
PROBLEM SETS

The problems marked with (†) will be used elsewhere, either in the lectures or for other

problems in the problem sets. The problems marked with (⋆) are suitable for presentations,

and some of them can be effectively broken down into smaller parts for group presentations.

Caution: Some problems are really challenging! While the problem sets are organized ac-

cording to the order of lectures, you are not required to work on them in the prescribed order;

feel free to explore other problem sets and focus on the ones that intrigue you the most.

Furthermore, the problems are organized based on their similarity, resulting in multiple sub-

problems for each main problem. It is worth noting that these subproblems can be quite long.

0.1. Problem Set 1.

Problem 1. (†) Suppose g is a rotationally symmetric metric on [a,∞)×Sn−1 in the sense

that

g =
1

f(r)
dr2 + r2dΩ2.

where dΩ2 is the standard unit sphere metric on Sn−1.

(1) Compute the second fundamental form and mean curvature of the r-level set.

(2) Show the scalar curvature of g is given by

Rg =
n− 1

r2
((n− 2)(1− f(r))− rf ′(r)) .

(Hint: One way is to use the second variational formula of the volume of the r-level

set.)

Problem 2. (†, ⋆) Let M be a closed manifold of dimension n ≥ 3. Then the following holds:

(1) M admits a metric of positive (resp. zero, negative) scalar curvature conformal to g

if and only if λ1(g) > 0 (resp. λ1(g) = 0, λ1(g) < 0).

(2) If g is a Riemannian metric on M such that Rg ≥ 0 everywhere and Rg > 0 some-

where, then λ1(g) > 0.

Problem 3. Let (M, g) be a 3-dimensional manifold.

(1) If Ricg > 0, then (M, g) does not contain any closed stable minimal surface.

(2) If Ricg ≥ 0 and Σ is a closed stable minimal torus, then Σ is totally geodesic,

Ricg(ν, ν) = 0 along Σ, and Σ is a flat torus.

In the next problem, we will prove the following theorem originally due to Cai and Gal-

loway: If (M3, g) is a 3-manifold with Rg ≥ 0 and Σ is a torus that is locally area-minimizing

in M , then M is flat in a neighborhood of Σ.

Problem 4. (†, ⋆) Let (M, g) be a 3-dimensional manifold with Rg ≥ 0. Let Σ be a stable

minimal torus.
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(1) Show that Σ is totally geodesic, Ricg(ν, ν) = 0, and the induced metric on Σ is flat.

(2) Consider the map Ψ : C2,α(Σ)× R → C0,α(Σ)× R defined by

Ψ(u, a) =

(
HΣ(u) − a,

∫
Σ

u

)
where Σ(u) = exp(uν) denotes the normal graph on Σ. Show that Ψ is local dif-

feomorphism at (u, a) = (0, 0). (Hint: show the linearization of Ψ at (0, 0) is an

isomorphism and apply the Inverse Function Theorem.)

(3) Let (u(t), a(t)) solve Ψ(u(t), a(t)) = (0, t). Show that a′(0) = 0, and u′(0) > 0. In

particular, u(t) is strictly increasing in t for all |t| small, and thus Σ(u(t)) forms a

foliation of constant mean curvature tori near Σ.

(4) Assume Σ is locally area minimizing, i.e. Σ has area less or equal to that of all nearby

surfaces. Show that a(t) ≡ 0 for |t| small and each {Σt} is locally area minimiziing.

Then show (M, g) splits as (−ϵ, ϵ)×Σ with the metric dt2+gΣ where gΣ is the induced

metric on Σ.

0.2. Problem Set 2.

Problem 5. (⋆) Suppose (M3, g) has Rg ≥ 2. Let Σ be a closed stable minimal surface.

(1) Each component of Σ has area ≤ 4π.

(2) If Σ has area 4π, then Σ is totally geodesic, R = 2 and Ric(ν, ν) = 0 along Σ, and Σ

with the induced metric is isometric to a round sphere of radius 1.

Problem 6 (Birkhoff’s theorem). Using Problem 1, show that the only rotationally sym-

metric metric with zero scalar curvature defined on [a,∞)× Sn−1 is given by

g =
1

f(r)
dr2 + r2dΩ2

where f(r) = 1 − 2m
rn−2 . By changing of coordinates, the metric can be rewritten as another

coordinate presentation of the Schwarzschild metric gm =
(
1 + m

2|x|n−2

) 4
n−2

gE.

