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Exercise Sheet 7
Stochastic Localization

Let µ be an absolute continuous probability measure on Rn with density ν0 and with finite
second moment. Let (Bt)t≥0 be a standard Brownian Motion on Rn with B0 = 0. We know that
stochastic localization is a stochastic process (νt(x))t≥0, with

dνt

dµ (x) = Ft(x) which is the solution
of the stochastic differential equation{

dFt(x) = Ft(x)⟨Ct(x− at),dBt⟩ ∀x ∈ Rn ,

F0(x) = 1
(1)

where Ct is an adapted process w.r.t Bt and

at =

∫
Rn

xνt(x)dx .

We recall the following important properties.

(A) Almost surely, for all t, νt is a probability measure.

(B) For all A ⊂ Rn, νt(A) is a martingale.

(C) The process at converges to a point a∞ := limt→∞ at ∈ Rn, which is distributed according
to the law µ. Moreover, the measure νt almost surely weakly converges to a Dirac measure
at a∞.

Exercise 1
Let φ : Rn → R be a continuous and bounded function. Then

∫
Rn φ(x)dνt(x) is a martingale.

Conclude that for any test function φ : Rn → R we have

EX∼ν0
[φ(X)] = E [EX∼νt

[φ(X)]] , (2)

where the outer expectation is over the randomness of the process.

We now give another interpretation of (1), which can be described as a stochastic tilt of ν0.
For simplicity let us assume Ct = Id. For t ≥ 0 and θ ∈ Rn, let νt,θ denote the probability density
given by

νt,θ(x) =
1

Z(t, θ)
exp

(
⟨θ, x⟩ − t||x||22

2

)
ν0(x) ,

where

Z(t, θ) =

∫
Rn

exp

(
⟨θ, x⟩ − t||x||22

2

)
ν0(x)dx

is the normalization constant. Let a(t, θ) =
∫
Rn xνt,θ(x)dx and define{

dθt = a(t, θt)dt+ dBt

θ0 = 0
(3)

Exercise 2
Consider again (1) with Ct = Id.

1. Compute d logFt(x).
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2. Show that it holds

Ft(x) =
1

Zt
exp

(
⟨θt, x⟩ −

1

2
t||x||22

)
. (4)

Let E ⊂ Rn. Define

Mt =

∫
E

dνt(x)

Let At be the covariance matrix of νt, namely

At = EX∼νt [(X − at)(X − at)
T ] .

Exercise 3
Let us suppose Ct = Id.

1. Prove that

dMt =

∫
E

⟨x− at,dBt⟩dµ(x) .

2. Prove that d[M ]t ≤ ||At||OPVarνt
(φ).

3. Let φ(x) = 1E(x). Prove that

dVarνt
(φ) ≤ −d[M ]t +martingale.

4. Conclude
E[Varνt(φ)]

Varν(φ)
≥

(
E
[
exp

(∫ t

0

||As||OPds

)])−1

.

Exercise 4
For simplicity, suppose Ct = Id.

1. Show that
dat = AtdBt . (5)

2. Show that

dAt =

(∫
Rn

(x− at)
⊗3νt(x)dx

)
dBt −A2

tdt.

Hint: if you want computations to be easier, derive dAt in dimension 1.

Exercise 5
Consider the case where µ is the standard Gaussian measure, namely

dµ

dx
=

1

(2π)
n
2
exp

(
−||x||22

2

)
.

1. Apply (4) to derive a formula for dνt

dx , which depends on Zt and θt.

2. Use (5) to compute At and at.

3. Write down the complete formula for dνt

dx with explicit at, Zt.

2



MSRI Summer School July 11, 2023

Stochastic localization on discrete hypercube

Let Cn := {−1, 1}n be the n-dimensional hypercube. Let Bt be a standard Brownian motion on
Rn adapted to a filtration Ft. We consider the system of SDE{

dFt(x) = Ft(x)⟨Ct(x− at),dBt⟩ ∀x ∈ Cn ,
F0(x) = 1

(6)

where Ct is an adapted process w.r.t Bt and

at =

∫
Cn

xνt(x)dx .

Properties (A), (B) and (C) hold also on Cn [3].

Exercise 6
What is the dimension of (6) if Ct = Id? Prove

(H.A) Almost surely, for all t, νt is a probability measure.

(H.B) For all A ⊂ Cn, νt(A) is a martingale.

(H.C) The process at converges to a point a∞ := limt→∞ at ∈ Rn, which is distributed according
to the law µ. Moreover, the measure νt almost surely weakly converges to a Dirac measure
at a∞.

We now prove a result from [2], which says that the Dirichlet form associated to νt is a super-
martingale.

Exercise 7
We write x ∼ y to denote the adjacency relation on Cn, i.e. x and y differ in exactly one coordinate.
Let φ : Cn → R be a test function.

