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1 Introduction

2 Lecture 1: Brunn-Minkowski inequality and applications

The content of this section is based on the first chapter of [2]. We refer to it for more about the
Brunn-Minkowski, including other proofs and applications, as well as the history of the problem.

2.1 Brunn-Minkowski inequality

Theorem 1 (Brunn-Minkowski inequality). Let A,B ⊂ Rd be two compact non-empty sets. Then

Vold(A+B)1/d ≥ Vold(A)1/d +Vold(B)1/d.

This inequality can also be viewed as a type of concavity property, when rewritten as

Vold(λA+ (1− λ)B)1/d ≥ λVold(A)1/d + (1− λ)Vold(B)1/d

for any λ ∈ [0, 1].

We will mostly be interested, and only prove, the case where A and B are convex bodies, that is
compact, convex sets with non-empty interior.

An equivalent formulation is the multiplicative form

Vold(λA+ (1− λ)B) ≥ Vold(A)λ ×Vold(B)1−λ (1)

which has the advantage (or,depending on the context, inconvenience) of not explicitly depending on
the dimension. It can be deduced from the previous statement by applying the arithmetic-geometric
inequality. However, it is actually equivalent: assuming without loss of generality that both sets
have (strictly) positive volume, consider

A1 := Vold(A)−1/dA; B1 := Vold(B)−1/dB; λ :=
Vold(A)1/d

Vold(A)1/d +Vold(B)1/d
.

Both A1 and B1 have volume 1, and hence if we apply to them the multiplicative version,

Vold(λA1 + (1− λ)B1) ≥ 1.
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But since

λA1 + (1− λ)B1 =
A+B

Vold(A)1/d +Vold(B)1/d

we immediately get the arithmetic form.
Note also that with this argument, we see it is enough to prove the Brunn-Minkowski inequality

for sets with volume 1, which will be useful in the sequel.

Proof of the Brunn-Minkowski inequality for convex sets. We shall proceed by induction on the di-
mension. The case d = 1 is immediate, since

λ[a, b] + (1− λ)[c, d] = [λa+ (1− λ)c;λb+ (1− λ)d].

Let us assume the statement is true for all dimensions less than d − 1. Let K0 and K1 be two
convex bodies in dimension d. Without loss of generality, we can assume their volume to be equal
to 1.

Let θ ∈ Sd−1. We define for i ∈ {1, 2}

fi(t) := Vold−1({x ∈ Ki; ⟨x, θ⟩ = t})
gi(t) := Vold−1({x ∈ Ki; ⟨x, θ⟩ ≤ t})

If X is a random variable uniformly distributed on Ki, thet fi is the density of the variable ⟨X, θ⟩
while gi is its cumulative distribution function. Let [ai, bi] be the support of fi. We also define
hi : (0, 1) −→ R to be the inverse function of gi. It is differentiable, and

h′
i(u) =

1

g′(hi(u))
=

1

fi(hi(u))
.

Let hλ = (1− λ)h0 + λh1 and Kλ = (1− λ)K0 + λK1. Let

Kλ(u) := Kλ ∩ {y + hλ(u)θ; y ⊥ θ}

be the (reparametrized) decomposition of Kλ into slices along the direction θ. As an immediate
consequence of these definitions,

(1− λ)K0(u) + λK1(u) ⊂ Kλ(u).

By making the change of variable t = hλ(u) on the range of hλ, we have

Vold(Kλ) =

∫
Vold−1(Kλ ∩ {tθ + y; y ⊥ θ})dt

≥
∫ 1

0

Vold−1(Kλ(u))h
′
λ(u)du

=

∫ 1

0

Vold−1(Kλ(u))

(
1− λ

f0(h0(u))
+

λ

f1(h1(u))

)
du

≥
∫ 1

0

Vold−1((1− λ)K0(u) + λK1(u))

(
1− λ

f0(h0(u))
+

λ

f1(h1(u))

)
du

≥
∫ 1

0

f0(h0(u))
1−λf1(h1(u))

λ

(
1− λ

f0(h0(u))
+

λ

f1(h1(u))

)
du.

