Exercise Sheet 1

Exercise 1

1 We need to prove that for any two points $x, y \in A+B$ and $\forall t \in [0, 1]$ then $tx + (1-t)y \in A+B$.

Let $a, c \in A$, $b, d \in B$. Set x=a+b and y=c+d. Then tx + (1-t)y = t(a+b) + (1-t)(c+d) = ta+tb + (1-t)c + (1-t)d $ta+(1-t)c \in A$ since A convex $tb+(1-t)b \in B$ since B convex

and therefore $tx_+ (1-t)y \in A+B$. 2 "=>" Let $x_1y \in K$ and $d \in [0, 1] \xrightarrow{def} dx_+ (1-d)y \in K$ We can write $dx_+ (1-d)y = d(dx_+ (1-dx)) + (1-d)(dy_+ (1-d)y)$ =1

Thus we have expressed dx + (1-d)y as a convex combination of points in K => $dx + (1-d)y \in dK + (1-d)K$. $\mu = Let x, y \in K$, $d \in [0, 1]$. Then $dx + (1-d)y \in dK + (1-d)K$ and hence $dx + (1-d)y \in K$ by assumption => K convex. (3) f is convex on [a, b] => f is continuous on [a, b] => f is Riemann integrable on [a, b]

(1) Let
$$x, y \in S_{t}$$
, $d \in [0, 1]$.
Since φ is convex, $\varphi(Ax + (1-A)y) \leq A\varphi(x) + (1-A)\varphi(y) \leq dt + (1-A)t = t$
 $\Rightarrow \varphi(Ax + (1-A)y) \in S_{t}$
(3) Suppose that f is not lower-semicantinuous.
Then $\exists x_{0} \in \mathbb{R}$ and $\exists (x_{n})_{n \geq 1}$ with $x_{n} \rightarrow x_{0}$ $\exists f \varphi(x_{n}) < f(x_{0}) \forall n$.
Since $x_{n} \rightarrow x_{0}$, we have $f(x_{n}) \rightarrow f(x_{0})$ as $n \rightarrow \infty$ if f is closed. \Box
(6) $_{\parallel} 2^{+}$ Since f is differentiable at x_{0} , $\nabla f(x_{0})$ exists and is unique.
Also, $f(x) \geq f(x_{0}) + \nabla f(x_{0})^{\top}(x - x_{0}) \quad \forall x \in \mathbb{R}^{n} \Rightarrow \nabla f(x_{0}) \in \Im f(x_{0})$
 $_{\parallel} \subseteq^{+}$ Let $g \in \Im f(x_{0})$. Then $f(x) \geq f(x_{0}) + \Im^{\top}(x - x_{0}) \quad \forall x \in \mathbb{R}^{n}$
 f is convex $\Rightarrow g = \nabla f(x_{0})$. \Box

(1)
$$E[H_{L}] = E[E[H_{L}|J_{L,L}]] = E[H_{L,L}]$$
 $H_{L \ge L}$
Therefore, all HL have some expectation.
In particular, $E[H_{L-L}] = E[H_{0}]$. II
(2) We apply Jensen's inequality
Recall: for a convex g + holds g(E[X]) $\leq E[g(X)]$
Let $g(X) = \max\{X, 0\} \rightarrow g$ is convex
In fact, let $X, y \in \mathbb{R}$
1st case: $dX + (1-\lambda)y \ge 0 \Rightarrow g(AX + (1-\lambda)y) = \max\{(AX + (1-\lambda)y\}\}$
 $\leq \max\{AX, 0\} + \max\{(1-\lambda)y, 0\} = 0$
 $= Ag(X) + (1-\lambda)g(y)$
2nd case: $dX + (1-\lambda)y < 0 \Rightarrow g(AX + (1-\lambda)y) = \max\{AX + (1-\lambda)y, 0\} = 0$
 $\leq A \max\{AX, 0\} + (1-\lambda)\max\{AX, 0\}$
Let $S \leq t$
 $= Ag(X) + (1-\lambda)\max\{X, 0\}$

