PROBLEM SET FOR THE COURSE SINGULARITY ANALYSIS FOR THE MEAN CURVATURE FLOW

LU WANG

1. Prove the following evolution equations on a mean curvature flow of hypersurfaces $\Sigma_t \subset \mathbb{R}^{n+1}$:

(i) $\left(\frac{d}{dt} - \Delta\right) |x|^2 = -2n,$ (ii) $\left(\frac{d}{dt} - \Delta\right) H = H|A|^2,$ (iii) $\left(\frac{d}{dt} - \Delta\right) |A|^2 = -2|\nabla A|^2 + 2|A|^4,$ (iv) $\left(\frac{d}{dt} - \Delta\right) |\nabla^m A|^2 \le -2|\nabla^{m+1}A|^2 + C(m,n) \sum_{i+j+k=m} |\nabla^i A| |\nabla^j A| |\nabla^k A| |\nabla^m A|.$

2. Let $\{\Sigma_t\}_{t\in[0,T)} \subset \mathbb{R}^{n+1}$ be a mean curvature flow starting from a closed hypersurface Σ_0 . Show that

- (i) If $H \ge 0$ on Σ_0 , then $H \ge 0$ on Σ_t for $t \in [0, T)$.
- (ii) If $\mathbf{x} \cdot \nu \leq 0$ on Σ_0 , then $2tH \mathbf{x} \cdot \nu \geq 0$ on Σ_t for $t \in [0, T)$. Here ν is the unit normal of Σ_t .

3. If $\{\Sigma_t\}$ is an *n*-dimensional mean curvature flow in $B^{n+1}_{\rho}(x_0) \times (t_0 - \rho^2, t_0)$ such that

$$|A(x)|^2 \le \frac{C_0}{\rho^2}$$

for $x \in \Sigma_t \cap B^{n+1}_{\rho}(x_0)$ and $t \in (t_0 - \rho^2, t_0)$, then, for each $m \ge 1$, there is a constant $C_m = C_m(n, C_0)$ so that

$$|\nabla^m A(x)|^2 \le \frac{C_m}{\rho^{2(m+1)}}$$

for $x \in \Sigma_t \cap B^{n+1}_{\rho/2}(x_0)$ and $t \in (t_0 - \rho^2/4, t_0)$.

4. Suppose $\{\Sigma_t\}_{t\in[0,T)}$ is a mean curvature flow on a maximal time interval [0,T) starting from a closed hypersurface Σ_0 . Prove that

$$\max_{\Sigma_t} |A|^2 \ge \frac{C}{T-t}$$

for some constant C > 0.

5. Let $\mathcal{M} = \{\Sigma_t\}_{t \in [0,T)}$ be a mean curvature flow of hypersurfaces in \mathbb{R}^{n+1} . If $X_0 = (x_0, t_0)$ is a spacetime point of \mathcal{M} such that

$$\Theta(\mathcal{M}, X_0, r) = 1$$

for all r > 0, then \mathcal{M} is a static hyperplane through X_0 . Here

$$\Theta(\mathcal{M}, X_0, r) = (4\pi r^2)^{-\frac{n}{2}} \int_{\Sigma_{t_0 - r^2}} e^{-\frac{|x - x_0|^2}{4r^2}}$$

6. Let $\{\Sigma_t\}_{t<0}$ be a mean curvature flow of hypersurfaces in \mathbb{R}^{n+1} . Show that $\Sigma_t = \sqrt{-t} \Sigma_{-1}$ for all t < 0 if and only if $\vec{H} - \frac{x^{\perp}}{2t} = 0$ on Σ_t for all t < 0.

7. Let $\{\Sigma_t\}$ be an *n*-dimensional mean curvature flow in $B^{n+1}_{\sqrt{4n\rho}}(x_0) \times (t_0 - \rho^2, t_0)$.

(i) If
$$\eta_{X_0}^{\rho}(x,t) = \left(1 - \frac{|x-x_0|^2 + 2n(t-t_0)}{\rho^2}\right)_+^3$$
, then
 $\left(\frac{d}{dt} - \Delta\right) \eta_{X_0}^{\rho} \le 0.$

(ii) Show that

$$\frac{d}{dt} \int_{\Sigma_t} \eta_{X_0}^{\rho} \Phi_{X_0} \le -\int_{\Sigma_t} \left| \vec{H} + \frac{(x-x_0)^{\perp}}{2(t_0-t)} \right|^2 \eta_{X_0}^{\rho} \Phi_{X_0}$$

where $\Phi_{X_0}(x,t) = (4\pi(t_0-t))^{-n/2} \exp(\frac{|x-x_0|^2}{4(t-t_0)}).$

8. For a hypersurface $\Sigma \subset \mathbb{R}^{n+1}$, the Colding-Minicozzi entropy of Σ is given by

$$\lambda(\Sigma) = \sup_{x_0 \in \mathbb{R}^{n+1}, t_0 > 0} (4\pi t_0)^{-\frac{n}{2}} \int_{\Sigma} e^{-\frac{|x - x_0|^2}{4t_0}}$$

Show that

- (i) $\lambda(\rho\Sigma + y) = \lambda(\Sigma)$ for any $\rho > 0$ and $y \in \mathbb{R}^{n+1}$.
- (ii) If $\{\Sigma_t\}_{t\in[0,T)} \subset \mathbb{R}^{n+1}$ is a mean curvature flow starting from a closed hypersurface, then $t \mapsto \lambda(\Sigma_t)$ is nonincreasing.

