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1 Definitions

For a metric space S, let B(S) be its Borel σ-algebra. Let P(S) be the set
of probability measures on (S,B(S)). Let Cb(S) be the set of all bounded
continuous functions S → R, and let Bb(S) be the set of all bounded Borel
measurable functions S → R.

We say that a set collection of probability measures Λ ⊆ P(S) is tight if,
for every ε > 0, there exists a compact set Kε ⊆ S so that, for all µ ∈ P(S),
µ(Kε) > 1− ε.

We may also refer to tightness of a set of random variables. For a probability
space (Ω,F ,P), a collection X of random variables X : Ω → S, is tight, if for
every ε > 0, there exists a compact set Kε ⊆ S so that, for every X ∈ X ,
P(X ∈ Kε) > 1− ε. Note that, if for a random variable X : Ω′ → Ω, we let µX

be push-forward of P under X, then this definition is equivalent to saying that
the set {µX}x∈X is a tight family of measures in P(S).

We say a sequence of probability measures (µn)n∈N ⊆ P(S) converges weakly
to µ ∈ P(S), if for every f ∈ Cb(S),∫

S

f(x)µn(dx)
n→∞−→

∫
S

f(x)µ(dx).

We also say a sequence of random variablesXn : Ω → S converges in distribution
to a random variable X : Ω → S if, for every f ∈ Cb(S),

E[f(Xn)]
n→∞−→ E[f(X)],

where E denotes expectation under P.
We say that a set of measures Λ ⊆ P(S) is relatively compact if, for

every sequence in Λ, there exists a weakly convergent subsequence (the limit
lies in P(S), but not necessarily Λ).

The following is proved, for example, in [Bil99, Section 5]. See also [DP06,
Section 6.3] for a proof of the forward implication in the case where Ω is a
Hilbert space.
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Theorem 1.1 (Prohorov’s Theorem). Let S be a metric space. If Λ ⊆ P(S) is
tight, then Λ is relatively compact. If S is Polish, then the converse also holds.

Recall that a topological space S is Polish if it is separable and completely
metrizable. The “metrizable” part is important because a Polish space may be
complete with respect to one metric but not another. A classic example is the
space (0, 1), which is homeomorphic to R and hence Polish; however, it is not
complete under the Euclidean metric. In this summer school, we will typically
take S to be a separable Hilbert space, which is Polish.

Recall that a Gδ set is a countable intersection of open sets. We will not
make use of the following fact in these notes, but it may be helpful to know.
(For a proof, see, for example, [Sri98, Theorems 2.2.1 and 2.2.7])

Theorem 1.2 (Alexandrov’s Theorem). Let S be a Polish space and A ⊆ S.
Then, A is a Polish space under the subspace topology if and only if A is a Gδ

subset of S.

2 Some examples

Example 2.1. On a probability space (Ω,F ,P), let (Xn)n∈N be a sequence of
random variables taking values in Rd, and let | · | be the Euclidean norm on Rd.
If there exist C, p > 0 so that E|Xn|p ≤ C for all n ∈ N, then (Xn)n∈N is tight.

Proof. For ε > 0, let Kε be the compact set {x ∈ Rd : |x| ≤
(
C
ε

)1/p} By
Markov’s inequality,

P(Xn /∈ Kε) = P

(
|Xn|p >

C

ε

)
≤ ε.

The above example is quite simple in finite dimensions. Suppose we instead
have random variables (Xn)n∈N taking values in an infinite-dimensional normed
vector space S, with norm | · |S and we have uniform bounds E|Xn|pB ≤ C for
some C, p > 0. It turns out that this is not enough to conclude tightness in
this more general setting, because, for T > 0, the set {x ∈ S : |x|S ≤ T} is
not necessarily contained in a compact set. However, these uniform moment
bounds are enough to conclude tightness in a larger space S′, if S is compactly
embedded in S′.

To show this, we first recall some important definitions: A subset A of a
metric space S is bounded if there exists C > 0 so that |x|S ≤ C for all
x ∈ A. The set A is totally bounded if every sequence in A contains a Cauchy
subsequence.

For two normed vector spaces S1 S2 with norms | · |S1
and | · |S2

, we say that
S1 is compactly embedded in S2 if S1 ⊆ S2 and the following hold

1. The inclusion map i : S1 → S2 is continuous; i.e., there exists a constant
C > 0 such that |ix|S2

≤ C|x|S1
for all x ∈ S1.
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2. For every bounded set A ⊆ S1, the set A is totally bounded in S2.

Example 2.2. On (Ω,F ,P), let (Xn)n∈N be a sequence of random variables
taking values in a normed vector space (S1, | · |S1

), and suppose that S1 is com-
pactly embedded in the complete vector space (S2, | · |S2

). Suppose also that there
exist C, p > 0 so that E|Xn|pS1

≤ C for all n ∈ N. Then, the sequence (Xn)n∈N
is tight in the larger space S2.