$$\begin{aligned} \max d \ \mathsf{Mt}_1 \ \mathsf{O} &= \operatorname{g}(\mathsf{Mt}) \\ &= \operatorname{g}(\mathsf{E}[\mathsf{Mt}_1 | \mathsf{F}_{\mathsf{S}}] + \mathsf{Mt} - \mathsf{E}[\mathsf{Mt}_1 | \mathsf{F}_{\mathsf{S}}]) \\ &\overset{\operatorname{g}\mathsf{convex}}{\leq} \operatorname{g}(\mathsf{E}[\mathsf{Mt}_1 | \mathsf{F}_{\mathsf{S}}]) + \operatorname{g}(\mathsf{E}[\mathsf{Mt}_1 | \mathsf{F}_{\mathsf{S}}] - \mathsf{E}[\mathsf{Mt}_1 | \mathsf{F}_{\mathsf{S}}]) \\ &= \operatorname{E}[\operatorname{max} d \operatorname{Mt}_1, \operatorname{O}_2^2 | \mathsf{F}_{\mathsf{S}}] \qquad \Box \end{aligned}$$

Note that

• (X;) bounded
$$\Rightarrow S_{k} + \alpha_{k}$$
, $S_{k}^{2} + \alpha_{k} S_{k} b_{k}$ and $(\alpha_{k}^{2})^{-4} \exp(AS_{k})$ are integrable
• $\exists_{k} - \operatorname{mecocurable}_{k}$ is dear.
 \Rightarrow we just need to check the maringale property.
(2) $\mathbb{E}[S_{k+2} + \alpha_{k+2} \mid \exists_{k}] = \mathbb{E}[\sum_{i=1}^{k+1} X_{i} + \alpha_{k+2} \mid \exists_{k}]$
 $= \mathbb{E}[S_{k} + X_{k+4} + \alpha_{k+4} \mid \exists_{k}]$
 $S_{k} \in \Im_{k} - \operatorname{mecos}_{k} \xrightarrow{\sim} S_{k} + \mathbb{E}[X_{k+1} \mid \exists_{k}] + \alpha_{k+2}$
 $a_{k} \in \operatorname{sostant} \xrightarrow{\sim} S_{k} + \mathbb{E}[X_{k+1} \mid \exists_{k}] + \alpha_{k+2}$
 $= S_{k} + m_{k} + \alpha_{k+4}$
 $\Rightarrow \alpha_{k} = m_{k} + \alpha_{k+4} \xrightarrow{\sim} S_{k} + \mathbb{E}[X_{k+1} \mid \exists_{k}] + \alpha_{k+4}$
 $\Rightarrow \alpha_{k} = m_{k} + \alpha_{k+4} \xrightarrow{\sim} \Omega_{k} = -\frac{1}{k+4} m_{k}$.
(2) $\mathbb{E}[S_{k+2}^{2} + \alpha_{k+4} \operatorname{Sost} + b_{k+4} \mid \exists_{k}] = \mathbb{E}[(S_{k} + X_{k+2})^{2} + \alpha_{k+4} (S_{k} + X_{k+4}) + b_{k+4} \mid \exists_{k}]]$
 $= S_{k}^{2} + \mathbb{E}[X_{k+4}^{2} \mid \exists_{k}] + 2S_{k} \mathbb{E}[X_{k+4} \mid \exists_{k}] + \alpha_{k+4} \times k + \alpha_{k+4} \mathbb{E}[X_{k+4} \mid \exists_{k}] + b_{k+4}$
 $= S_{k}^{2} + \mathbb{E}[X_{k+4}^{2} \mid \exists_{k}] + 2S_{k} \mathbb{E}[X_{k+4} \mid \exists_{k}] + \alpha_{k+4} \times k + \alpha_{k+4} \mathbb{E}[X_{k+4} \mid \exists_{k}] + b_{k+4}$
 $= S_{k}^{2} + \mathbb{E}[X_{k+4}^{2} \mid \exists_{k}] + 2S_{k} \mathbb{E}[X_{k+4} \mid \exists_{k}] + \alpha_{k+5} \times k + \alpha_{k+4} \mathbb{E}[X_{k+4} \mid b_{k+4} \mid b_{k+4}]$
 $= S_{k}^{2} + \mathbb{E}[X_{k+4}^{2} \mid m_{k+4}^{2} + 2S_{k} \mathbb{E}[X_{k+4} \mid a_{k+4} \mid a_{k+4} \mid b_{k+4} \mid b_{k+4} \mid b_{k+4} \mid a_{k+4} \mid b_{k+4} \mid b_{k+4} \mid a_{k+4} \mid b_{k+4} \mid a_{k+4} \mid b_{k+4} \mid b_{k+4} \mid b_{k+4} \mid b_{k+4} \mid a_{k+4} \mid b_{k+4} \mid b$

