Lecture 1 : Motivetim

Euclidean QFT:
$$
1
$$
 and $5(R^d)$

\nStochastic quantization: 1 and $5(R^d)$

\nStochastic quantization: 1 and 1 and 1 are

\n $(e.g., 1) so$ values, some stretch with W)

\nIntegrals: $(e.g., 1) so$ values, we get

\nPybrid system: {States} [blocks]

\nNoterables

\nClasical method: Eq. (9, P) functions, like $E = 2^2 + p^2$.

\nQuantum mechanics:

\nHilbert H := {states, R}

\noperators = {obsaches w}

\nunnearsurement": $W(A) = 2w$, 1 and 1 are

\nUninitary

\nW(1) = 2^{-i+1}

\nWhen 1 is the following property:

\nW(t) = U(t) w

\nIt is the following picture:

\nA(t) = U(t)^{-1}A U(t)

\nWeisenberg picture

$$
rel_{(\mathcal{A}^{+}}: \qquad \omega(t) (A) = w (A(t))
$$

\n
$$
\langle \omega(t), A w(t) \rangle
$$

\n
$$
= \langle U(t) w, A(u) w \rangle
$$

\n
$$
= \langle w, A(t) w \rangle
$$

Key quantities:	$W(A_{1}(t_{1}) \cdots A_{n}(t_{n}))$
Assume:	$7 \cdot \varphi \cdot \varphi$
$W(t) \cdot \varphi = \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	
$\varphi \cdot \varphi$	

one can also describe this dynamic as follows: $U(t) = e^{-itE}$ E is energy operator where E is an operator with is diagonalized by H. $E H_n = a n H_n$ TA session: E is OU operator $-\partial_x^2 + x \partial_x$ (up to constants)

We
\n
$$
K_{\mu}
$$
\n<math display="block</p>

$$
\frac{EX}{X_{\epsilon}}: dX_{\epsilon} = -\alpha X_{\epsilon} dt + dB_{\epsilon}
$$

$$
X_{o} \sim N(c, \frac{1}{2\alpha}) \qquad \epsilon \in R
$$

prob measure un on C(IR) $X_t = \int_{-\infty}^{t} e^{-\alpha (t-s)} dB_s$ $Y^{random field}$ $E(X_tX_{t'}) = \mathbb{E}\left[\int_{\infty}^{t}e^{-\alpha(t-s)}ds, \int_{\infty}^{t'}e^{-\alpha(t'-s)}ds\right]$
 $t \ge t' = e^{-\alpha(t-t')} \int_{-\infty}^{t'} e^{-2\alpha(t'-s)}ds = \frac{e^{-\alpha(t-t)}}{2\alpha}$

$$
\mathbb{E}[f(X_t) | X_0 = x] = \mathbb{E}[f(e^{-\alpha t}x + N\omega \frac{1-e^{-2\alpha t}}{2\alpha})]
$$

=: (K(t) f) (x)
Similarly, $\mathbb{E}[f(x)] = \mathbb{E}[f(x)]$

Compute:

\n
$$
k(t) e^{i \lambda x}
$$
\n
$$
= E\left[e^{i \lambda (e^{-\alpha t} x + N(\sigma, \frac{1-e^{i \alpha t}}{2\alpha}))}\right]
$$
\n
$$
= e^{i \lambda e^{-\alpha t}} \cdot e^{-\frac{\lambda^{1}}{t}(\frac{1-e^{i \alpha t}}{2\alpha})}
$$
\n
$$
= e^{i \lambda x + \frac{\lambda^{1}}{4\alpha}} = e^{i \lambda x + \frac{\lambda^{1}}{4\alpha}}
$$
\n
$$
\sum_{n \ge 0} \frac{(\lambda)^{n}}{n!} H_{n}(x) \xrightarrow[n \ge 0]{} \frac{(\lambda)^{n}}{n!} e^{-\alpha n t} H_{n}
$$

$$
\Rightarrow K(t) H_{n} = e^{-\alpha n t} H_{n}
$$
\nThree Inteustayly, Correlating are just Schwarz-time!

\n
$$
For \mathbf{A}_{1}, \mathbf{A}_{2}, \dots, \mathbf{A}_{n} \in CCR
$$
\n
$$
For \mathbf{A}_{1}, \mathbf{A}_{2}, \dots, \mathbf{A}_{n} \in CCR
$$
\n
$$
For \mathbf{A}_{1}, \mathbf{A}_{2}, \dots, \mathbf{A}_{n} \in CCR
$$
\n
$$
For \mathbf{A}_{1}, \mathbf{A}_{2}, \dots, \mathbf{A}_{n} \in CCR
$$
\n
$$
For \mathbf{A}_{1}, \mathbf{A}_{2}, \dots, \mathbf{A}_{n} \in CCR
$$
\n
$$
For \mathbf{A}_{1}, \mathbf{A}_{2}, \dots, \mathbf{A}_{n} \in CCR
$$
\n
$$
For \mathbf{A}_{n}, \mathbf{A}_{n} \in CCR
$$
\

In general, Schwinger functions must satisfy some properties $e.g. \langle \varphi, A_k(t) A, A_k(t) A_k \varphi \rangle > 0$ "reflection positivity" (RP) Osterwelder-Schreder theorem (baby version) RP + certain regularing property => garantum deta

RP:
$$
\mathbb{F} \left[\begin{array}{ccc} 0 & F(X) & F(X) \end{array} \right] \ge 0
$$

 \forall functions $|F(x)|$
 $\mathbb{I}_{f^{[1]}} \times \mathbb{I}_{f^{[2]}} \times \mathbb{I}_{f^{[3]}} \times \mathbb{I}_{f^{[4]}} \longrightarrow \mathbb{I}_{f^{[4]}} \times \mathbb{I}_{f^{[2]}} \times \mathbb{I}_{f^{[4]}} \times \mathbb{I}_{f^{[4$

$$
Beyond Gaussian : \n\mathbb{G}_{T}(d\omega) = \frac{1}{2T} e^{-\int_{-T}^{T} V(X_{s}(\omega)) ds} \n\mathbb{P}(d\omega)
$$

$$
veflectim positive:G = e- \int_0^T V(X_s) ds
$$

G = e⁻ \int_0^T V(X_{-s}) ds [Eq(\overline{OF} F) [?]

$$
e^{-\int_{-T}^{T} V(x_s) ds} = 0G \cdot G = 0G \cdot G
$$

$$
E_{\mathbb{Q}_T} [\overline{0}F F] = \frac{1}{2T} E_{\rho} [\overline{0}F F e^{-\int_{-T}^{T} V(x_s \omega) ds}]
$$

$$
= \frac{1}{2T} E_{\rho} [\overline{0}F \overline{0}F G] \ge 0
$$

$$
R_{\rho} F_{\rho}
$$