9. Verify certain hyperplanes, round sphere, and generalized cylinders are selfshrinkers. Specifically,

- (i) Find all hyperplanes that are self-shrinkers.
- (ii) If $\mathbb{S}_r^n(x_0)$ is the round *n*-sphere with radius *r* and center x_0 , find all (r, x_0) so that $\mathbb{S}_r^n(x_0)$ is a self-shrinker.
- (iii) For 0 < k < n, if $\mathbb{S}_r^k(x_0) \times \mathbb{R}^{n-k}$ is a generalized cylinder, find all (r, x_0) so that $\mathbb{S}_r^k(x_0) \times \mathbb{R}^{n-k}$ is a self-shrinker.

10. If $\gamma \subset \mathbb{R}^2$ is a simple self-shrinking curve, prove that

$$x \cdot \nu e^{-\frac{|x|^2}{4}}$$

is constant on γ , where ν is the unit normal on γ .

11. Prove that, on a hypersurface $\Sigma \subset \mathbb{R}^{n+1}$,

$$\left(1+\frac{2}{n+1}\right)|\nabla|A||^2 \leq |\nabla A|^2 + \frac{2n}{n+1}|\nabla H|^2.$$

12. Let $\Sigma \subset \mathbb{R}^{n+1}$ be a strictly mean convex (i.e., H > 0) self-shrinker with at most polynomial area growth. If $f: \Sigma \to \mathbb{R}$ satisfies

$$\int_{\Sigma} (f^2 + |\nabla f|^2) e^{-\frac{|x|^2}{4}} < \infty$$

then

$$\int_{\Sigma} f^2 (|A|^2 + |\nabla \log H|^2) e^{-\frac{|x|^2}{4}} \le \int_{\Sigma} (4|\nabla f|^2 + 2f^2) e^{-\frac{|x|^2}{4}}.$$

13. Let $\Sigma \subset \mathbb{R}^{n+1}$ be a self-shrinker with at most polynomial area growth. Suppose Σ is given by the graph of a smooth function $u \colon \mathbb{R}^n \to \mathbb{R}$, i.e.,

$$\Sigma = \operatorname{Graph}_{u} = \{ (y, u(y)) \mid y \in \mathbb{R}^{n} \}.$$

In the following, we will show Σ must be flat.

(i) If $\nu = (\nu_1, \dots, \nu_{n+1})$ is the unit normal on Σ , then $|\nu_{n+1}| > 0$ and

$$\Delta \nu_{n+1} - \frac{x}{2} \cdot \nabla \nu_{n+1} + |A|^2 \nu_{n+1} = 0.$$

(ii) If $\phi: \Sigma \to \mathbb{R}$ is smooth with compact support, then

$$\int_{\Sigma} |A|^2 \phi^2 e^{-\frac{|x|^2}{4}} \le \int_{\Sigma} |\nabla \phi|^2 e^{-\frac{|x|^2}{4}}$$

(Thus, choosing a sequence of cutoffs $\phi = \phi_i$ converging to 1, the monotone convergence theorem implies

$$\int_{\Sigma} |A|^2 e^{-\frac{|x|^2}{4}} \le 0$$

Hence |A| = 0, that is, Σ is flat.)

14. For $n \ge 2$, let $\Sigma \subset \mathbb{R}^{n+1}$ be a strictly mean convex (i.e., H > 0) self-shrinker with at most polynomial area growth. We proved in lecture that $|A| = \beta H$ for some constant $\beta > 0$. In the following, we will show this implies that Σ is a generalized cylinder.

- (i) Show that $|\nabla|A||^2 = |\nabla A|^2$.
- (ii) If the rank of A is at least two at some point $p \in \Sigma$, show that $\nabla A(p) = 0$ and, indeed, this holds at each point of Σ . (Thus, by a result of Lawson, it follows that Σ is a generalized cylinder.)
- (iii) Suppose the rank of A is equal to 1 at each point of Σ . Show that there is a (n-1)-dimensional vector space V so that Σ is invariant under the translations in V.

Department of Mathematics, Yale University, 10 Hillhouse Avenue, New Haven, CT06511

Email address: lu.wang@yale.edu