PROBLEM SET FOR THE COURSE SINGULARITY ANALYSIS
FOR THE MEAN CURVATURE FLOW

LU WANG

1. Prove the following evolution equations on a mean curvature flow of hypersur-
faces 3, ¢ R*+1:

(i) (5 —A)[z]> = —2n,
(it) (4 —A) H = H|AP,
(il) (£ —A)[AP? = —2|VA? + 2|4,
(iv) (§—A) VAP < =2[V™HAPLC(m,n) Yo,y je [VPA[VIA|[VEA[ V™ AL

2. Let {¥¢}iepo,m) C R"*! be a mean curvature flow starting from a closed hyper-
surface Yg. Show that
(i) If H > 0 on X, then H > 0 on X for t € [0, 7).
(ii) fx-v <0on X, then 2tH —x-v > 0 on X, for ¢t € [0,7T). Here v is the
unit normal of ;.

3. If {3} is an n-dimensional mean curvature flow in Bjt* () x (to — p*, t9) such
that

C
AP < =
p
for x € X, ﬂB;‘*l(xo) and t € (tg— p?,to), then, for each m > 1, there is a constant
Cr = Cr(n, Cp) so that

C
m 2 m
V™ A(2)]” < m

forz € ;N Bg/gl(.’lﬁo) and t € (to — p?/4,t0).
4. Suppose {¥;}icjo,r) is a mean curvature flow on a maximal time interval [0,7)
starting from a closed hypersurface ¥y. Prove that

C
A2 > —
max [A]° > 77—

for some constant C > 0.

5. Let M = {3;}1c0,r) be a mean curvature flow of hypersurfaces in R™**. If
Xo = (o, tp) is a spacetime point of M such that

@(M,X(),T’) =1
for all 7 > 0, then M is a static hyperplane through X,. Here

n lz—wq|?
O(M, Xo,1) = (47rr2)*5/ e ant
X2
0
1
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6. Let {Z:}:<0 be a mean curvature flow of hypersurfaces in R"*!. Show that

Yy =+/—tX_4 for all t <0 if and only if H— % =0on X; for all t < 0.

7. Let {Z:} be an n-dimensional mean curvature flow in B:L/}ip(xo) X (to — p%, to).
. _ |z—a0 |2 +2n(t—to) 3
(i) Ik, (z,t) = (1 - %)4_, then

d
— —A|n% <O0.
<dt ) Mxo <0
(ii) Show that

d
— P oy < —
dt /z Txo ™ X0 = /z

—x 2
where @, (z,1) = (4 (to — 1))~/ exp(lf72els).

. (x—xo)J— 2

H ~ 7
1)

p
N'x, Px,

8. For a hypersurface ¥ C R™*!, the Colding-Minicozzi entropy of ¥ is given by

_lz—=q|?

AX) = sup (477750)_%/@ Tio
2

zo€ER™ L 5>0

Show that
(i) AM(pZ +y) = A(2) for any p > 0 and y € R™HL.
(ii) If {S¢}eo,r) € R™! is a mean curvature flow starting from a closed hy-
persurface, then ¢ — A(X;) is nonincreasing.

9. Verify certain hyperplanes, round sphere, and generalized cylinders are self-
shrinkers. Specifically,

(i) Find all hyperplanes that are self-shrinkers.
(ii) If S(zg) is the round n-sphere with radius r and center xq, find all (r, z)
so that S?'(z¢) is a self-shrinker.
(iii) For 0 < k < n, if S¥(x¢) x R"~¥ is a generalized cylinder, find all (r, zq) so
that S¥(x¢) x R?~* is a self-shrinker.

10. If v ¢ R? is a simple self-shrinking curve, prove that
_l=|?

r-ve 4

is constant on v, where v is the unit normal on ~.

11. Prove that, on a hypersurface ¥ ¢ R*+!,
2n
n+1

2
(1 + ) IV|A|]? < VA + |VH|?.
n+1

12. Let ¥ C R™*! be a strictly mean convex (i.e., H > 0) self-shrinker with at
most polynomial area growth. If f: ¥ — R satisfies

/ (2 + [V P)e 5 < oo
>

then

2

[ £0AP + Vo P < [ @usp v ae
. P




PROBLEM SET FOR THE COURSE SINGULARITY ANALYSIS FOR THE MEAN CURVATURE FLOW

13. Let ¥ C R™*! be a self-shrinker with at most polynomial area growth. Suppose
Y. is given by the graph of a smooth function u: R™ — R, i.e.,

% = Graph, = {(y,u(y)) | y € R"}.
In the following, we will show ¥ must be flat.
(i) f v = (v1,...,Vn+1) is the unit normal on ¥, then |v,41| > 0 and

X
Al/n+1 - 5 . Vl/n+1 + |A|2Vn+1 =0.

(ii) If ¢: ¥ — R is smooth with compact support, then

[1apee ¥ < [ vope .
by b))

(Thus, choosing a sequence of cutoffs ¢ = ¢; converging to 1, the monotone
convergence theorem implies

5 _l=?
|A]fe™ 4 <0.
)
Hence |A| = 0, that is, ¥ is flat.)

14. For n > 2, let ¥ C R™*! be a strictly mean convex (i.e., H > 0) self-shrinker
with at most polynomial area growth. We proved in lecture that |A| = SH for some
constant 8 > 0. In the following, we will show this implies that ¥ is a generalized
cylinder.

(i) Show that |V|A||? = |VAJ2.

(ii) If the rank of A is at least two at some point p € 3, show that VA(p) =0
and, indeed, this holds at each point of ¥. (Thus, by a result of Lawson, it
follows that 3 is a generalized cylinder.)

(iii) Suppose the rank of A is equal to 1 at each point of ¥. Show that there
is a (n — 1)-dimensional vector space V so that ¥ is invariant under the
translations in V.
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