Exercise Sheet 5 Brownian Motion and Stochastic Calculus

Exercise 1

Let $(B_t)_{t>0}$ be a standard Brownian motion.

- 1. For all h > 0 prove that $(B_{t+h} B_h)_{t \ge 0}$ is a Brownian motion.
- 2. For any $\alpha > 0$, prove that the process $\left(\frac{1}{\sqrt{\alpha}}B_{\alpha t}\right)_{t>0}$ is also a Brownian motion.
- 3. Let W be a Brownian motion on the filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, whith $\mathbb{F} = \{\mathcal{F}_t : t \geq 0\}$. Let $X_t = \exp\left(\sigma W_t \frac{\sigma^2}{2}t\right)$. Show that $X = \{X_t : t \geq 0\}$ is a martingale.

Exercise 2

Prove almost surely that

$$\lim_{t \to \infty} \frac{B_t}{t} = 0$$

and that the process

$$X_t = \begin{cases} tB_{\frac{1}{t}} & t > 0\\ 0 & t = 0 \end{cases}$$

is a Brownian motion.

Exercise 3

Give the semimartingale decomposition of the following processes

- 1. $X_t = t^2 B_t^5$.
- 2. $Y_t = \exp(tB_t)$.
- 3. $Z_t = B_t^3 3tB_t$.

Exercise 4

Let $b \in \mathbb{R}, \sigma > 0$ and B the standard one-dimensional Brownian motion. S is called *geometric* Brownian motion if it is the solution to the stochastic differential equation

$$dS_t = bS_t dt + \sigma S_t dB_t, \qquad S_0 = 1.$$
(1)

1. Show that $Y_t = e^{-bt} S_t$ solves

$$\mathrm{d}Y_t = \sigma Y_t \mathrm{d}B_t$$

2. Show that

$$S_t = e^{bt} \exp\left(\sigma B_t - \frac{\sigma^2 t}{2}\right)$$
.

Exercise 5

When f is a smooth function with f(0) = 0, we have

$$\int_0^t \operatorname{sgn}(f(s))) \mathrm{d}f(s) = |f(s)|,$$

where $sgn(x) = \mathbb{1}_{\{x \ge 0\}} - \mathbb{1}_{\{x < 0\}}$. The goal of this exercise is to show how different things are when one replaces f by Brownian motion. this is called *Tanaka's example*.

1. Show that if X is a one-dimensional Brownian motion, then

$$B_t := \int_0^t \operatorname{sgn}(X_s) \mathrm{d}X_s$$

is a Brownian motion.

2. Show that

$$X_t = \int_0^t \operatorname{sgn}(X_s) \mathrm{d}B_s \,.$$

3. Show that if Y = -X, then

$$Y_t = \int_0^t \operatorname{sgn}(Y_s) \mathrm{d}B_s \,.$$

Thus, we have seen that the SDE doesn't have a unique solution.

Exercise 6

Doob's maximal inequality states that for any non-negative sub-martingale with almost-surely right-continuous sample paths, we have for any r > 0

$$\mathbb{P}\left(\sup_{0 \le t \le T} X_t \ge r\right) \le \frac{\mathbb{E}[X_t]}{r}.$$

Use this inequality to show that for a Brownian motion starting from zero, we have

$$\mathbb{P}\left(\sup_{0 \le t \le T} B_t \ge r\right) \le \exp\left(-\frac{r^2}{2T}\right).$$

Advanced

Exercise 7

Let $\sigma : \mathbb{R} \to (0, \infty)$ be a continuous function, not necessarily bounded. The goal of the exercise is to show that any (weak) solution to the one-dimensional stochastic differential equation

$$dX_t = \sigma(X_t) dB_t, \qquad X_0 = 0 \tag{2}$$

cannot explode, i.e. $T = \infty$ where T be the explosion time of the solution (here it means that X is defined for all $t \ge 0$).

- 1. Show that there exists a Brownian motion β such that $X_t = \beta_{\langle X \rangle_t}$ and that $\langle X \rangle_t \to \infty$ as $t \to \infty$.
- 2. Using $dB_t = \frac{1}{\sigma(X_t)} dX_t$ and the fact that the one-dimensional Brownian motion is recurrent, show that $T = \infty$ a.s.