Proof. Let ε > 0, and set Kε = {x ∈ S1 : |x|S1
≤
(
C
ε

)1/p}. This set is bounded
in S1, soKε is totally bounded in S2. It is a standard fact that, if S is a complete
metric space, then a subset A ⊆ S is has compact closure if and only if it totally
bounded. Hence, the closure of Kε in S2, denoted ClS2

(Kε) is compact.
By the same computation as in the finite-dimensional case,

P(Xn /∈ ClS2
(Kε)) ≤ P(Xn /∈ Kε) ≤ ε.

We now give a concrete example of a compact embedding which will appear
in the lectures.

Example 2.3. Consider the weighted ℓp spaces n the lattice Zd:

ℓpσ = {f : Zd → R : |f |ℓpσ := |ρf |ℓp < ∞, ρ(x) = (1 + b|x|)−σ},

where b > 0 is a constant. If σ′ > σ, then ℓpσ ↪→ ℓpσ′ is a compact embedding.

Proof. It follows immediately that |f |ℓp
σ′

≤ |f |ℓpσ , so the embedding is continu-

ous. Now, let A be a bounded set in ℓpσ. We show A is totally bounded in ℓpσ′ .
Let (fk)k∈N be a sequence in A. By boundedness of A, there exists a constant
CA > 0 so that, for all k ∈ N,

|fk|pℓpσ =
∑
x∈Zd

(1 + b|x|)−σp|fk(x)|p ≤ CA. (2.1)

In particular, (1 + b|x|)−σp|fk(x)|p ≤ CA for all k ∈ N and x ∈ Zd. Enumerate
the points of Zd as x1, x2, . . . By compactness of bounded sets in R, there exists
a subsequence (f1,k)k∈N of (fk) so that f1,k(x1) converges, and we call the limit
f(x1). There exists a further subsequence (f2,k)k∈N so that f2,k(x2) converges,
and we call the limit f(x2). Continue this way, constructing sequences (fj,k)k∈N
for each j ∈ N so that each subsequence is a subsequence of the previous,
and fj,k(xj) converges to a limit, which we call f(xj). This defines a function
f : Zd → R, and it is standard to show that the diagonal subsequence

(
fk,k

)
k∈N

converges pointwise to f . In particular, for each x ∈ Zd,
(
fk,k(x)

)
k∈N is Cauchy.

We show that (fk,k)k∈N is Cauchy in ℓpσ′ for all σ′ > σ. Let ε > 0, and let
q′ > 1 be sufficiently large so that∑

x∈Zd\[−M,M ]d

(1 + b|x|)(σ−σ′)pq′ < ∞.
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Then, we may choose M = M(ε) sufficiently large so that( ∑
x∈Zd\[−M,M ]d

(1 + b|x|)(σ−σ′)pq′

) 1
q′

≤ ε

4CA
.

Next, let N = N(M, ε) be sufficiently large so that, for all x ∈ [−M,M ]d and
k, j ≥ N , (1+ b|x|)−σ′p|fk,k(x)− fj,j(x)|p ≤ ε

2(2M+1)d
. Let p′ > 1 be defined by

1
q′ +

1
p′ = 1. Then, for k, j ≥ N ,

|fk,k − fj,j |pℓp
σ′

≤
∑

x∈[−M,M ]d

(1 + b|x|)−σ′p|fk,k(x)− fj,j(x)|

+
∑

Zd\[−M,M ]d

(1 + b|x|)(σ−σ′)p(1 + b|x|)−σp|fk,k(x)− fj,j(x)|p

≤ ε

2
+

( ∑
x∈Zd\[−M,M ]d

(1 + b|x|)(σ−σ′)pq′

) 1
q′
( ∑

Zd\[−M,M ]d

(1 + b|x|)−σpp′
|fk,k(x)− fj,j(x)|pp

′

) 1
p′

≤ ε

2
+

ε

4CA
(|fk,k|p

ℓpp
′

σ

+ |fj,j |p
ℓpp

′
σ

) ≤ ε,

where in the second equality, we used Hölder’s inequality, and in the last in-
equality, we used the monotonicity of ℓp norms |g|ℓpp′ ≤ |g|ℓp (see, for example,
[Fol99, Proposition 6.11]), together with (2.1).

3 The Krylov-Bogoliubov theorem

In this section, we loosley follow the notation and conventions of [DP06, Sections
5 and 7], although we shall work more generally with a metric space S, instead
of a Hilbert space H.

