Exercise Sheet 8

We do not expect you to solve all the exercises in this sheet. You can use these exercises as useful references and perhaps to practice in the future.

Guided Exercise

Exercise 1

In this exercise we will prove the classical Rockafellar-Ruschendorf theorem. Let $c : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

- 1. Define $\partial^c \varphi = \{(x, y) : \varphi(x) + \varphi^c(y) = c(x, y)\}\.$ Prove that if a set $G \subset \partial^c \varphi$ then G is c-cyclically monotone.
- 2. Given a set $G \subset \mathbb{R}^n \times \mathbb{R}^n$ non-empty and c-cyclically monotone, prove that the following function is well defined (fix (x_0, y_0) :

$$
\varphi(x) = \inf \{c(x, y_m) - c(x_0, y_0) + \sum_{i=1}^{m} c(x_i, y_{i-1}) - c(x_i, y_i)\}
$$

when the infimum runs over choices of pair $(x_i, y_i) \in G$.

- 3. Show that $\varphi^{cc} = \varphi$ (you can use exercise 2 item 3).
- 4. Show that for any $(x, y) \in G$, $z \in \mathbb{R}^n$,

$$
c(x, y) - \varphi(x) \le c(z, y) - \varphi(z)
$$

(hint: take $t > \varphi(x)$.)

- 5. Conclude that $G \subset \partial^c \varphi$.
- 6. Conclude that for $c : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, a set G is c-cyclically monotone if and only if there exists some φ in the c-class such that $G \subset \partial^c \varphi$.

Additional Exercises

Exercise 2

Prove the following properties of the c-transform, when $c : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$:

- 1. Order reversing: $f \leq g$ implies $g^c \leq f^c$.
- 2. Involution on the image: $f^{ccc} = f^c$.
- 3. $f = f^{cc}$ if and only if $f(x)$ is an infimum of functions of the form $c(x, y) \lambda$ where $\lambda \in \mathbb{R}, y \in$ \mathbb{R}^n .

Exercise 3

In this exercise we will study a specific example of c-cyclic monotonicity, for $c(x, y) = \langle x, y \rangle$.

- 1. Write our the definition of c-cyclic monotonicity for this cost. This is called cyclic monotonicity.
- 2. Show that in the case of $n = 1$ a set is cyclically monotone if and only if it is a graph of a monotone increasing function (in the sense that $x_i \leq x_j$ implies $y_i \leq y_j$.)
- 3. Show that for $\varphi : \mathbb{R}^n \to \mathbb{R}$ differentiable and convex, that $\nabla \varphi$ is a cyclically monotone set.

4. Show that in higher dimensions for a family (x_i, y_i) to be cyclically monotone it is not enough to check that it is monotone in pairs (in the sense that $x_i \leq x_j$ implies $y_i \leq y_j$.)

In the following exercises we will re-prove and use the Brenier-McCann theorem:

Theorem 1 (Brenier-McCann). Let $\mu, \nu \in P(\mathbb{R}^n)$ and assume that μ is absolutely continuous with respect to the Lebesgue measure. Then, there exists a convex function $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ such that $T = \nabla \varphi$ is defined μ -almost everywhere, and $T_{\#} \mu = \nu$.

Exercise 4

In this exercise, let μ be a measure on \mathbb{R}^n which assigns no mass to any set of Hausdorff dimension $(n-1)$, and ν some measure with bounded support. We will prove the Brenier-McCann using a lovely geometric argument due to K. Ball.

1. Denote by $\nu_{\alpha} = \sum_{i=1}^{n} \alpha_i \delta_{y_i}$ for a finite set of points $y_i \in \mathbb{R}^n$ and $\sum \alpha_i = 1$. This is clearly a probability measure. Consider all functions of the form

$$
\varphi_t(x) = \sup_i \langle x, y_i \rangle - 1/t_i
$$

with $t = (t_i)_{i=1}^n$ and $\sum t_i = 1$. Prove using a rearrangement argument and Brouwer's fixed point theorem that there is a point t in the unit simplex such that

$$
\forall 1 \leq i \leq n \ \mu(\{x : \varphi_t(x) = \langle x, y_i \rangle - 1/t_i\}) = \alpha_i.
$$

- 2. Conclude that there exists a convex function φ such that $T = \nabla \varphi$ exist μ -almost everywhere and $T_{\#}\mu = \nu_{\alpha}$.
- 3. Approximate ν by discrete measures and conclude, using a convergence argument, the Brenier-McCann theorem.
- 4. (\star) Extend this argument to general costs and measures. What assumptions do you need on the cost?

Exercise 5

- 1. Write the statement of the Brenier-McCann Theorem for the measures $1/\text{Vol}(K_1) Leb|_{K_1}$ and $1/\text{Vol}(K_2)Leb|_{K_2}$ when K_1, K_2 two sets. In this case, what is $\text{Vol}((I+T)(K_1))$?
- 2. Bound $Vol((I+T)(K_1))$ from below by $1 + (Vol(K_1)/Vol(K_2))^{1/n}$ using the eigenvalue of the matrix DT.
- 3. Bound $Vol((I+T)(K_1))$ from above and obtain the Brunn-Minkowski inequality.

Exercise 6

In this exercise we prove Talagrand's cost-entropy inequality, which states

$$
C(f,g) \le 2Ent(f||\gamma),
$$

where f is some density function g is the Gaussian density, so that

$$
C(f,g) = \int ||x - Tx||^2 d\gamma, \quad Ent(f||\gamma) = \int f(x) \log(f(x)/g(x)) dx.
$$

1. Write the statement of the Brenier-McCann Theorem, mapping γ the Gaussian probability measure to the measure given by the density $f(x)$.

2. Rewrite $Ent(f||\gamma)$ in terms of g and $T(x)$, where T is the map transporting γ to the probability with density f . You should end up with

$$
Ent(f||\gamma) = \int g(x) \log(g(x)/(g(T(x))|DT(x)|).
$$

3. Prove that our desired inequality reduces to showing

$$
\int g(x) \log(|DT(x)|) \leq \int g(x) \langle x, T(x) - x \rangle.
$$

4. Using the eigenvalue of the matrix DT, integration by parts, and a 1-dimensional inequality on log, prove the former inequality.