Using the arithmetic-geometric inequality on the second factor we see that the integrand is bounded
from below by 1, which concludes the proof.
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Let’s look at the equality cases in this proof. Due to the translation invariance, we can assume
that bothK0 andK1 have their barycenter at the origin. Equality in the Brunn-Minkowski inequality
requires equality at the point where we used the arithmetic-geometric inequality. Hence if there is
equality, then f0 ◦ h0 = f1 ◦ h1, and hence h′

0 = h′
1. Therefore h1 − h0 is constant. But since the

barycenter is at the origin, then

0 =

∫
Ki

⟨x, θ⟩dx =

∫
tfi(t)dt

=

∫ 1

0

hi(u)fi(hi(u))h
′
i(u)du =

∫
hi(u)du

so that actually h1 = h0. Therefore g0 = g1 and the boundaries of the two convex sets must be the
same, since the extremal in every direction θ is the same.

For the general Brunn-Minkowski inequality (that allows for non-convex sets), equality holds iff
the two sets are homothetic to subsets of full measures of a same convex set. See [6] for a stable
version of this statement.

2.2 Applications

Theorem 2 (Borell’s Lemma). Let K be a convex body with volume 1, and A be a symmetric convex
closed subset of K, such that Vold(K ∩A) = δ > 1/2. Then for any t > 1 we have

Vold(K ∩ (tA)c) ≤ δ

(
1− δ

δ

)(t+1)/2

.

Remark 3. The constant 1/2 for the minimal value of the volume is not so important, we still get
exponential decay in t for other values, up to changing other constants.

Proof. We first show by contradiction that

2

t+ 1
(tA)c +

t− 1

t+ 1
A ⊂ Ac.

If this is not so, there is y /∈ tA and a, b ∈ A such that

a =
2

t+ 1
y +

t− 1

t+ 1
b.

But then
y

t
=

t+ 1

2t
a+

t− 1

2t
(−b) ∈ A

by convexity and symmetry of A, which is a contradiction.
As a consequence,

2

t+ 1
((tA)c ∩K) +

t− 1

t+ 1
(A ∩K) ⊂ Ac ∩K.

Applying the Brunn-Minkowski inequality then yields

1− δ = Vold(A
c ∩K) ≥ Vold((tA)

c ∩K)2/(t+1) Vold(A ∩K)(t−1)/(t+1)

= Vold((tA)
c ∩K)2/(t+1)δ(t−1)/(t+1).

Rearranging the terms concludes the proof.

3



Definition 4. The perimeter (Minkowski content) of a convex set K can be defined as

Per(K) := lim inf
t→0+

Vold(K + tBd
2 )−Vold(K)

t
.

There are other common definitions, which coincide with this one.

Theorem 5 (The isoperimetric inequality). Let K be a convex body in Rd. Then

Per(K) ≥ dVold(B
d
2 )

1/d Vold(K)(d−1)/d.

The isoperimetric inequality is true for more general sets, but one must pay attention to the
definition of the boundary.

Proof. Take r such that Vold(K) = Vold(rB
d
2 ). Then

Vold(K + tBd
2 )

1/d ≥ Vold(K)1/d + tVold(B
d
2 )

1/d = (r + t)Vold(B
d
2 )

1/d

so that

Per(K) ≥ lim inf
(r + t)d − td

t
Vold(B

d
2 )

= drd−1 Vold(B
d
2 )

and the conclusion follows since r = (Vold(K)/Vold(B))1/d.

3 Lecture 2: Prékopa-Leindler inequality and Gaussian log-
arithmic Sobolev inequality

3.1 Log-concave measures

Definition 6. A non-negative measure µ on Rd is said to be log-concave if it satisfies the multi-
plicative form of the Brunn-Minkowski inequality, that is for any compact non-empty sets A and B
we have

µ((1− λ)A+ λB) ≥ µ(A)1−λµ(B)λ.

Remark 7. In general, such measures are not translation-invariant, and do not satisfy a scaling
property with respect to dilations. In particular, the multiplicative form does not imply the additive
form of the Brunn-Minkowski inequality for general measures. Optimal additive Brunn-Minkowski
inequalities for more general measures are not so well-understood at this time. For example, the
optimal exponent 1/d for the Gaussian additive Brunn-Minkowski inequality has only been established
in 2021 by Eskenazis and Moschidis, answering a question of Gardner and Zvavitch, and only holds
when restricting to convex, symmetric sets (Nayar and Tkocz gave a counterexample when symmetry
is omitted).