Problem 7. (⋆) Consider the Schwarzschild metric gm =
(
1 + m

2|x|

)4

gE.

(1) Find the area A(r) of Sr = {x : |x| = r} in the metric gm. For m > 0, show that A(r)

has a global minimum at Σ0 := {r = m
2
}.

(2) For m > 0, show that r → m2

4r
induces an isometry of gm fixing Σ0.

(3) When m < 0, show that A(r) → 0 as r → −m
2
. Also show that a radial geodesic from

r = r0 > −m
2
to r = −m

2
has finite length. Show that the Schwarzschild metric with

m < 0 cannot be completed by adding in a point.

Problem 8. (†) Let (M, g) be a 3-dimensional asymptotically flat manifold. If ḡ = u4g for

some u > 0 satisfying u(x) = 1 +O1(|x|−1), then

m(ḡ) = m(g)− 1

2π
lim
r→∞

∫
Sr

ν(u) dσ(1)
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where ν = x
r
is the outward unit normal to Sr with respect to gE. Use the formula (1) to

verify that the Schwarzschild metric gm has ADM mass m.

0.3. Problem Set 3.

Problem 9. (†, ⋆) Let U be an open subset of Eucliean Rn. For u locally integrable in U ,

denote by uϵ the standard mollification.

(1) If u is harmonic in U , then uϵ(x) = u(x) for all x ∈ Uϵ.

(2) If u is superharmonic in U , then uϵ is superhamonic in Uϵ.

Problem 10. (†, ⋆) Let (Σ, g) be a complete surface that has quadratic area growth; namely

there is a constant C > 0 such that for any geodesic ball BΣ
s ,

Area(BΣ
s ) ≤ Cs2.

Construct a sequence of functions fk that converge to 1 at each point and the Dirichlet

energy
∫
Σ
|∇fk|2 → 0 as k → ∞. (They are called the logarithmic cut-off functions.)

For the next problem, we give the following definition.

Definition 0.1. A manifold Σ is said to be parabolic if any positive superharmonic function

is constant.

Problem 11. (⋆) Let (M, g) be a complete manifold with quadratic area growth. Then M

is parabolic. (Hint: If u > 0 is superharmonic, consider w = log u. Multiply the equation for

∆w by logarithmic cut-off functions and integrate.)

0.4. Problem Set 4. In this problem set, we break down the proof of the rigidity of the

positive mass theorem into the following problems.

Theorem 0.2. Let (M, g) be asymptotically flat with Rg ≥ 0. If m(g) = 0, then (M, g) is

isometric to (Rn, gE).

In the first problem, we will show that Rg ≡ 0.

Problem 12. (⋆) Let (M, g) be asymptotically flat with m(g) = 0. Suppose Rg ≥ 0 every-

where and Rg > 0 somewhere.

(1) Show that there is a scalar function u > 0 with u → 1 as |x| → ∞ solving 8∆gu −
Rgu = 0.

(2) Define ĝ := u4g. Show that Rg = 0 and use Problem 8 to show that m(ĝ) < 0.

In the next problem, we will show that Ricg ≡ 0.

Problem 13. (⋆) Let (M, g) be asymptotically flat withm(g) = 0. Suppose Rg = 0. Let h be

a compactly supported, symmetric (0, 2)-tensor. Consider the family of metrics g(t) = g+th.
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(1) Show that for |t| small, there exists a unique solution ut > 0 with u0 ≡ 1 and ut → 1

as |x| → ∞ such that

−8∆g(t)ut +Rg(t)ut = 0.

Consequently, the metric ĝ(t) = u4
tg(t) has zero scalar curvature with ĝ(0) = g.

(2) Using Problem 8, show that the ADM mass of ĝ(t) satisfies

m(ĝ(t)) = m(g)− 1

16π

∫
M

Rg(t)ut dv

and thus
d

dt

∣∣∣∣
t=0

m(ĝ(t)) =
1

16π

∫
M

Ricg · h dv.

(3) Using positivity of the ADM mass, show that g has zero Ricci curvature.

Problem 14. (⋆) Let (M, g) be a 3-dimensional asymptotically flat manifold with Ricg ≡ 0.

Show that M must diffeomorphic to R3 and (M, g) must be isometric to the Euclidean space.
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