$$= \sum_{k=1}^{t} M_{k} \qquad \text{and} \qquad b_{t} = -\sum_{k=1}^{t} (\sigma_{k}^{2} + M_{k}^{2} + 2\alpha_{k} m_{k})$$

Exercise 4 (1) By Markov's ineq.: $\mathbb{P}(X \ge \alpha) = \mathbb{P}(e^{tX} \ge e^{t\alpha}) \le e^{-t\alpha} M_X(t)$ take the infimum. (2) $M_X(t) = \mathbb{E}[e^{tX}] = e^{t \cdot 0} \mathbb{P}(X = c) + e^{t \cdot 1} \mathbb{P}(X = 1) = (1 - p) + pe^t$ (3) Note $\forall x \in \mathbb{R}$: $1 + x \le e^x$ $M_{S_N}(A) = \mathbb{E}[e^{A \frac{c}{1 = 1} X_i}] = \prod_{i=1}^n \mathbb{E}[e^{A X_i}] = \prod_{i=1}^n (1 + p_i)(e^{A} - 1))$ $\le \prod_{i=1}^n \exp(p_i)(e^{A} - 1)) = \exp(((e^{A} - 1) \sum_{i=1}^n p_i)) = \exp(AU(e^{A} - 1))$ Therefore,

 \Box

 $P(S_n \ge t) \le e^{-\lambda t} \exp((e^{t} - 1)\mu)$ Substitute $\lambda = P(\frac{t}{\mu})$.

(1)
$$\mathbb{E}[X_{n+1} | X_n = 0] = 0$$

 $\mathbb{E}[X_{n+1} | X_n = 2^n] = 2^n$
(2) Since $X_n \ge 0$ $\forall n$
 $\mathbb{E}[|X_n|] = \mathbb{E}[X_n] = \mathbb{E}[X_0] = 1$ $\forall n$
(3) We use the following result
 $(X_n)_n$ bounded martingale in $L^1 = \mathbb{E}[X_n \frac{\alpha \cdot s_n}{n + \infty} X_\infty]$ and $X_\infty \in L^1$
(This claim actually holds for sub-martingales)
 $\mathbb{P}(\liminf_{k} X_k \ge 0) \le \mathbb{P}(X_n = 0) = 2^{-n} \longrightarrow 0$
Note that $\mathbb{E}[X_\infty] = \lim_{n \to \infty} \mathbb{E}[X_n] \implies \text{it doesn't converge in } L^1$