Since for proving Borell’s lemma we only used the multiplicative form, it can be extended to
log-concave measures, and we get

Theorem 8. Let µ be a log-concave probability measure on Rd. Then for any symmetric convex set
A with µ(A) = δ ∈ (1/2, 1) and any t > 1, we have

1− µ(tA) ≤ δ

(
1− δ

δ

)(t+1)/2

.

However, the isoperimetric inequality uses the additive form (it is dimensional), and hence does
not generalize.
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3.2 Prékopa-Leindler inequality

A common theme in geometric functional analysis is that many inequalities comparing volumes of
sets have functional forms. In the case of the Brunn-Minkowski inequality, the functional form is
the Prékopa-Leindler inequality:

Theorem 9 (Prékopa-Leindler inequality). Let f , g and h be three functions on Rd, and t ∈ (0, 1),
such that

h(tx+ (1− t)y) ≥ tf(x) + (1− t)g(y)

for all x, y in Rd. Then ∫
ehdx ≥

(∫
efdx

)t (∫
egdx

)1−t

.

Corollary 10 (Measures with log-concave densities are log-concave). Let µ be a positive measure
on Rd, admitting a log-concave density w.r.t. the Lebesgue measure. Then it is log-concave, in the
sense of Definition 6.

Proof. Let eV be the density, with V concave, and let A and B be two closed convex sets. Taking
f = V on A and −∞ outside, g the same for B, and h the same on tA+ (1− t)B, we immediately
get the desired result by applying the Prékopa-Leindler inequality.

The converse is also true, in a strong sense (see [4] for a proof):

Theorem 11 (Borell’s theorem). If a probability measure on Rd is not supported on a hyperplane
(that is, µ(H) < 1 for any hyperplane H), then it is absolutely continuous w.r.t. the Lebesgue
measure, and its density is log-concave.

Corollary 12 (Convolutions of log-concave functions are log-concave). Let V and W be convex
functions. Then

z −→ − log

∫
e−V (x)−W (z−x)dx

is convex.

Proof. Apply the Prékopa-Leindler inequality to f(x) = −V (x)−W (z1−x), g(x) = −V (x)−W (z2−
x) and h(x) = −V (x)−W (tz1 + (1− t)z2 − x).

Corollary 13 (Heat flow preserves log-concavity). Let ρ0 be log-concave and L1, and let ρ(t, x) be
the solution to

∂tρ = ∆ρ.

Then for any t > 0, ρ(t, ·) is log-concave.

Proof. The heat flow can be obtained by convolution with a time-dependent Gaussian kernel, with
covariance matrix 2t Id. We can then apply the previous corollary.

Proof of the Prékopa-Leindler inequality. We shall once again proceed by induction on the dimen-
sion. Let’s start with dimension one. Without loss of generality, assume that f and g are continuous,
positive probability densities. The goal is then to prove that

∫
h ≥ 1.

We can reparametrize by the cumulative distribution functions, that is let x(t), y(t) be functions
on (0, 1) defined by ∫ x(t)

−∞
f = t;

∫ y(t)

−∞
g = t.
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We have
x′(t)f(x(t)) = y′(t)g(y(t)) = 1.

Let
z(t) := λx(t) + (1− λ)y(t),

which is a strictly increasing, C1 function satisfying

z′(t) = λx′(t) + (1− λ)y′(t)

≥ (x′(t))λ(y′(t))1−λ)

= f(x(t))−λg(y(t))1−λ.

We now have ∫
R
h =

∫ 1

0

h(z(t))z′(t)dt

≥
∫

h(λx(t) + (1− λ)y(t))f(x(t))−λg(y(t))1−λdt

≥ 1

by the assumption on h. This concludes the proof in dimension 1.
Assume now that the Prékopa-Leindler inequality is true in dimension d − 1, and let’s prove it

in dimension d. Consider f, g and h satisfying the assumptions of the theorem, and consider their
families of (d− 1)-dimensional restrictions, defined as

fs(x) = f(s, x); s ∈ R, x ∈ Rd−1

and similarly for g and h. It follows from the assumption that

hλs0+(1−λ)s1(λx+ (1− λ)y) ≥ fs0(x)
λgs1(y)

1−λ.

