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Exercise Sheet 8

We do not expect you to solve all the exercises in this sheet. You can use these
exercises as useful references and perhaps to practice in the future.

Guided Exercise

Exercise 1
In this exercise we will prove the classical Rockafellar-Ruschendorf theorem. Let c : Rn ×Rn → R

1. Define ∂cφ = {(x, y) : φ(x) + φc(y) = c(x, y)}. Prove that if a set G ⊂ ∂cφ then G is
c-cyclically monotone.

2. Given a set G ⊂ Rn × Rn non-empty and c-cyclically monotone, prove that the following
function is well defined (fix (x0, y0):

φ(x) = inf{c(x, ym)− c(x0, y0) +

m∑
i=1

c(xi, yi−1)− c(xi, yi)}

when the infimum runs over choices of pair (xi, yi) ∈ G.

3. Show that φcc = φ (you can use exercise 2 item 3).

4. Show that for any (x, y) ∈ G , z ∈ Rn,

c(x, y)− φ(x) ≤ c(z, y)− φ(z)

(hint: take t > φ(x).)

5. Conclude that G ⊂ ∂cφ.

6. Conclude that for c : Rn×Rn → R, a set G is c-cyclically monotone if and only if there exists
some φ in the c-class such that G ⊂ ∂cφ.

Additional Exercises

Exercise 2
Prove the following properties of the c-transform, when c : Rn × Rn → R:

1. Order reversing: f ≤ g implies gc ≤ f c.

2. Involution on the image: f ccc = f c.

3. f = f cc if and only if f(x) is an infimum of functions of the form c(x, y)−λ where λ ∈ R, y ∈
Rn.

Exercise 3
In this exercise we will study a specific example of c-cyclic monotonicity, for c(x, y) = ⟨x, y⟩.

1. Write our the definition of c-cyclic monotonicity for this cost. This is called cyclic mono-
tonicity.

2. Show that in the case of n = 1 a set is cyclically monotone if and only if it is a graph of a
monotone increasing function (in the sense that xi ≤ xj implies yi ≤ yj .)

3. Show that for φ : Rn → R differentiable and convex, that ∇φ is a cyclically monotone set.
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4. Show that in higher dimensions for a family (xi, yi) to be cyclically monotone it is not enough
to check that it is monotone in pairs (in the sense that xi ≤ xj implies yi ≤ yj .)

In the following exercises we will re-prove and use the Brenier-McCann theorem:

Theorem 1 (Brenier-McCann). Let µ, ν ∈ P (Rn) and assume that µ is absolutely continuous with
respect to the Lebesgue measure. Then, there exists a convex function φ : Rn → Rn such that
T = ∇φ is defined µ-almost everywhere, and T#µ = ν.

Exercise 4
In this exercise, let µ be a measure on Rn which assigns no mass to any set of Hausdorff dimension
(n- 1), and ν some measure with bounded support. We will prove the Brenier-McCann using a
lovely geometric argument due to K. Ball.

1. Denote by να =
∑n

i=1 αiδyi
for a finite set of points yi ∈ Rn and

∑
αi = 1. This is clearly a

probability measure. Consider all functions of the form

φt(x) = sup
i
⟨x, yi⟩ − 1/ti

with t = (ti)
n
i=1 and

∑
ti = 1. Prove using a rearrangement argument and Brouwer’s fixed

point theorem that there is a point t in the unit simplex such that

∀1 ≤ i ≤ n µ({x : φt(x) = ⟨x, yi⟩ − 1/ti}) = αi.

2. Conclude that there exists a convex function φ such that T = ∇φ exist µ-almost everywhere
and T#µ = να.

3. Approximate ν by discrete measures and conclude, using a convergence argument, the Brenier-
McCann theorem.

4. (⋆) Extend this argument to general costs and measures. What assumptions do you need on
the cost?

Exercise 5

1. Write the statement of the Brenier-McCann Theorem for the measures 1/Vol(K1)Leb|K1
and

1/Vol(K2)Leb|K2 when K1,K2 two sets. In this case, what is Vol((I + T )(K1))?

2. Bound Vol((I+T )(K1)) from below by 1+(Vol(K1)/Vol(K2))
1/n using the eigenvalue of the

matrix DT .

3. Bound Vol((I + T )(K1)) from above and obtain the Brunn-Minkowski inequality.

Exercise 6
In this exercise we prove Talagrand’s cost-entropy inequality, which states

C(f, g) ≤ 2Ent(f ||γ),

where f is some density function g is the Gaussian density, so that

C(f, g) =

∫
∥x− Tx∥2dγ, Ent(f ||γ) =

∫
f(x) log(f(x)/g(x))dx.

1. Write the statement of the Brenier-McCann Theorem, mapping γ the Gaussian probability
measure to the measure given by the density f(x).
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2. Rewrite Ent(f ||γ) in terms of g and T (x), where T is the map transporting γ to the proba-
bility with density f . You should end up with

Ent(f ||γ) =
∫

g(x) log(g(x)/(g(T (x))|DT (x)|).

3. Prove that our desired inequality reduces to showing∫
g(x) log(|DT (x)|) ≤

∫
g(x)⟨x, T (x)− x⟩.

4. Using the eigenvalue of the matrix DT , integration by parts, and a 1-dimensional inequality
on log, prove the former inequality.
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