Recall diam(A) = $\sup_{x,y \in A} ||x-y||_2$ 1 For all $x_1 y \in Q^n$: $\|x - y\|_2^2 = \sum_{i=1}^n |x_i - y_i|^2 \leq \sum_{i=1}^n (|x_i| + |y_i|)^2 \leq \sum_{i=1}^n 1 = n$ On the other hand, consider $X = \frac{1}{2} (1, ..., 1) \qquad y = \frac{1}{2} (-1, ..., -1)$ Clearly, $x_i y \in Q^n$ and $\| \times - \mathbf{y} \|_{2}^{2} = \sum_{n=1}^{n} \left(\frac{1}{n} + \frac{1}{n} \right)^{2} =$ \cap Thus, $\overline{\ln} \leq \operatorname{diam}(\mathbb{Q}^n) \leq \overline{\ln} \Rightarrow \operatorname{diam}(\mathbb{Q}^n) = \overline{\ln}$. \Box $\chi_{1,...,\chi_n}, \chi_{n,...,\chi_n}, \chi_{n,...,\chi_n}$ are independent r.v. distributed on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (2) $\Rightarrow \mathbb{E}[\|X - Y\|_{2}^{2}] = \sum_{i=1}^{n} \mathbb{E}[|X_{i} - Y_{i}|^{2}] = n \mathbb{E}[|X_{1} - Y_{2}|^{2}] = \frac{n}{6}$ Conclusion: the L^2 -norm of the distance by two random points X and Y has order of magnitude n. (3) Apply CLT: $\frac{1}{100} \sum_{i=1}^{n} Y_i \longrightarrow \mathcal{N}(0, 1)$ In (3) the weights were $\theta = \frac{1}{\sqrt{n}}$ but it is not essential. 4 $\mathbb{E}\left[\left.\Theta_{i}\right.\right.\right]_{i}=\left.\Theta_{i}\right.\mathbb{E}\left[\left.Y_{i}\right.\right]=0$ $\operatorname{Qar}(\Theta; A^{i}) = \Theta^{i}_{s} \operatorname{Qar}(A^{i}) = \Theta^{i}_{s}$ By Berry-Esseen thm we get $\forall t \in \mathbb{R} \quad \left| \begin{array}{c} \mathbb{P}\left(\sum_{i=1}^{n} \theta_{i} \forall_{i} \leq t \right) - \frac{1}{12\pi} \int_{-\infty}^{t} e^{-S^{2}/2} ds \right| \leq C \stackrel{2}{\geq} \theta_{i}^{4}$ (₳) where C>O is an absolute constant. $\theta_i = \frac{1}{10} \Rightarrow RHS of (7) is of order <math>\frac{1}{10}$ Remark

(1)
$$\frac{1}{2} \int_{K} \int_{K} |f^{(x)} - f^{(y)}|^{2} dx dy = \frac{1}{2} \int_{K} \int_{K} f^{2}(x) dx dy + \frac{1}{2} \int_{K} \int_{K} \int_{K} f^{2}(x) dx dy dy + \frac{1}{2} \int_{K} \int_{K}$$

2 By fundamental thm of calculus

$$f(x) - f(y) = \int_{a}^{1} \frac{d}{dt} f((1-t)x + ty) dt = \int_{a}^{1} \nabla f((1-t)x + ty)(y-x) dt$$
3 $|f(x) - f(y)| \leq diam(K) \int_{a}^{1} |\nabla f((1-t)x + ty)| dt$
since $|x-y| \leq diam(K)$ $\forall x, y \in K$

We take the squares and apply Cauchy-Schwarz
$$|f(x) - f(y)|^2 \leq diam^2 (K) \int_{0}^{1} |\nabla f((1+t)x+ty)|^2 dt$$

We integrate over K:

$$\int_{X} f^{2}(x) dA(x) = \frac{1}{2} \operatorname{diom}^{2}(K) \int_{X} \int_{0}^{1} |\nabla f((1-t)x+ty)|^{2} dx dy dt$$

$$= \operatorname{diom}^{2}(K) \int_{X} \int_{0}^{1} \int_{1}^{1} |\nabla f((1-t)x+ty)|^{2} dx dy dt$$

$$(4) \quad \text{Fix} \quad x, \text{ change variables} \quad 2(y) = (1-t)x+ty \quad \forall t \ge \frac{1}{2}$$

$$= \operatorname{de} dz = t^{n} dy$$

$$\int |\nabla f((1-t)x+ty)| dy = \int |\nabla f(z)| \frac{dt}{dz} \quad \leq 2^{n} \int |\nabla f(z)|^{2} dz$$

$$\begin{array}{c} \begin{array}{c} & & \\$$

(5)
$$\int_{\mathcal{K}} f^2 dd \leq \left\{ \int_{\mathcal{V}_2} dt \int_{\mathcal{K}} dx \int_{\mathcal{K}} |\nabla f(z)|^2 dz \right\} 2^n diam^2(\mathcal{K})$$

= $2^{n-2} diam^2(\mathcal{K}) \int_{\mathcal{K}} |\nabla f(z)|^2 dz$ This is the first Poincaré inequality
=: $C_p(\mathcal{K})$