Hence

H(λs0 + (1− λ)s1) :=

∫
Rd−1

hλs0+(1−λ)s1

≥
(∫

fs0

)λ (∫
gs1

)1−λ

=: F (s0)
λG(s1)

1−λ.

Since F,G and H satisfy the assumptions of the Prékopa-Leindler inequality in dimension one, which
we already proved, we can use Fubini’s theorem to get∫

Rd

h =

∫
R
H

≥
(∫

R
F

)λ (∫
R
G

)1−λ

=

(∫
Rd

f

)λ (∫
Rd

g

)1−λ

.
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Prékopa-Leindler inequality implies Brunn-Minkowski. Take ef = 1A, e
g = 1B and eh = 1tA+(1−t)B ,

and apply the Prékopa-Leindler inequality.

Theorem 14 (Gaussian logarithmic Sobolev inequality). For all positive, locally lipschitz functions
such that

∫
|∇f |2dγ < ∞, we have∫

f2 log f2dγ −
(∫

f2dγ

)
ln

(∫
f2dγ

)
≤ 2

∫
|∇f |2dγ.

Proof. We will prove it in the equivalent form

Entγ(e
g) ≤ 1

2

∫
|∇g|2egdγ.

Let V (x) = |x|2/2 + d ln(2π)/2. We will consider an interpolation between the two densities of
interest e−V and eg−V by applying the Prékopa-Leindler inequality with u(x) = eg(x)/t−V (x) and
v(y) = e−V (y) for t ∈ (0, 1). The best possible function we can take in the upper bound is w(z) =
egt(z)−V (z) with

gt(z) = sup
z=tx+sy

g(x)− (tV (x) + sV (y)− V (z))

where s = 1− t, and we get ∫
egtdγ ≥

(∫
eg/tdγ

)t

. (2)

The entropy arises as the first order-variation of Lp norms as p −→ 1, that is(∫
e(1+ϵ)gdγ

)1/(1+ϵ

=

∫
egdγ + ϵEntγ(e

g) + o(ϵ),

so that replacing 1 + ϵ by t−1 and letting t go to 1 (i.e. s to zero), we get(∫
eg/tdγ

)t

=

∫
egdγ + sEntγ(e

g) + o(s).

The LSI will be derived by making a Taylor expansion of a suitable upper bound on gt.
Setting z = tx+ sy, w = z − y and r = s/t, we can rewrite

gt(z) = sup
w

g(z + rw)− r

2
|w|2.

Since g has a compact support, for small s (and hence small r) we can write it as

gt(z) = sup
w

g(z) + r⟨∇g(z), w⟩ − −r

2
|w|2 +O(r2|w|2)

where the reminder term is uniformly controlled, so that

gt(z) ≤ sup
w

g(z) + r⟨∇g(z), w⟩ − r

2
|w|2 + Cr2|w|2

ḡ(z) + r sup
w

⟨∇g(z), w⟩ −
(
1

2
− Cr

)
|w|2

= g(z) +
r

2(1− 2Cr)
|∇g(z)|2

≤ g(z) +
r + C ′r2

2
|∇g(z)|2
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for r small enough. Hence, again using that g is compactly supported,∫
egtdγ ≤

∫
eg

(
1 +

r

2
|∇g(z)|2 + C ′′r2

)
dγ

=

∫
egdγ +

r

2

∫
|∇g|2egdγ +O(r2)

Comparing the two Taylor expansions yields the desired result.

4 Lecture 3: Gaussian concentration and isoperimetric in-
equalities

4.1 Gaussian concentration

Theorem 15 (Gaussian concentration inequality). Let f be a 1-Lipschitz function on Rd. Then for
any λ ∈ R we have ∫

exp(λf)dγ ≤ exp

(
λ

∫
fdγ +

λ2

2

)
.

As a consequence, for any r ≥ 0 and X a standard Gaussian random variable,

P (f(X) ≥ E[f(X)] + r) ≤ exp(−r2/2).

The first part of the theorem is sharp, since equality is attained for f(x) = x1. The second
inequality is not quite sharp for fixed r, but the exponential part is sharp, in the sense that the
factor 1/2 cannot be improved to 1/2 + ϵ.

