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1 Definitions

For a metric space S, let B(S) be its Borel o-algebra. Let P(S) be the set
of probability measures on (S5,8(S5)). Let Cy(S) be the set of all bounded
continuous functions S — R, and let By(S) be the set of all bounded Borel
measurable functions S — R.

We say that a set collection of probability measures A C P(S) is tight if|
for every € > 0, there exists a compact set K. C S so that, for all u € P(S),
p(Ke)>1—e.

We may also refer to tightness of a set of random variables. For a probability
space (2, F,P), a collection X of random variables X : Q — S, is tight, if for
every € > 0, there exists a compact set K. C S so that, for every X € X,
P(X € K.) > 1 —e. Note that, if for a random variable X : Q' — Q, we let ux
be push-forward of P under X, then this definition is equivalent to saying that
the set {px }zex is a tight family of measures in P(5).

We say a sequence of probability measures (i, )neny C P(S) converges weakly
to p € P(S), if for every f € Cp(S5),

| 1@ tan) =5 [ 5@ ().

We also say a sequence of random variables X,, : {2 — S converges in distribution
to a random variable X : Q — S if, for every f € Cp(S),

E[f (X)) =% E[f(X)],

where E denotes expectation under P.

We say that a set of measures A C P(S) is relatively compact if, for
every sequence in A, there exists a weakly convergent subsequence (the limit
lies in P(S), but not necessarily A).

The following is proved, for example, in [Bil99, Section 5]. See also [DP06,
Section 6.3] for a proof of the forward implication in the case where ) is a
Hilbert space.



Theorem 1.1 (Prohorov’s Theorem). Let S be a metric space. If A C P(S) is
tight, then A is relatively compact. If S is Polish, then the converse also holds.

Recall that a topological space S is Polish if it is separable and completely
metrizable. The “metrizable” part is important because a Polish space may be
complete with respect to one metric but not another. A classic example is the
space (0,1), which is homeomorphic to R and hence Polish; however, it is not
complete under the Euclidean metric. In this summer school, we will typically
take S to be a separable Hilbert space, which is Polish.

Recall that a Gs set is a countable intersection of open sets. We will not
make use of the following fact in these notes, but it may be helpful to know.
(For a proof, see, for example, [Sri98, Theorems 2.2.1 and 2.2.7])

Theorem 1.2 (Alexandrov’s Theorem). Let S be a Polish space and A C S.
Then, A is a Polish space under the subspace topology if and only if A is a G
subset of S.

2 Some examples

Example 2.1. On a probability space (2, F,P), let (X,,)nen be a sequence of
random variables taking values in R?, and let |- | be the Euclidean norm on RY.
If there exist C,p > 0 so that E|X,|P < C for alln € N, then (X,)nen 1 tight.

Proof. For ¢ > 0, let K. be the compact set {x € R? : |z| < (g)l/p} By
Markov’s inequality,

P(X, ¢ K.) = P<|an > f) <e. O

The above example is quite simple in finite dimensions. Suppose we instead
have random variables (X,,),en taking values in an infinite-dimensional normed
vector space S, with norm | - | and we have uniform bounds E|X,,|%;, < C for
some C,p > 0. It turns out that this is not enough to conclude tightness in
this more general setting, because, for T > 0, the set {x € S : |z|s < T} is
not necessarily contained in a compact set. However, these uniform moment
bounds are enough to conclude tightness in a larger space S’, if S is compactly
embedded in S.

To show this, we first recall some important definitions: A subset A of a
metric space S is bounded if there exists C' > 0 so that |z|g < C for all
x € A. The set A is totally bounded if every sequence in A contains a Cauchy
subsequence.

For two normed vector spaces S; Sa with norms |-|g, and |- |s,, we say that
S1 is compactly embedded in S5 if S; C S5 and the following hold

1. The inclusion map i: S; — Ss is continuous; i.e., there exists a constant
C > 0 such that |iz|s, < C|z|g, for all z € S;.



2. For every bounded set A C Sp, the set A is totally bounded in S5.

Example 2.2. On (Q,F,P), let (X,)nen be a sequence of random variables
taking values in a normed vector space (S1,|-|s,), and suppose that Sy is com-
pactly embedded in the complete vector space (Sa2,|-|s,). Suppose also that there
exist C;p > 0 so that E\Xn|g1 < C for alln € N. Then, the sequence (X,,)nen
is tight in the larger space Ss.

Proof. Let € >0, and set K. = {z € S; : |z|s, < (%)UP}. This set is bounded
in S1, so K. is totally bounded in S,. It is a standard fact that, if S is a complete
metric space, then a subset A C S is has compact closure if and only if it totally
bounded. Hence, the closure of K. in Sy, denoted Clg, (K.) is compact.

