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Exercise Sheet 4

We do not expect you to solve all the exercises in this sheet. You can use these
exercises as useful references and perhaps to practice in the future.

Guided Exercise

Exercise 1
In this exercise we will prove Gaussian concentration with a slightly weaker constant, using a
general method of the ‘τ property’ introduced by Maurey.

1. For any function c : Rn × Rn → R, define the c-transform of a function φ : Rn → R as

φc(y) = inf
x∈Rn

c(x, y)− φ(x).

Check that for c(x, y) = ∥x − y∥2/2, ∥y∥2/2 − φc(y) = L(φ(x) − ∥x∥2/2), where L is the
Legendre transform.

2. We say that a probability space (X,A, µ) satisfies the τ property with respect to a cost
function c if ∫

eφ(x)dµ(x)

∫
eφ

c(y)dµ(y) ≤ 1.

Show that if a pair (µ, c) satisfies the τ -property, then for any measureable set A ⊂ X and
any t > 0,

1− µ

(
{x : inf

x∈A
c(x, y) ≤ t}

)
≤ µ(A)−1e−t.

3. Recall the Prékopa-Leindler inequality from Lesson 2. Use it to show that the cost function
c(x, y) = ∥x− y∥2/4 and the Gaussian measure satisfy the τ -property.

4. Conclude a concentration result for sets of measure at least 1/2 in Gaussian space.

Additional Exercises

Exercise 2
Generalize the argument of the guided exercise to show a concentration inequality for a measure
µ with density e−u(x) with u(X) convex and satisfying ∇2u ≥ kI for some k > 0.

Exercise 3
We say that a probability space (X,A, µ) satisfies the weak τ property with respect to a cost
function c if

e
∫
φ(x)dµ(x)

∫
eφ

c(y)dµ(y) ≤ 1.

Show that if a pair (µ, c) satisfies the weak τ property, then for any measureable set A ⊂ X and
any t > 0,

1− µ({x : inf
y∈A

c(x, y) < t}) ≤ e−µ(A)t

Exercise 4
Linearize the following log-Sobolev inequality, i.e. assume that (X, d, µ) is a probability space such
that every Lipschitz function satisfies

Ent(f2) ≤ 2βE[|∇f |2],
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i.e. apply the inequality to the function 1 + εg. Show that this gives a Poincaré inequality of the
form

V ar(g) ≤ βE(|∇g|2).

Exercise 5

1. Follow what was done in class to prove the Gaussian concentration inequality for any M -
Lipschitz function: Let X1, . . . , Xn be i.i.d. copies of N (0, 1) and let f : Rn → R be
M -Lipschitz in the sense that,

|f(x)− f(y)| ≤ M |x− y|, x, y ∈ Rn,

where | · | on the right-hand side is the Euclidean norm. Then for each t > 0,

P (f(X)− Ef(X) > t) ≤ e−
t2

2M2 .

2. Denote f(x) := maxi=1,...,n xi. Prove that for any n× n-matrix A,

|f(Ax)− f(Ay)| ≤
√

max
i=1,...,n

(ATA)ii|x− y|, x, y ∈ Rn,

with |x− y| denoting the Euclidean norm of x− y on the right-hand side.

3. Prove the Borell-TIS(Tsirelson–Ibragimov–Sudakov) inequality. Let X be a centered Gaus-
sian on Rn and set

σ2
X := max

i=1,...,n
E
(
X2

i

)
.

Then for each t > 0,

P

(∣∣∣∣ max
i=1,...,n

Xi − E

(
max

i=1,...,n
Xi

)∣∣∣∣ > t

)
≤ 2e

− t2

2σ2
X .

Exercise 6
In this exercise we will repeat Herbst’s argument on the discrete hypercube, to obtain the following
theorem. For x ∈ {−1, 1}n denote by x̄(i) the vector (x1, . . . , xi−1,−xi, xi+1, . . . , xn) and similarly
for a random vector X denote X̄ the random vector with the i-th coordinate with flipped sign.

1. Let f : {−1, 1}n → R be an arbitrary real-valued function defined on the n-dimensional
binary hypercube and assume that X is uniformly distributed over {−1, 1}n. Define

E(f) = 1

4
E

[
n∑

i=1

(
f(X)− f

(
X̄(i)

))2
]
=

1

2
E

[
n∑

i=1

(
f(X)− f

(
X̄(i)

))2

+

]
Ent(f) = E[f(X) log(f(X))]− Ef(X) logEf(X),

Then the Log-Sobolev inequality is that

Ent
(
f2

)
≤ 2E(f).

Write out the statement of the inequality for g(x) = e−λf(x)/2.

2. Show that Ent
(
g2
)
≤ λ2

4

∑n
i=1 E

[(
f(X)− f

(
X̄(i)

))2
+
eλf(X)

]
.