For f(x) = d−1/2
∑

xi, we observe the same asymptotic as in Cramér’s theorem on large devia-
tions, but the result here has the advantage of being non-asymptotic.

We will deduce this inequality from the Gaussian LSI, following what is known as Herbst’s
argument:

Proof. Let f be a 1-Lipschitz function on Rd with
∫
fdγ = 0, and let F (λ) = log

∫
exp(λf)dγ for

λ ≥ 0. We have F (0) = 0 and

F ′(λ) =

∫
f exp(λf)dγ∫
exp(λf)dγ

=
1

λ
Entγ(e

λf/eF (λ)) +
1

λ
F (λ)

≤ 1

2λ

∫
λ2|∇f |2 exp(λf)dγ∫

exp(λf)dγ
+

1

λ
F (λ)

≤ λ

2
+

1

λ
F (λ).

So we get (
1

λ
F

)′

≤ 1

2
.

Integrating with respect to λ yields

F (λ) ≤ λ2

2
,
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which is the desired result. The second inequality then follows from Chernoff’s inequality (that is,
Markov’s inequality applied to eλf and then optimizing in λ).

We will now see an application of Gaussian concentration to data compression. The goal is to
find an efficient way of embedding N points of a high-dimensional space Euclidean space (which can
be taken as equal to N) in a lower-dimensional space, without distorting too much the distances
ebtween points. The result we shall prove is

Theorem 16 (Johnson-Lindenstrauss flattening lemma). Let N ∈ N, ϵ ∈ (0, 1) and T a set of N

points in RN . Then for any n > 6 log(2N2)
ϵ2 tehre exists a linear map A : RN −→ Rn such that

∀x, y ∈ T, (1− ϵ)||x− y||2 ≤ ||Ax−Ay||2 ≤ (1 + ϵ)||x− y||2. (3)

Proof. The method of proof is probabilistic: we shall construct a linear map at random, and show
that (3) holds with positive probability, which ensures existence.

Let n ∈ N which shall be chosen later. Let B be a matrix of size n ×N with Bi,j = gi,j ,where
the gi,j are iid standard Gaussians. Then for any u ∈ RN such that ||u|| = 1, Bu is a centered
Gaussian vector in Rn, whose covariance matrix is the identity matrix. Since the Euclidean norm is
1-lipschitz, we have

P(|||Bu||2−E[||Bu||2]| ≥ r) = P(||Bu||2−E[||Bu||] ≥ r)+P(||Bu||2−E[||Bu||] ≤ −r) ≤ 2 exp(−r2/2).

Let m = E[||X||] be the expectation of the norm of a standard Gaussian vector in dimension n and
A = 1

mB. With u such that ||u|| = 1 and taking r = ϵm, we have

P (|||Au|| − 1| ≥ ϵ) ≤ 2 exp(−ϵ2m2/2).

In particular, for any x, y ∈ T , we have

P
(∣∣∣∣ ||A(x− y)||

||x− y||
− 1

∣∣∣∣ ≥ ϵ

)
≤ 2 exp(−ϵ2m2/2).

By a union bound, we get

P
(
∃x, y ∈ T s.t.

∣∣∣∣ ||A(x− y)||
||x− y||

− 1

∣∣∣∣ ≥ ϵ

)
≤ 2N2 exp(−ϵ2m2/2).

It is therefore enough to pick n such that

m2 >
2 log(2N2)

ϵ2

for obtaining existence of a linear map A such that (3) holds.
Since for X standard Gaussian vector we have

n = E[||X||2] ≤ E[||X||]2/3E[||X||4]1/3 and E[||X||4] ≤ 3n2,

we have m2 ≥ n/3, so it is enough to take n > 6 log(2N2)
ϵ2 for the result to hold.

9



4.2 Isoperimetric inequalities and concentration

The isoperimetric inequality on the sphere, due to P. Lévy and Schmidt, states that

Theorem 17 (Spherical isoperimetric inequality). Let A be a subset of the unit sphere, and B be a
spherical cap with same volume as A. Then

Per(A) ≥ Per(B).