By the same computation as in the finite-dimensional case,

P(X, ¢ Cls,(K.)) <P(X, ¢ K.) <e. O

We now give a concrete example of a compact embedding which will appear
in the lectures.

Example 2.3. Consider the weighted /P spaces n the lattice 7.2 :
O ={f:Z" = R:|flg :=|pfler <00, p(x)=(1+0lz])"},
where b > 0 is a constant. If o' > o, then (2 — (¥, is a compact embedding.

Proof. 1t follows immediately that |f|,» < |f], so the embedding is continu-
ous. Now, let A be a bounded set in /2. We show A is totally bounded in ¢7,.
Let (fx)ken be a sequence in A. By boundedness of A, there exists a constant
Ca > 0 so that, for all k£ € N,

[filly = > (L+blz)) 7| fulx)P < Ca. (2.1)

€74

In particular, (1 + b|z|) 7P| fx(z)[? < C4 for all k € N and = € Z%. Enumerate
the points of Z% as x1, s, ... By compactness of bounded sets in R, there exists
a subsequence (f1,x)ken of (fx) so that fi x(x1) converges, and we call the limit
f(x1). There exists a further subsequence (fa,1)ken so that fo r(z2) converges,
and we call the limit f(x2). Continue this way, constructing sequences (f; r)ren
for each j € N so that each subsequence is a subsequence of the previous,
and f; x(x;) converges to a limit, which we call f(x;). This defines a function

f:7Z% = R, and it is standard to show that the diagonal subsequence (fk)k)keN
converges pointwise to f. In particular, for each 2 € Z¢, (fk’k(x))keN is Cauchy.
We show that (fix)ken is Cauchy in €2, for all ' > 0. Let € > 0, and let

g’ > 1 be sufficiently large so that

> b <o
€ZI\[— M, M4



Then, we may choose M = M (¢) sufficiently large so that

7

(o—"pd’ | " < &
( > (1+b)) ) < cr

2€ZI\[— M, M]d

Next, let N = N(M,e) be sufficiently large so that, for all z € [~M, M]¢ and
k,j> N, (1+blz])~7?|frr(x)— f,@)P < s@Eara et p’ > 1 be defined by

quri = 1. Then, for k,j > N,
| fik = Fiilee, < S @+ bla) TP frn(x) — fi.5(2)|

x€[—M,M]d

Y @bl TR bla) P fr(@) — S (@)
Zd\[—M,M]d

+< > (1+blw|)("_"/)”q/>q< > (1+b|$|)“’m’/fk,k(w)—fj,j(x)l””)

z€Z4\[-M,M]? Z\[—M,M]?
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<
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e €
< 5T E(\fk,k%p/ + |fj7j|1£§p/) <e,

where in the second equality, we used Holder’s inequality, and in the last in-
equality, we used the monotonicity of ¢, norms |g|, < |g|er (see, for example,
[Fol99, Proposition 6.11]), together with (2.1). O

3 The Krylov-Bogoliubov theorem

In this section, we loosley follow the notation and conventions of [DP06, Sections
5 and 7], although we shall work more generally with a metric space S, instead
of a Hilbert space H.

Let L(Cy(S)) be the space of all linear bounded operators Cy,(S) — Cp(S).
A Markov semigroup (P,);>o on S, is a function [0, 00) — L(Cy(S)), denoted
t — P, satisfying the following:

1. Py =1 (the identity operator), and P4, = PP, for all t,s > 0.

2. For any ¢t > 0 and = € S, there exists a probability measure m;(z, ) € P(S)
so that

Puf(@) = [ flu)m(ady) forall [ € By(S).

3. For all f € Cp(S) (resp. Byp(S)) and = € S, the mapping ¢ — P, f(x) is
continuous (resp. Borel).

For a Markov chain (X;);>o with state space S, the probability measure
m¢(z, dy) is the probability density of X, when started from X, = z. Then,
P.f(x) = E*[f(X:)], where E* denotes the expectation with respect to the
probability measure P of the chain (X;);>¢ started from X, = .



A Markov semigroup (P;)¢>o has the Feller property if P,f € C,(S) for
all ¢ > 0 whenever f € Cy(95).
A probability measure p € P(S) is invariant for P; if, for all ¢ > 0 and all

f e Cy(S),
/ f() p(dz) = / Py f(x) p(de).
S S

For a Markov semigroup (P;)i>0 on S, g € S, and T > 0, define the time-
averaged measure

T
120 (B) ;:/0 me(xo, B)dt, B e B(S).

Theorem 3.1 (The Krylov-Bogobliubov Theorem). Let (P;)¢>0 be a Markov
Feller semigroup with state space S, where S is a matric space. Assume that for
some xo € S, the set (u7°)r>o is tight. Then, there exists an invariant measure
for (Py)¢>o. