Exercise Sheet 4

We do not expect you to solve all the exercises in this sheet. You can use these exercises as useful references and perhaps to practice in the future.

Guided Exercise

Exercise 1

In this exercise we will prove Gaussian concentration with a slightly weaker constant, using a general method of the ' τ property' introduced by Maurey.

1. For any function $c: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, define the c-transform of a function $\varphi: \mathbb{R}^n \to \mathbb{R}$ as

$$\varphi^{c}(y) = \inf_{x \in \mathbb{R}^{n}} c(x, y) - \varphi(x).$$

Check that for $c(x,y) = ||x - y||^2/2$, $||y||^2/2 - \varphi^c(y) = \mathcal{L}(\varphi(x) - ||x||^2/2)$, where \mathcal{L} is the Legendre transform.

2. We say that a probability space (X, \mathcal{A}, μ) satisfies the τ property with respect to a cost function c if

$$\int e^{\varphi(x)} d\mu(x) \int e^{\varphi^c(y)} d\mu(y) \le 1.$$

Show that if a pair (μ, c) satisfies the τ -property, then for any measureable set $A \subset X$ and any t > 0,

$$1 - \mu\left(\{x : \inf_{x \in A} c(x, y) \le t\}\right) \le \mu(A)^{-1} e^{-t}$$

- 3. Recall the Prékopa-Leindler inequality from Lesson 2. Use it to show that the cost function $c(x, y) = ||x y||^2/4$ and the Gaussian measure satisfy the τ -property.
- 4. Conclude a concentration result for sets of measure at least 1/2 in Gaussian space.

Additional Exercises

Exercise 2

Generalize the argument of the guided exercise to show a concentration inequality for a measure μ with density $e^{-u(x)}$ with u(X) convex and satisfying $\nabla^2 u \ge kI$ for some k > 0.

Exercise 3

We say that a probability space (X, \mathcal{A}, μ) satisfies the weak τ property with respect to a cost function c if

$$e^{\int \varphi(x)d\mu(x)} \int e^{\varphi^c(y)}d\mu(y) \le 1.$$

Show that if a pair (μ, c) satisfies the weak τ property, then for any measureable set $A \subset X$ and any t > 0,

$$1 - \mu(\{x : \inf_{y \in A} c(x, y) < t\}) \le e^{-\mu(A)t}$$

Exercise 4

$$\operatorname{Ent}(f^2) \le 2\beta \mathbb{E}[|\nabla f|^2],$$

Linearize the following log-Sobolev inequality, i.e. assume that (X, d, μ) is a probability space such that every Lipschitz function satisfies

i.e. apply the inequality to the function $1 + \varepsilon g$. Show that this gives a Poincaré inequality of the form

$$Var(g) \le \beta \mathbb{E}(|\nabla g|^2).$$

Exercise 5

1. Follow what was done in class to prove the Gaussian concentration inequality for any *M*-Lipschitz function: Let X_1, \ldots, X_n be i.i.d. copies of $\mathcal{N}(0,1)$ and let $f : \mathbb{R}^n \to \mathbb{R}$ be *M*-Lipschitz in the sense that,

$$|f(x) - f(y)| \le M|x - y|, \quad x, y \in \mathbb{R}^n,$$

where $|\cdot|$ on the right-hand side is the Euclidean norm. Then for each t > 0,

$$P(f(X) - Ef(X) > t) \le e^{-\frac{t^2}{2M^2}}.$$

2. Denote $f(x) := \max_{i=1,\dots,n} x_i$. Prove that for any $n \times n$ -matrix A,

$$|f(Ax) - f(Ay)| \le \sqrt{\max_{i=1,\dots,n} (A^T A)_{ii}} |x - y|, \quad x, y \in \mathbb{R}^n$$

with |x - y| denoting the Euclidean norm of x - y on the right-hand side.

