MSRI SUMMER SCHOOL JurLy 7, 2023

Exercise Sheet 4

We do not expect you to solve all the exercises in this sheet. You can use these
exercises as useful references and perhaps to practice in the future.

Guided Exercise

Exercise 1

In this exercise we will prove Gaussian concentration with a slightly weaker constant, using a
general method of the ‘7 property’ introduced by Maurey.

1. For any function ¢ : R™ x R™ — R, define the c-transform of a function ¢ : R™ — R as

¢*(y) = nf cz,y) - p(z).

Check that for c(a,y) = o — ylI2/2, [yl2/2 — ¢*(y) = L{p(x) — [2]]2/2), where L is the
Legendre transform.

2. We say that a probability space (X, .4, u) satisfies the 7 property with respect to a cost
function c if

/e““du(x)/e@c(y)du(y) <1.

Show that if a pair (u,c) satisfies the 7-property, then for any measureable set A C X and
any t > 0,

1—p ({x s inf e(z,y) < t}) < p(A)"tet
z€A
3. Recall the Prékopa-Leindler inequality from Lesson 2. Use it to show that the cost function

c(z,y) = ||x — y||*/4 and the Gaussian measure satisfy the T-property.

4. Conclude a concentration result for sets of measure at least 1/2 in Gaussian space.

Additional Exercises

Exercise 2

Generalize the argument of the guided exercise to show a concentration inequality for a measure
p with density e~*(®) with u(X) convex and satisfying V?u > kI for some k > 0.

Exercise 3

We say that a probability space (X,.A, p) satisfies the weak 7 property with respect to a cost
function c if

o e@)du(a) / # W du(y) < 1.

Show that if a pair (u,c) satisfies the weak 7 property, then for any measureable set A C X and
any t > 0,
1—pu({z: inf c(z,y) <t}) < e rA?
yeA

Exercise 4

Linearize the following log-Sobolev inequality, i.e. assume that (X, d, i) is a probability space such
that every Lipschitz function satisfies

Ent(f?) < 2BE[|Vf|?],
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i.e. apply the inequality to the function 1 4+ £g. Show that this gives a Poincaré inequality of the
form

Var(g) < BE(|Vg[?).

Exercise 5

1. Follow what was done in class to prove the Gaussian concentration inequality for any M-
Lipschitz function: Let Xi,...,X, be i.i.d. copies of AV(0,1) and let f : R* — R be
M-Lipschitz in the sense that,

|f(l')—f(y)|§M|.’L‘—y|, ‘T>y€Rn7

where | - | on the right-hand side is the Euclidean norm. Then for each ¢ > 0,
P(f(X)—Ef(X)>t) <e zu?.

2. Denote f(z) := max;=1,. , ;. Prove that for any n x n-matrix A,

with |z — y| denoting the Euclidean norm of  — y on the right-hand side.

3. Prove the Borell-TIS(Tsirelson-Ibragimov—Sudakov) inequality. Let X be a centered Gaus-
sian on R™ and set
0% = max F (XZQ) .

i=1,...,n

Then for each ¢t > 0,

=1 =1 n

_ 2
_max Xi>‘>t> <2 %,

(

max XiE(

gasey

Exercise 6

In this exercise we will repeat Herbst’s argument on the discrete hypercube, to obtain the following
theorem. For z € {—1,1}" denote by z(¥) the vector (z1,...,2;_ 1, =T, Tis1, ..., 2,) and similarly
for a random vector X denote X the random vector with the i-th coordinate with flipped sign.

1. Let f : {-1,1}" — R be an arbitrary real-valued function defined on the n-dimensional
binary hypercube and assume that X is uniformly distributed over {—1,1}". Define

3 (091 (<)) =323 (e - ()

Ent(f) = E[f(X) log(f(X))] — Ef(X)log Ef(X),

Then the Log-Sobolev inequality is that

1

E(f) = {E

Ent (f%) < 2&(f).
Write out the statement of the inequality for g(x) = e=2(#)/2,
2. Show that Ent (¢%) < % S, E [(f(X) = £ (X)) N O].

