MSRI SUMMER SCHOOL Jury 13, 2023

Exercise Sheet 8

We do not expect you to solve all the exercises in this sheet. You can use these
exercises as useful references and perhaps to practice in the future.

Guided Exercise

Exercise 1

In this exercise we will prove the classical Rockafellar-Ruschendorf theorem. Let ¢ : R™ x R™ — R

1. Define 0% = {(z,y) : ¢(z) + ¢°(y) = c(z,y)}. Prove that if a set G C 0° then G is
c-cyclically monotone.

2. Given a set G C R™ x R™ non-empty and c-cyclically monotone, prove that the following
function is well defined (fix (zo,yo):

m

¢(x) = inf{c(@, ym) — (o0, yo) + ZC(%‘, Yi-1) — c(@i, yi) }
i=1

when the infimum runs over choices of pair (x;,y;) € G.
3. Show that ¢°® = ¢ (you can use exercise 2 item 3).
4. Show that for any (z,y) € G ,z € R",
c(z,y) — (@) < c(z,9) — ¢(2)
(hint: take t > p(z).)
5. Conclude that G C 0%p.

6. Conclude that for ¢ : R® x R™ — R, a set G is c-cyclically monotone if and only if there exists
some ¢ in the c-class such that G C 0.

Additional Exercises

Exercise 2
Prove the following properties of the c-transform, when ¢ : R™ x R™ — R:

1. Order reversing: f < g implies g¢ < f¢.
2. Involution on the image: f¢°¢ = f¢.

3. f = feif and only if f(x) is an infimum of functions of the form c(z,y) — A where A € R,y €
R™.

Exercise 3

In this exercise we will study a specific example of c-cyclic monotonicity, for ¢(x,y) = (z,y).

1. Write our the definition of c-cyclic monotonicity for this cost. This is called cyclic mono-
tonicity.

2. Show that in the case of n = 1 a set is cyclically monotone if and only if it is a graph of a
monotone increasing function (in the sense that x; < x; implies y; < y;.)

3. Show that for ¢ : R — R differentiable and convex, that V¢ is a cyclically monotone set.
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4. Show that in higher dimensions for a family (z;,y;) to be cyclically monotone it is not enough
to check that it is monotone in pairs (in the sense that z; < z; implies y; < y;.)

In the following exercises we will re-prove and use the Brenier-McCann theorem:

Theorem 1 (Brenier-McCann). Let u,v € P(R™) and assume that p is absolutely continuous with
respect to the Lebesque measure. Then, there exists a convexr function ¢ : R™ — R™ such that
T = Vo is defined p-almost everywhere, and Ty = v.

Exercise 4

In this exercise, let u be a measure on R™ which assigns no mass to any set of Hausdorff dimension
(n- 1), and v some measure with bounded support. We will prove the Brenier-McCann using a
lovely geometric argument due to K. Ball.

1. Denote by v, = Z?:l a;0,, for a finite set of points y; € R™ and ) a; = 1. This is clearly a
probability measure. Consider all functions of the form

pi(r) = Sgp<x,yi> -1/t

with ¢ = (¢;)7_; and > ¢; = 1. Prove using a rearrangement argument and Brouwer’s fixed
point theorem that there is a point ¢ in the unit simplex such that

Vi<i<n p({e:pe) = (@) - 1/t}) = a

2. Conclude that there exists a convex function ¢ such that T' = V¢ exist p-almost everywhere
and Typ = vq,.

3. Approximate v by discrete measures and conclude, using a convergence argument, the Brenier-
McCann theorem.

4. (x) Extend this argument to general costs and measures. What assumptions do you need on
the cost?

Exercise 5

1. Write the statement of the Brenier-McCann Theorem for the measures 1/Vol(K7)Leb|k, and
1/Vol(K3)Leb|k, when K7, K5 two sets. In this case, what is Vol((I + T')(K1))?

2. Bound Vol((I +T)(K)) from below by 1+ (Vol(K;)/Vol(K>))!/™ using the eigenvalue of the
matrix DT.

3. Bound Vol((I + T')(kK1)) from above and obtain the Brunn-Minkowski inequality.

Exercise 6

In this exercise we prove Talagrand’s cost-entropy inequality, which states

C(f.9) < 2Ent(f||),
where f is some density function g is the Gaussian density, so that
C(t.9) = [ o= TalPdr, Ent(fll) = [ £ 1og(f@)/g(z)da.

1. Write the statement of the Brenier-McCann Theorem, mapping v the Gaussian probability
measure to the measure given by the density f(z).
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2. Rewrite Ent(f||y) in terms of g and T'(x), where T is the map transporting 7 to the proba-
bility with density f. You should end up with

Ent(f]1n) = [ g(a)log(o(@)/(9(T () DT (@)
3. Prove that our desired inequality reduces to showing
/g(w) log(| DT (x)]) < /g(w)@»T(fﬂ) — ).

4. Using the eigenvalue of the matrix DT, integration by parts, and a 1-dimensional inequality
on log, prove the former inequality.