Without loss of generality, we can view a spherical cap as of the form {x ∈ Sn; 1− t ≤ x1 ≤ 1}.
Its volume is given by the formula

1

ZN

∫ 1

1−t

(1− x2)N/2−1dx

where ZN is a constant, computed from the volume ratios.
If we integrate the isoperimetric inequality, we have

Corollary 18. Let A be a subset of the unit sphere, and B be a spherical cap with same volume as
A. Then for any r > 0

Vol(Ar) ≥ Vol(Br)

where Ar is the closed r-neighborhood of A, that is Ar = {x ∈ Sd, d(x,A) ≤ r}.

If we consider the uniform probability measure on the unit sphere of dimension d (embedded in
Rd+1, we can see that the mass of a spherical cap of radius strictly smaller than π/2 decays expo-
nentially fast. More precisely, for any fixed point z and setting Vd the volume of the d-dimensional
unit sphere (which is equal to π(d+1)/2/Γ(d/2 + 1), we have

Vol({x; d(x, z) ≤ t})
Vol(Sd)

=
Vd−1

∫ 1

cos(t)
(1− u2)(d−1)/2

Vd

≤
√
2π√
d

∫ 1

cos(t)

(1− u2)(d−1)/2

≤
√
d+ 1√
2π

∫ 1

cos(t)

exp(−(d− 1)u2/2)du.

We see that as soon as π/2− t >> d−1/2, this quantity is exponentially small. So the mass on a
high-dimensional sphere is concentrated on an equator.

In particular, if we consider sublevel sets of a lipschitz functions, we see that a 1 lipschitz function
of a uniform random variable on the unit sphere has typical fluctuations around its median of order
d−1/2.

If we rescale the sphere by setting the radius to
√
n and let n go to infinity, the distribution of a

single coordinate converges to a standard Gaussian distribution (Borel-Poincaré lemma). We get in
the limit the Gaussian isoperimetric inequality, due to Sudakov, Tsirel’son and Borell. We refer to
[7] for a survey of the many known direct proofs of the Gaussian isoperimetric inequality, and some
of its extensions.

Theorem 19 (Gaussian isoperimetric inequality). Let A be a subset of Rd such that γd(A) = α.
Let H be a half-space ]−∞, a]× Rd−1 such that γd(H) = γ1(]−∞, a]) = α. Then

Perγd
(A) ≥ exp(−a2/2)√

2π
= Perγd

(H).
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In this theorem, a can be expressed by inverting the Gaussian cumulative distribution function.
Explicit computations show that this inequality is stronger than the Gaussian concentration inequal-
ity. More generally, the Gaussian isoperimetric inequality implies the Gaussian logarithmic Sobolev
inequality.

5 Lecture 4: Introduction to Stein’s method

The goal of this lecture is to introduce the basics about Stein’s method for distribution approx-
imation. We refer to [8, 5] for an overview of the field, and to [1, 3] for discussions of recent
developments.

5.1 Stein’s method for the standard Gaussian measure in dimension one

Definition 20 (L1 optimal transport distance). Let µ and ν be two probability measures on a Polish
space (E, d), with finite first moment. Then the L1 Wasserstein (or Monge-Kantorovitch) distance
is defined as

W1(µ, ν) := sup
f1−lip

∫
fdµ−

∫
fdν = inf

X≡µ,Y≡ν
E[d(X,Y )].

The equality between the two formulations is a non-trivial convex duality result (Kantorovitch-
Rubinstein duality theorem).

Theorem 21 (Stein’s lemma). Let ν ∈ P(R).Then

W1(ν, γ) ≤ sup

{∫
(f ′ − xf)dν; ||f ||∞, ||f ′||∞, ||f ′′||∞ ≤ 1

}
Proof. Consider a class of functions H such that for any 1-lipschitz function g, there exists f ∈ H
such that f ′ − xf = g −

∫
gdγ. Then trivially

W1(ν, γ) ≤ sup
f∈H

∫
f ′ − xfdν.

So all we need to do is to show that there are solutions that satisfy the regularity bounds. Since the
equation is an ODE, this is an explicitly tacklable (although tricky) problem. We refer to [8] for the
proof.