3. Define F (λ) = E[eλf(X)], and v = maxx∈{−1,1}n

∑n
i=1

(
f(x)− f

(
x̄(i)

))2
+
. Write out the

previous inequality in terms of f and F , and solve the differential inequality you get to
obtain

F (λ) ≤ eλEf(X)+λ2v/4.
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4. Use Markov’s inequality and optimize over λ to conclude the following concentration result
on the discrete hypercube:
Let f : {−1, 1}n → R and assume that X is uniformly distributed on {−1, 1}n. Let v > 0 be
such that

n∑
i=1

(
f(x)− f

(
x̄(i)

))2

+
≤ v

for all x ∈ {−1, 1}n. Then the random variable Z = f(X) satisfies, for all t > 0,

P {Z > EZ + t} ≤ e−t2/v and P {Z < EZ − t} ≤ e−t2/v

Exercise 7
In this exercise we give another proof of Gaussian concentration with a worse constant.

1. Let X and Y be two N (0, In), independant random vectors, and f : Rn → R 1-Lipschitz.
Define

Xt = cos(tπ/2)X + sin(tπ/2)Y ; Yt = − sin(tπ/2)X + cos(tπ/2)Y

and show that they are both also N (0, In) and independent.

2. Prove that

f(Y )− f(X) =

∫ 1

0

d

dt
f (Xt) dt =

π

2

∫ 1

0

Yt · ∇f (Xt) dt.

and conclude

E[exp(λf(Y )− λf(X))] ≤
∫ 1

0

E
[
exp

(
λ
π

2
Yt · ∇f (Xt)

)]
dt.

3. Use (2.) and bound the right hand side to obtain∫ 1

0

E
[
exp

(
λ
π

2
Yt · ∇f (Xt)

)]
dt ≤ exp

(
λ2π2

8

)
(recall that Xt has bounded variance and that f is 1-Lip).

4. Using independence and Jensen’s inequality, show that

E[exp(λf(Y ))] ≤ E[eλf(X)+λ2π2

8 ].

5. Apply the inequality to two independent copies of X to get a Gaussian concentration in-
equality. Compare to the inequality you got in class.

Exercise 8
One dimensional Poincaré inequalities. Let X ∼ µ and Y ∼ ν be two measures on R and let

Fµ(t) := P (X ≤ t) and Fν(t) := P (Y ≤ t) ,

be their cumulative distribution functions, Fµ, Fν : R → [0, 1]. Assume that both Fν and Fµ are
invertible and let F−1

µ , F−1
ν : [0, 1] → R be the inverse functions. Define T ν

µ := F−1
ν ◦ Fµ.

• Show that Law(T ν
µ (X)) = ν. That is, for almost every t ∈ R,

P
(
T ν
µ (X) ≤ t

)
= P (Y ≤ t) .

Now, suppose that ν is a log-concave measure supported on [a, b] and that µ is the standard
Gaussian on R.
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• Use the fact that, in the above case, T ν
µ is 10(b− a)-Lipschitz to deduce that

Cp(ν) ≤ 100(b− a)2.

Suppose instead that dµ = 1
2e

−|x|dx is the Laplace distribution and that dν = d · xd−11[0,1]dx.
These are the types of distributions which appear in the localization lemma.

• Compute T ν
µ and deduce an appropriate bound on the Poincaré constant of ν.

Exercise 9
The Brascamp-Lieb inequality. Let γd be the standard Gaussian in Rd and let ν be a measure
on Rd of the form dν = e−φdγd, for some convex function φ. We say that ν is more log-concave
than the Gaussian. In 2000’ Caffarelli proved that when ν is more log-concave than Gaussian,
there exists a 1-Lipschitz map T : Rd → Rd such that Law(T (G)) = ν, for G ∼ γd.

• Use Caffarelli’s theorem to prove that

Cp(ν) ≤ 1.

Exercise 10
Other uses of the localization lemma. Consider the following result by Carbery and Wright:
Let X ∼ µ be a measure on R of the form dµ = ℓ(t)d−11[0,1]dt, where ℓ : [0, 1] → R+ is a linear
function, and let f : R → R be a degree p polynomial. Then, for any ε > 0,

P (|f(X)| ≤ ε) ≤ C

(
ε

E [|f(X)|]

) 1
d

,

for a universal constant C > 0.

• Use the above result and the localization lemma to prove the Carbery-Wright anti-concentration
theorem: If K ⊂ Rd is a convex body and X ∼ µK is uniform on K, then, for any degree d
polynomial f : Rd → R,

P (|f(X)| ≤ ε) ≤ C

(
ε

E [|f(X)|]

) 1
d

,

where C is a universal constant.
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