
Introduction to minimal surfaces

Problem Set 2

1. (Courant-Lebesgue Lemma) Suppose u : D → Rn, u ∈ W 1,2(D), E(u) ≤ K
2

for some

constant K. Using the steps below, show that for any δ ∈ (0, 1), there exists ρ ∈ [δ,
√
δ]

with

`(u(Cρ))
2 ≤ 4πK

| log δ|
where ` denotes the length, and Cρ = {x ∈ D : |x − p| ≤ ρ} is the circle of radius ρ
about a fixed point p ∈ D.

(a) Let P (r) = r
∫
Cr
‖∇u‖2 ds. Use the mean value theorem for integrals for the

measure d(log r) to show that there exists ρ ∈ [δ,
√
δ] such that

P (ρ) ≤ 2K

| log δ|
.

(b) Use Hölder’s inequality to show that P (ρ) dominates the length of the image
curve:

`(u(Cρ))
2 ≤ 2πP (ρ).

(c) Combine (a) and (b) to conclude the result.

2. Let Σ be an oriented surface and let u : (Σ, g)→ (N, h) be a smooth map. Define the
Hopf differential

φ(z) = h(uz, uz) dz
2 = (‖ux‖2 − ‖uy‖2 − 2i〈ux, uy〉) dz2

where z = x+ iy are local complex coordinates on Σ. Show that if u is harmonic then
the Hopf differential is holomorphic.

Recall that a map is harmonic if it is a critical point of the energy functional E. In
local coordinates, the harmonic map equation is

∆Σu
i + gαβΓijl(u(x))

∂uj

∂xα
∂ul

∂xβ
= 0 i = 1, . . . , n

where Γijl are the Christoffel symbols for the Levi-Civita connection on N .
(You can derive this Euler-Lagrange equation if you have time.)

Note that in normal coordinates centered at u(x) the harmonic map equation at x
reduces to ∆Σu

i = 0, i = 1, . . . , n, since Γijl(u(x)) = 0.

Remark: From the definition, we see that u is (weakly) conformal if and only if the
Hopf differential vanishes everywhere.



3. Show that any harmonic map from S2 to an arbitrary Riemannian manifold must be
conformal, and u(S2) = Σ is a minimal surface.

4. (Monotonicity Theorem) Let Σ be a k-dimensional minimal submanifold of Rn and let
p ∈ Rn. Show that

Θ(M, p, r) :=
|Σ ∩B(p, r)|

ωkrk

is an increasing function of r for 0 < r ≤ dist(p, ∂Σ), using the steps outlined below.
Here ωk is the volume of the unit ball in Rk.

[ Thus Θ(M, p, r), called the density ratio of Σ in B(p, r), is the volume of Σ∩B(p, r)
divided by the area of the cross-sectional k-disk in B(p, r).) ]

We may assume that p = 0 and let Σr = Σ ∩ B(0, r), so ∂Σr = Σ ∩ ∂B(0, r). Let
A(r) = |Σr| and L(r) = |∂Σr|. Then

A′(r) ≥ L(r). (1)

This follows from the “coarea formula” applied to the function x ∈ Σ→ |x|. Intuitively,
(in the case k = 2 for simplicity) A(r+dr)\A(r) is a thin ribbon of surface: the length
of the ribbon is L(r) and the width is≥ dr. (The width is equal to dr at a point p ∈ ∂Σr

if and only if Σ is orthogonal to ∂B(0, r) at p.) Hence A(r + dr)− A(r) ≥ L(r)dr.

To prove the monotonicity theorem, use 1(b) from yesterday’s problems together with
equation (1) to show that

(r−kA)′ ≥ 0.