5.2 An application : eigenfunctions of the Laplacian

Our goal here is to prove the following theorem, due to E. Meckes:

Theorem 22. Let (M, g) be a compact Riemannian manifold with Laplace-Beltrami-operator ∆.
Let µ be the normalized volume (i.e. the probability measure proportional to the volume measure
induced by g). If h is an eigenfunction of ∆ with eigenvalue −λ, normalized so that

∫
h2dµ = 1,

then
W1(µ ◦ h−1, γ) ≤ λ−1 Varµ(|∇h|2).
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Proof. Let ν = µ ◦ h−1, and let f be a smooth test function on R. We have∫
xf(x)dν =

∫
hf ◦ hdµ

= −λ−1

∫
(∆gh)f ◦ hdµ

= λ−1

∫
∇h · ∇(f ◦ h)dµ

= λ−1

∫
f ′(h)|∇h|2dµ

Hence ∫
f ′ − xfdν ≤

∫
f ′(h)(1− λ−1|∇h|2)dµ.

Since
∫
|∇h|2dµ = λ, we consider f such that ||f ′||∞ ≤ 1 and apply Stein’s lemma to get

W1(ν, γ) ≤ λ−1 Varµ(|∇h|2).

The conclusion immediately follows.

The argument generalizes to weighted Riemannian manifolds (including the Euclidean space),
with reference measure µ = e−V dVol, if we consider L = ∆g −∇V · ∇ instead of the usual Laplace-
Beltrami operator. The important properties we used in the proof are the integration by parts
formula ∫

(Lf)ge−V dVol = −
∫

∇f · ∇ge−V dVol

and the chain rule, which indeed both hold for general reversible diffusion generators.

5.3 The general setting

The key to generalizing this approach to very general measures is a viewpoint proposed by Barbour,
known as the generator approach to Stein’s method. The starting point is that we can reformulate
the caracterization of the Gaussian as ∫

f ′′ − xf ′dγ = 0.

The differential operator is Lf = f ′′−xf ′, which is precisely the generator of the Ornstein-Uhlenbeck
process

dXt = −Xtdt+
√
2dBt.

So one way of formulating the characterization is that the standard Gaussian measure is the unique
invariant measure of this Markov process.

It is now clear how to generalize the abstract setting: given a target measure µ, one should
identify a Markov process with generator L, whose unique invariant probability measure should be
µ, and seek an estimate of the form

W1(µ, ν) ≤ sup
f∈F

∫
Lfdν

12



where the class of test functions F should hopefully be as small as possible. To rewrite the Wasser-
stein distance in this form, we are naturally led to considering the Poisson equation

Lf = g −
∫

gdµ

where g is an arbitrary 1-lipschitz function.
The situation is then about converting good properties of the Markov process into properties

of solutions to Poisson equations. Thee are many ways of tackling this problem, and we shall not
adress them here.

Let us consider a few examples.
For a multivariate standard Gaussian Nd(0, Id), it is natural to still consider the Ornstein-

Uhlenbeck process, now in dimension d. The generator is

Lf = ∆f − x · ∇f.

The Poisson equation can actually be solved explicitly using a convolution kernel, using properties
of Gaussian processes (such as the Ornstein-Uhlenbeck process).

Theorem 23. Let g be a 1-lipschitz function on Rd. Then there exists a solution f to the PDE

∆f − x · ∇f = g −
∫

gdγd

such that ||∇2f ||HS ≤ 1.

A remarkable feature is that the estimate is dimension-free, which is very useful in statistical
applications.

For a probability measure µ = e−V dx on Rd, one possible choice is

dXt =
√
2dBt −∇V (Xt)dt

whose generator is Lf = ∆f −∇V ·∇f . The nicer V is, the stronger the properties on the solutions
one can prove. Note that the Poisson equation is an elliptic PDE, so nice regularity properties are
to be expected (but may be hard to explicitly estimate in a non-compact setting).

For measures on graphs, one can consider random walks, with bias (for example, Metropolis-
Hastings algorithm) to enforce a given invariant measure.

6 Index of notations

• γd stands for the standard Gaussian measure on Rd. If in-context the dimension is unambigu-
ous, we shall simply write it γ.

• Wp(µ, ν) is the Lp Wasserstein (or Monge-Kantorovitch) distance between the probability
measures µ and ν.

• We denote by Π(µ, ν) the set of all possible couplings of µ and ν.
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