3. Prove the Borell-TIS (Tsirelson–Ibragimov–Sudakov) inequality. Let X be a centered Gaussian on \mathbb{R}^n and set

$$\sigma_X^2 := \max_{i=1,\dots,n} E\left(X_i^2\right).$$

Then for each t > 0,

$$P\left(\left|\max_{i=1,\dots,n} X_i - E\left(\max_{i=1,\dots,n} X_i\right)\right| > t\right) \le 2e^{-\frac{t^2}{2\sigma_X^2}}.$$

Exercise 6

In this exercise we will repeat Herbst's argument on the discrete hypercube, to obtain the following theorem. For $x \in \{-1, 1\}^n$ denote by $\bar{x}^{(i)}$ the vector $(x_1, \ldots, x_{i-1}, -x_i, x_{i+1}, \ldots, x_n)$ and similarly for a random vector X denote \bar{X} the random vector with the *i*-th coordinate with flipped sign.

1. Let $f : \{-1,1\}^n \to \mathbb{R}$ be an arbitrary real-valued function defined on the *n*-dimensional binary hypercube and assume that X is uniformly distributed over $\{-1,1\}^n$. Define

$$\mathcal{E}(f) = \frac{1}{4} \mathbb{E}\left[\sum_{i=1}^{n} \left(f(X) - f\left(\bar{X}^{(i)}\right)\right)^{2}\right] = \frac{1}{2} \mathbb{E}\left[\sum_{i=1}^{n} \left(f(X) - f\left(\bar{X}^{(i)}\right)\right)^{2}_{+}\right]$$

Ent $(f) = \mathbb{E}[f(X)\log(f(X))] - \mathbb{E}f(X)\log\mathbb{E}f(X),$

Then the Log-Sobolev inequality is that

$$\operatorname{Ent}(f^2) \le 2\mathcal{E}(f).$$

Write out the statement of the inequality for $g(x) = e^{-\lambda f(x)/2}$.

- 2. Show that Ent $(g^2) \leq \frac{\lambda^2}{4} \sum_{i=1}^n \mathbb{E}\left[\left(f(X) f\left(\bar{X}^{(i)}\right)\right)_+^2 e^{\lambda f(X)}\right].$
- 3. Define $F(\lambda) = \mathbb{E}[e^{\lambda f(X)}]$, and $v = \max_{x \in \{-1,1\}^n} \sum_{i=1}^n (f(x) f(\bar{x}^{(i)}))_+^2$. Write out the previous inequality in terms of f and F, and solve the differential inequality you get to obtain

$$F(\lambda) \leq e^{\lambda \mathbb{E}f(X) + \lambda^2 v/4}.$$

4. Use Markov's inequality and optimize over λ to conclude the following concentration result on the discrete hypercube:

Let $f: \{-1,1\}^n \to \mathbb{R}$ and assume that X is uniformly distributed on $\{-1,1\}^n$. Let v > 0 be such that

$$\sum_{i=1}^{n} \left(f(x) - f\left(\bar{x}^{(i)}\right) \right)_{+}^{2} \le v$$

for all $x \in \{-1, 1\}^n$. Then the random variable Z = f(X) satisfies, for all t > 0,

$$\mathbf{P}\{Z > \mathbb{E}Z + t\} \le e^{-t^2/v}$$
 and $\mathbf{P}\{Z < \mathbb{E}Z - t\} \le e^{-t^2/v}$

Exercise 7

In this exercise we give another proof of Gaussian concentration with a worse constant.

1. Let X and Y be two $\mathcal{N}(0, I_n)$, independant random vectors, and $f : \mathbb{R}^n \to \mathbb{R}$ 1-Lipschitz. Define

$$X_t = \cos(t\pi/2)X + \sin(t\pi/2)Y; \quad Y_t = -\sin(t\pi/2)X + \cos(t\pi/2)Y$$

and show that they are both also $\mathcal{N}(0, I_n)$ and independent.

2. Prove that

$$f(Y) - f(X) = \int_0^1 \frac{d}{dt} f(X_t) \, dt = \frac{\pi}{2} \int_0^1 Y_t \cdot \nabla f(X_t) \, dt.$$

and conclude

$$\mathbb{E}[\exp(\lambda f(Y) - \lambda f(X))] \le \int_0^1 \mathbb{E}\left[\exp\left(\lambda \frac{\pi}{2} Y_t \cdot \nabla f(X_t)\right)\right] dt.$$

3. Use (2.) and bound the right hand side to obtain

$$\int_{0}^{1} \mathbb{E}\left[\exp\left(\lambda \frac{\pi}{2} Y_{t} \cdot \nabla f\left(X_{t}\right)\right)\right] dt \leq \exp\left(\frac{\lambda^{2} \pi^{2}}{8}\right)$$

(recall that X_t has bounded variance and that f is 1-Lip).