3. Define F(\) = E[eMNX)], and v = max,eq_1,13n Dory (f(2) — f (i(l)))i Write out the
previous inequality in terms of f and F, and solve the differential inequality you get to

obtain
F()\) < e)\]Ef(X)+>\2u/4.
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4. Use Markov’s inequality and optimize over A to conclude the following concentration result
on the discrete hypercube:
Let f:{—1,1}" — R and assume that X is uniformly distributed on {—1,1}". Let v > 0 be

such that .
2 () - s (:v”))2+ <v

1=

for all x € {—1,1}™. Then the random variable Z = f(X) satisfies, for all ¢t > 0,

P{Z>BZ+t}<e /" and P{Z<EZ-t}<e '/

Exercise 7

In this exercise we give another proof of Gaussian concentration with a worse constant.

1. Let X and Y be two N(0, I,,), independant random vectors, and f : R®™ — R 1-Lipschitz.
Define
X, = cos(tn/2) X +sin(tn/2)Y; Y, = —sin(tn/2) X + cos(tn/2)Y
and show that they are both also A'(0, I,;) and independent.
2. Prove that
'd

1
F) - f00) = | Srxa= / Y- Vf (X) dt.

and conclude
! T
Blexp(M(Y) = M(0)] < [ B [exp (A ¥i- V7 (X0) | dt
0
3. Use (2.) and bound the right hand side to obtain

/OlE [exp (A5¥i-vs (x))] dt < exp ()\287r?)

(recall that X; has bounded variance and that f is 1-Lip).

4. Using independence and Jensen’s inequality, show that
2,2
Elexp(Af(Y))] < E[M 0557,

5. Apply the inequality to two independent copies of X to get a Gaussian concentration in-
equality. Compare to the inequality you got in class.

Exercise 8

One dimensional Poincaré inequalities. Let X ~ y and Y ~ v be two measures on R and let
Fu(t):=P(X <t) and F,(t) :=P(Y <1t),

be their cumulative distribution functions, Fj,, F, : R — [0,1]. Assume that both F,, and F), are
invertible and let F, ', F,7" : [0,1] — R be the inverse functions. Define T}, := F, ' o F),.

e Show that Law(7);/(X)) = v. That is, for almost every ¢ € R,

P(Ty(X)<t)=P(Y <t).

Now, suppose that v is a log-concave measure supported on [a,b] and that p is the standard
Gaussian on R.
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e Use the fact that, in the above case, T}/ is 10(b — a)-Lipschitz to deduce that
Cy(v) < 100(b — a)?.

Suppose instead that duy = %e*mdx is the Laplace distribution and that dv = d - xd’11[071]d:£.
These are the types of distributions which appear in the localization lemma.

e Compute 7); and deduce an appropriate bound on the Poincaré constant of v.

Exercise 9

The Brascamp-Lieb inequality. Let 74 be the standard Gaussian in R¢ and let v be a measure
on R? of the form dv = e ¥d~y, for some convex function . We say that v is more log-concave
than the Gaussian. In 2000’ Caffarelli proved that when v is more log-concave than Gaussian,
there exists a 1-Lipschitz map T : RY — R? such that Law(T(G)) = v, for G ~ 7,.

e Use Caffarelli’s theorem to prove that

Cp(v) <1

Other uses of the localization lemma. Consider the following result by Carbery and Wright:
Let X ~ p be a measure on R of the form du = €(t)* 11} 1jdt, where £ : [0,1] — R4 is a linear
function, and let f : R — R be a degree p polynomial. Then, for any € > 0,

P(If(X)] < ¢) gc(w>

for a universal constant C' > 0.

e Use the above result and the localization lemma to prove the Carbery-Wright anti-concentration
theorem: If K € R? is a convex body and X ~ py is uniform on K, then, for any degree d
polynomial f:R? — R,

=

P(If(X)] <) <c(m) ,

where C' is a universal constant.



