Problem Set 3

1. (Second variation formula for minimal surfaces for normal variations)

Let Σ be a k-dimensional minimal submanifold of a Riemannian manifold (M, g). Let $F : \Sigma \times (-\epsilon, \epsilon) \to M$ be a variation of Σ with compact support and fixed boundary. That is, F = Id outside a compact set,

$$F(x,0) = x,$$

and for all $x \in \partial \Sigma$,

$$F(x,t) = x$$

Set $\Sigma_t := F(\Sigma, t)$. Assume that F is a normal variation; that is the variation field $V = dF(\frac{\partial}{\partial t})|_{t=0}$ is normal to Σ .

Following the steps outlined below, show that

$$\begin{aligned} \frac{d^2}{dt^2} \Big|_{t=0} \operatorname{Vol}(\Sigma_t) &= \int_{\Sigma} \left(\|\nabla^{\perp} V\|^2 - \|A^V\|^2 - \langle R(V), V \rangle \right) \, dV_g \\ &= \int_{\Sigma} \left(\sum_{i=1}^k \|\nabla_{e_i}^{\perp} V\|^2 - \sum_{i,j=1}^k \langle \nabla_{e_i} e_j, V \rangle^2 - \sum_{i=1}^k \langle R(V, e_i) e_i, V \rangle \right) \, dV_g \end{aligned}$$

where ∇^{\perp} denotes the normal connection, and e_1, \ldots, e_k is a local orthonormal frame tangent to Σ .

Letting $g_{ij}(t) = \langle F_{x^i}, F_{x^j} \rangle$, recall from our derivation of the first variation formula that $\operatorname{Vol}(\Sigma_t) = \int_{\Sigma} \nu(x,t) \, dV_g$, where $\nu(x,t) = \sqrt{\det g(t)} / \sqrt{\det g(0)}$, and

$$\frac{d}{dt}\nu(x,t) = \frac{1}{2}\nu(x,t)\operatorname{Tr}_g(g') = \frac{1}{2}\nu(x,t)\sum_{i,j=1}^k g^{ij}(t)g'_{ij}(t)$$

To evaluate at a fixed point $x \in \Sigma$, choose coordinates such that $g_{ij}(0)(x) = \delta_{ij}$.

(a) Show that

$$\left. \frac{\partial^2 \nu}{\partial t^2} \right|_{t=0} = \frac{1}{4} \left(\operatorname{Tr}_g(g') \right)^2 + \frac{1}{2} \operatorname{Tr}_g(g'') - \frac{1}{2} \sum_{i,j=1}^k (g'_{ij})^2$$

- (b) Show that $\sum_{i,j}^{k} (g'_{ij})^2 = 4 ||A^V||^2$.
- (c) Show that

$$\operatorname{Tr}_{g}(g'') = 2 \langle R(V), V \rangle + 2 \operatorname{div}_{\Sigma}(\nabla_{F_{t}}F_{t}) + 2 ||A^{V}||^{2} + ||\nabla^{\perp}V||^{2}$$

(d) Combine (a), (b), (c) to obtain the second variation formula above.

2. Show that an equatorial $S^n \subset S^{n+1}$ is a minimal hypersurface of index 1 and nullity n+1.

Hint: Use that the first eigenvalue of the Laplace operator of the sphere $\lambda_1(\Delta_{S^n}) = 0$ with eigenspace the constant functions and the second eigenvalue $\lambda_2(\Delta_{S^n}) = 2$ with eigenspace spanned by the coordinate functions x^1, \ldots, x^{n+1} restricted to the sphere. Assume this for this problem. For a reference, see Chapter IV of *Riemannian Geometry* by Gallot, Hulin, Lafontaine.

- 3. Let Σ^n be a (two-sided) minimal hypersurface in S^{n+1} .
 - (a) Let ν be a unit normal to Σ in $S^{n+1} \subset \mathbb{R}^{n+2}$. Show that the components ν^1, \ldots, ν^{n+2} of ν are eigenfunctions of the Jacobi operator L with eigenvalue -n,

$$L\nu^i - n\nu^i = 0$$

(b) Show that if Σ is not an equator then $index(\Sigma) \ge n+3$.

Hint: Use that the lowest eigenvalue of the Jacobi operator must be simple (i.e. the eigenspace has dimension 1). This is a standard fact about self-adjoint elliptic operators (see for example Gilbarg & Trudinger).

Remarks: It is known that the Clifford torus $S^1(\frac{1}{\sqrt{2}}) \times S^1(\frac{1}{\sqrt{2}})$ is the unique minimal surface in S^3 of index 5. This was used in the proof of the Willmore conjecture.

The question of what the minimal hypersurfaces $\Sigma^n \subset S^{n+1}$, $n \ge 3$, with $index(\Sigma) = n+3$ are is open. It is known that the Clifford hypersurfaces

$$S^p\left(\sqrt{\frac{p}{p+q}}\right) \times S^q\left(\sqrt{\frac{q}{p+q}}\right) \subset S^{p+q+1}$$

have index n + 3, and it is conjectured that they are the only ones of index n + 3.