4. Using independence and Jensen's inequality, show that

$$\mathbb{E}[\exp(\lambda f(Y))] \le \mathbb{E}[e^{\lambda f(X) + \frac{\lambda^2 \pi^2}{8}}].$$

5. Apply the inequality to two independent copies of X to get a Gaussian concentration inequality. Compare to the inequality you got in class.

Exercise 8

One dimensional Poincaré inequalities. Let $X \sim \mu$ and $Y \sim \nu$ be two measures on \mathbb{R} and let

$$F_{\mu}(t) := \mathbb{P}(X \le t) \text{ and } F_{\nu}(t) := \mathbb{P}(Y \le t),$$

be their cumulative distribution functions, $F_{\mu}, F_{\nu} : \mathbb{R} \to [0, 1]$. Assume that both F_{ν} and F_{μ} are invertible and let $F_{\mu}^{-1}, F_{\nu}^{-1} : [0, 1] \to \mathbb{R}$ be the inverse functions. Define $T_{\mu}^{\nu} := F_{\nu}^{-1} \circ F_{\mu}$.

• Show that $\operatorname{Law}(T^{\nu}_{\mu}(X)) = \nu$. That is, for almost every $t \in \mathbb{R}$,

$$\mathbb{P}\left(T_{\mu}^{\nu}(X) \leq t\right) = \mathbb{P}\left(Y \leq t\right).$$

Now, suppose that ν is a log-concave measure supported on [a, b] and that μ is the standard Gaussian on \mathbb{R} .

• Use the fact that, in the above case, T^{ν}_{μ} is 10(b-a)-Lipschitz to deduce that

$$C_p(\nu) \le 100(b-a)^2.$$

Suppose instead that $d\mu = \frac{1}{2}e^{-|x|}dx$ is the Laplace distribution and that $d\nu = d \cdot x^{d-1}\mathbf{1}_{[0,1]}dx$. These are the types of distributions which appear in the localization lemma.

• Compute T^{ν}_{μ} and deduce an appropriate bound on the Poincaré constant of ν .

Exercise 9

The Brascamp-Lieb inequality. Let γ_d be the standard Gaussian in \mathbb{R}^d and let ν be a measure on \mathbb{R}^d of the form $d\nu = e^{-\varphi} d\gamma_d$, for some convex function φ . We say that ν is more log-concave than the Gaussian. In 2000' Caffarelli proved that when ν is more log-concave than Gaussian, there exists a 1-Lipschitz map $T : \mathbb{R}^d \to \mathbb{R}^d$ such that $\text{Law}(T(G)) = \nu$, for $G \sim \gamma_d$.

• Use Caffarelli's theorem to prove that

$$C_p(\nu) \le 1.$$

Exercise 10

Other uses of the localization lemma. Consider the following result by Carbery and Wright: Let $X \sim \mu$ be a measure on R of the form $d\mu = \ell(t)^{d-1} \mathbf{1}_{[0,1]} dt$, where $\ell : [0,1] \to \mathbb{R}_+$ is a linear function, and let $f : \mathbb{R} \to \mathbb{R}$ be a degree p polynomial. Then, for any $\varepsilon > 0$,

$$\mathbb{P}\left(|f(X)| \le \varepsilon\right) \le C\left(\frac{\varepsilon}{\mathbb{E}\left[|f(X)|\right]}\right)^{\frac{1}{d}},$$

for a universal constant C > 0.

• Use the above result and the localization lemma to prove the Carbery-Wright anti-concentration theorem: If $K \subset \mathbb{R}^d$ is a convex body and $X \sim \mu_K$ is uniform on K, then, for any degree d polynomial $f : \mathbb{R}^d \to \mathbb{R}$,

$$\mathbb{P}\left(|f(X)| \leq \varepsilon\right) \leq C \left(\frac{\varepsilon}{\mathbb{E}\left[|f(X)|\right]}\right)^{\frac{1}{d}},$$

where C is a universal constant.