Introduction to minimal surfaces

Lecture 1 Problems

- 1. Let Σ be an immersed submanifold of dimension k in \mathbb{R}^n .
 - (a) Show that Σ is minimal if and only if the coordinate functions of Σ in \mathbb{R}^n are harmonic, $\Delta_{\Sigma} x^i = 0, i = 1, ..., n$:
 - i. Using the first variation formula. (*Hint:* Consider the variation $X = \eta E_j$ where $\eta \in C_c^{\infty}(\Sigma)$, where E_1, \ldots, E_n are the standard basis vectors of \mathbb{R}^n .)
 - ii. By showing that $\Delta_{\Sigma} x = H$, where x is the position vector and H is the mean curvature vector of Σ in \mathbb{R}^n .

(*Recall:* If (M, g) is Riemannian manifold, the Laplace operator is the trace of the Hessian,

$$\Delta_M f = \operatorname{Tr}_g \operatorname{Hess} f = e_i e_i f - (\nabla_{e_i} e_i) f$$

where e_1, \ldots, e_m is a local orthonormal frame on M.)

Conclude that there are no closed (compact without boundary) minimal submanifolds in \mathbb{R}^n .

(b) If Σ is minimal, show that $\Delta |x|^2 = 2k$ and

$$k \left| \Sigma \right| = \int_{\partial \Sigma} x \cdot \nu \, dV_{\partial \Sigma},$$

where $|\Sigma|$ denotes the volume of Σ and $\nu_{\partial M}$ is the outward unit conormal of Σ along $\partial \Sigma$.

2. (Convex Hull Property) Let Σ^k be a compact minimal submanifold in \mathbb{R}^n with smooth boundary. Show that Σ is contained in the convex hull of its boundary,

 $\Sigma \subset \operatorname{Conv}(\partial \Sigma) = \bigcap \{ H : H \text{ is a half space of } \mathbb{R}^n \text{ containing } \partial \Sigma \}$

3. Let $u: (M,g) \to (N,h)$ be a C^1 map between Riemannian manifolds. The energy functional is defined by

$$E(u,g) = \int_M \|du\|_g^2 \, dV_g$$

where $||du||_g^2 = \text{Tr}_g(u^*h) = g^{\alpha\beta}(x)h_{ij}(u(x))\frac{\partial u^i}{\partial x^\alpha}\frac{\partial u^j}{\partial x^\beta}$ and dV_g is the Riemannian volume form of (M, g). Show that if M is a surface (dim M = 2) then the energy is conformally invariant:

(a) If $\tilde{g} = \lambda g$ for some function $\lambda : M \to (0, \infty)$, then

$$E(u,\tilde{g}) = E(u,g).$$

(b) If $F: (\tilde{M}, \tilde{g}) \to (M, g)$ is conformal (i.e. $F^*g = \lambda \tilde{g}$), then

$$E(u \circ F, \tilde{g}) = E(u, g)$$

4. Find all connected minimal surfaces of revolution in \mathbb{R}^3 .

[*Hint:* Consider the surface of revolution generated by the curve $\alpha(t) = (r(t), t)$. Write the ordinary differential equation that expresses the condition that the mean curvature of the surface equals zero.]

5. Let \mathbb{S}^n be the unit sphere in \mathbb{R}^{n+1} with the induced metric. Show that a k-dimensional submanifold Σ of the sphere \mathbb{S}^n is minimal if and only if the coordinate functions x^1, \ldots, x^{n+1} are eigenfunctions of the Laplacian on Σ , with eigenvalue k,

$$\Delta_{\Sigma} x^i + k x^i = 0, \qquad i = 1, \dots, n+1.$$

[*Hint:* Work in an adapted local orthonormal frame e_1, \ldots, e_{n+1} , such that e_1, \ldots, e_k are tangent to Σ , $e_{k+1} = x$ is the outward unit normal to \mathbb{S}^n , and e_{k+2}, \ldots, e_{n+1} are normal to Σ and tangent to \mathbb{S}^n .]