Let L(Cb(S)) be the space of all linear bounded operators Cb(S) → Cb(S).
A Markov semigroup (Pt)t≥0 on S, is a function [0,∞) → L(Cb(S)), denoted
t 7→ Pt satisfying the following:

1. P0 = 1 (the identity operator), and Pt+u = PtPu for all t, s ≥ 0.

2. For any t ≥ 0 and x ∈ S, there exists a probability measure πt(x, ·) ∈ P(S)
so that

Ptf(x) =

∫
S

f(y)πt(x, dy) for all f ∈ Bb(S).

3. For all f ∈ Cb(S) (resp. Bb(S)) and x ∈ S, the mapping t 7→ Ptf(x) is
continuous (resp. Borel).

For a Markov chain (Xt)t≥0 with state space S, the probability measure
πt(x, dy) is the probability density of Xt when started from X0 = x. Then,
Ptf(x) = Ex[f(Xt)], where Ex denotes the expectation with respect to the
probability measure Px of the chain (Xt)t≥0 started from X0 = x.
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A Markov semigroup (Pt)t≥0 has the Feller property if Ptf ∈ Cb(S) for
all t ≥ 0 whenever f ∈ Cb(S).

A probability measure µ ∈ P(S) is invariant for Pt if, for all t > 0 and all
f ∈ Cb(S), ∫

S

f(x)µ(dx) =

∫
S

Ptf(x)µ(dx).

For a Markov semigroup (Pt)t≥0 on S, x0 ∈ S, and T > 0, define the time-
averaged measure

µx0

T (B) :=

∫ T

0

πt(x0, B) dt, B ∈ B(S).

Theorem 3.1 (The Krylov-Bogobliubov Theorem). Let (Pt)t≥0 be a Markov
Feller semigroup with state space S, where S is a matric space. Assume that for
some x0 ∈ S, the set (µx0

T )T>0 is tight. Then, there exists an invariant measure
for (Pt)t≥0. Specifically, any subsequential limit of (µx0

T )T>0 is invariant.

We remark here that the assumption that (µx0

T )T>0 is tight is weaker than
the assumption that

(
πt(x0, ·)

)
t≥0

is tight.

Proof. We follow the proof in [DP06, Theorem 7.1]. To get a rough sense of the
idea, think of starting the Markov process at time 0 from µx0

T for some large
T . Then, for 0 ≤ u ≪ T , the operator Pu does not change the measure µx0

T by
much since µx0

T is an average of measures over a long time.
We move to the full proof. By Prohorov’s theorem, there exists a subse-

quential limit µ of
(
µx0

T

)
T>0

, which means there exists a sequence Tk → ∞ such

that, for all f ∈ Cb(S),

lim
k→∞

∫
S

f(x)µx0

Tk
(dx) =

∫
S

f(x)µ(dx). (3.1)

We use Fubini’s Theorem to rewrite the prelimiting object on the left-hand side
as follows:∫

S

f(x)µx0

Tk
(dx) =

∫
S

f(x)

Tk

∫ Tk

0

πt(x0, dx) dt =
1

Tk

∫ Tk

0

Ptf(x0) dt. (3.2)

Combining (3.1) and (3.2), for all f ∈ Cb(S),

lim
k→∞

1

Tk

∫ Tk

0

Ptf(x0) dt =

∫
S

f(x)µ(dx). (3.3)

Let g ∈ Cb(S). For u ≥ 0, we seek to show that
∫
S
g(x)µ(dx) =

∫
S
Pug(x)µ(dx).

We apply (3.3) to f = Pug (using the Feller property so that f ∈ Cb(S)) and
use the semigroup property Pt+u = PtPu to obtain

lim
k→∞

1

Tk

∫
S

Pt+ug(x0) dt =

∫
S

Pug(x)µ(dx). (3.4)
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It thus suffices to show that the left-hand side of (3.4) is
∫
S
g(x)µ(dx). Observe

that

1

0

∫ Tk

0

Pt+ug(x0) dt =
1

Tk

∫ Tk+u

u

Ptg(x0) dt

=
1

Tk

∫ Tk

0

Ptg(x0) dt+
1

Tk

∫ Tk+u

Tk

Ptg(x0) dt−
1

Tk

∫ u

0

Ptg(x0) dt.

(3.5)

By (3.3) applied to f = g, 1
Tk

∫ Tk

0
Ptg(x0) dt converges to

∫
S
g(x)µ(dx) as k →

∞. Hence, it remains to show the other two terms on the right of (3.5) converge
to 0. This follows because g ∈ Cb(S), so for each t > 0,

|Ptg(x0)| ≤
∫
S

|g(x)|πt(x0, dx) ≤ sup
x∈S

|g(x)|,

and the right-hand side is a finite bound not depending on t.
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