Poincaré constant

Taylor:
$$\mathbb{E}\left[e^{AX}\right] = \mathbb{E}\left[\sum_{k=0}^{\infty} \frac{(AX)^{k}}{k!}\right]$$
$$= \sum_{k=0}^{\infty} \frac{1}{k!} d^{k} \mathbb{E}[X^{k}]$$
$$= 1 + \sum_{k=2}^{\infty} \frac{A^{k}}{k!} \mathbb{E}[X^{2} X^{k-2}]$$
$$\leq 1 + \sum_{k=2}^{\infty} \frac{A^{k}}{k!} M^{k-2} \sigma^{2}$$
$$= 1 + \frac{\sigma^{2}}{M^{2}} \sum_{k=2}^{\infty} \frac{A^{k}}{k!} M^{k}$$
$$= 1 + \frac{\sigma^{2}}{M^{2}} \left(e^{AM} - 1 - AM\right)$$
$$1 + x \le e^{x} \longrightarrow \left(\frac{\sigma^{2}}{M^{2}} \left(e^{AM} - 1 - AM\right)\right)$$

Therefore,

$$\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \ge t\right) \leq e^{-dt} \mathbb{E}\left[\exp\left(d\sum_{i=1}^{n} X_{i}\right)\right)$$

$$= e^{-dt} \prod_{i=1}^{n} \mathbb{E}\left[e^{dX_{i}}\right]$$

$$= e^{-dt} \left(\mathbb{E}\left[e^{dX_{i}}\right]\right)^{n}$$

$$\leq e^{-dt} \exp\left(\frac{n\sigma^{2}}{H^{2}}\left(e^{dH}-1-dH\right)\right)$$

$$= \exp\left\{-dt + \frac{n\sigma^{2}}{H^{2}}\left(e^{dH}-1-dH\right)\right\}$$

$$= -t + \frac{n\sigma^{2}}{H^{2}}\left(He^{dH}-H\right) = 0$$

$$= D \quad d = \frac{1}{H} \log\left(1+\frac{tH}{n\sigma^{2}}\right)$$

$$Plug-in \quad and \quad we \quad get \quad the \quad clowin. \quad \square$$

Let L be the Lipschitz constant of f.

Let $X \sim \text{Unif}([0, 1])$ and define the r.s.

 $X_n = 2^{-n} \lfloor 2^n X_n \rfloor$

$$\mathbb{Z}_{n} = 2^{n} \left(\mathfrak{P}(\mathbb{X}_{n} + 2^{-n}) - \mathfrak{P}(\mathbb{X}_{n}) \right)$$

$$fet \quad \exists v = Q(\chi^{1}, \dots, \chi^{v}) .$$

Then (Z_n) is a \exists_n -mortingale bounded by L.

In fact, conditioned on X_n , there are two possible values (X_n and $X_n + 2^{-n-4}$) which have some probability.

$$\mathbb{E}\left[Z_{n+1} \mid \exists n\right] = 2^{n+1} \oint \frac{\Pr(X_{n} + 2^{-n-1}) - \Pr(X_{n})}{2} + \frac{\Pr(X_{n} + 2^{-n-1} + 2^{-n-1}) - \Pr(X_{n} + 2^{-n-1})}{2} \\ = 2^{n} \oint \Pr(X_{n} + 2^{-n}) - \Pr(X_{n}) \oint$$

= Z_n

 Z_n converges a.s. and in L^1 to a r.v. Z_1 , which is σ -measurable Then $\exists g$ measurable function with $Z_1 = g(X)$. Conditionally on X_n , X is uniformly distributed on $[X_n, X_n + 2^{-n-1})$ and therefore $Z_1 n = 2^n \int_{X_n}^{X_n + 2^{-n}} g(u) du$

=> $f(X_n + 2^{-n}) - f(X_n) = \int_{X_n}^{X_n + 2^{-n}} g(u) du$ Therefore, for all $k < 2^n$ we have $f((k+1)2^{-n}) - f(k2^{-n}) = \int_{k2^{-n}}^{(k+1)2^{-n}} g(u) du$ Summing we get

$$f(kz^{-n}) = f(0) + \int_{0}^{kz^{-n}} g(u) du$$
Let $kz^{-n} - \infty x$ and by continuity of f we get
$$f(x) = f(0) + \int_{0}^{x} g(u) du$$