1. Consider an arbitrary measure ν, let X and Y be two independent samples from ν.

(a) Use the fact that Var(X) = 1
2E[(X − Y )2] in order to show

Eν(φ,φ) =
1

2
Eν

n∑
i=1

Eν

[
φ(Y ) = φ(X))2

∣∣Y∼i = X∼i, X∼i

]
.

(b) Conclude

Eν(φ,φ) =
∑
x∼y

ν(x)ν(y)

ν(x) + ν(y)
(φ(x)− φ(y))2.

2. It follows that we need to show that

νt(x)νt(y)

νt(x) + νt(y)

is a supermartingale for fixed x ∼ y.

(a) Compute d log νt(x) and d log νt(y).

(b) Compute d log
(
νt(x) + νt(y)

)
.

(c) Apply Itô lemma in order to compute νt(x)νt(y)
νt(x)+νt(y)

.
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Exercise 8
Let Mt =

∫
Cn

φdνt. Prove

Varν0(φ) = E[M ]t + EVarνt(φ).

In particular
Varν0

(φ) ≤ EVarνt
(φ). (7)

Exercise 9
Suppose you know that for any test function φ : Cn → R

(1− α)Varνt
(φ(X)) ≤ Eνt

(φ,φ) .

for some deterministic 0 < α < 1, i.e. you have a Poincaré inequality for the stochastic localized
measure. Derive a Poincaré inequality for the measure ν0.

Extra: Skorkohod embedding theorem

Skorkohod embedding theorem states the following.

Theorem 1. Let X be a real-valued random variable with E[X] = 0 and Var(X) < ∞. Let W be
a canonical real-valued Wiener process. Then there is a stopping time τ w.r.t. natural filtration
such that

Wτ
(d)
= X, E[τ ] = E[X2],

We prove Wτ
(d)
= X using stochastic localization in dimension 1 (see [1] for more details).

Let µ be a measure satisfying∫
R
xµ(dx) = 0 and

∫
R
x2µ(dx) < ∞.

For c ∈ R and b ≥ 0 we write

Vµ(b, c) =

∫
R
exp

(
cx− 1

2
bx2

)
µ(dx)

and define the function

aµ(b, c) = V −1
µ (b, c)

∫
R
x exp

(
cx− 1

2
bx2

)
µ(dx) ,

Aµ(b, c) = V −1
µ (b, c)

∫
R
(x− aµ(b, c))

2 exp

(
cx− 1

2
bx2

)
µ(dx) .

Exercise 10
Determine for which values of b, c such that aµ(b, c) = 0 and Aµ(b, c) =

∫
R x2µ(dx).

Exercise 11
For stochastic localization, as before let at be the mean of the measure µt. Write the differential dat
in terms of an arbitrary adapted driving process Ct. Use the form of the differential to choose Ct

such that at is a Brownian motion up to a stopping time to be determined. Write down explicitly
the system of SDE’s.
Hint Define T := Tµ = sup{t ≥ 0 : Aµ(bt, ct) > 0}.

Exercise 12
Prove {T ≤ t} is measureable with respect Ft = σ(Bs; s ≤ t).

Exercise 13
Let at be the mean of µt with the choice of Ct from above and let φ : R → R be a smooth test
function.
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1. Prove ∣∣∣∣∫
R
φ(x)µt(dx)− φ(at)

∣∣∣∣ ≤ sup
x∈R

|φ′(x)|A
1
2
t .

2. Prove

lim
t→T−

∫
R
φ(x)µt(dx) = φ(aT ) .

3. Apply Optional Stopping theorem to show

E
[∫

R
φ(x)µT∧t(dx)|Fs∧T

]
≤ sup

x∈R
|φ(x)| ∀t ≥ 0.

4. Apply Dominated Convergence theorem to show

E
[∫

R
φ(x)µT∧t(dx)|Fs∧T

]
= E

[∫
R
φ(x)µT (dx)

∣∣Fs∧T

]
.

5. Conclude aTµ
∼ µ.

We now show that E[Tµ] = Var(µ). For all t > 0 define Xt = Bt −Bt∧T . By previous exercises we
know that for φ compactly supported test function

E
[
φ(Xs)

∣∣∣Fs∧T

]
=

∫
R
φ(x−Bs∧T )µs∧T (dx) ∀s ≥ 0.

Exercise 14
Let φn(x) be a monotone increasing sequence of positive, compact supported functions with
limn→∞(x) = x2 for all x ∈ R.

1. Prove Var(Xs|Fs∧T ) = As∧T for all s ≥ 0,

2. Show Cov(Xs, Bs∧T ) = 0.

3. Prove limt→∞ E[B2
T∧t] ≤ Var(µ).

4. Prove E[T ] ≤ Var(µ).

5. Apply Optional Stopping theorem on B2
t − t and conclude.
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