∇A|2 + 2n

n+ 1
|∇H|2.

12. Let Σ ⊂ Rn+1 be a strictly mean convex (i.e., H > 0) self-shrinker with at
most polynomial area growth. If f : Σ → R satisfies∫

Σ

(f2 + |∇f |2)e−
|x|2
4 < ∞

then ∫
Σ

f2(|A|2 + |∇ logH|2)e−
|x|2
4 ≤

∫
Σ

(4|∇f |2 + 2f2)e−
|x|2
4 .
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13. Let Σ ⊂ Rn+1 be a self-shrinker with at most polynomial area growth. Suppose
Σ is given by the graph of a smooth function u : Rn → R, i.e.,

Σ = Graphu = {(y, u(y)) | y ∈ Rn}.
In the following, we will show Σ must be flat.

(i) If ν = (ν1, . . . , νn+1) is the unit normal on Σ, then |νn+1| > 0 and

∆νn+1 −
x

2
· ∇νn+1 + |A|2νn+1 = 0.

(ii) If ϕ : Σ → R is smooth with compact support, then∫
Σ

|A|2ϕ2e−
|x|2
4 ≤

∫
Σ

|∇ϕ|2e−
|x|2
4 .

(Thus, choosing a sequence of cutoffs ϕ = ϕi converging to 1, the monotone
convergence theorem implies∫

Σ

|A|2e−
|x|2
4 ≤ 0.

Hence |A| = 0, that is, Σ is flat.)

14. For n ≥ 2, let Σ ⊂ Rn+1 be a strictly mean convex (i.e., H > 0) self-shrinker
with at most polynomial area growth. We proved in lecture that |A| = βH for some
constant β > 0. In the following, we will show this implies that Σ is a generalized
cylinder.

(i) Show that |∇|A||2 = |∇A|2.
(ii) If the rank of A is at least two at some point p ∈ Σ, show that ∇A(p) = 0

and, indeed, this holds at each point of Σ. (Thus, by a result of Lawson, it
follows that Σ is a generalized cylinder.)

(iii) Suppose the rank of A is equal to 1 at each point of Σ. Show that there
is a (n − 1)-dimensional vector space V so that Σ is invariant under the
translations in V .
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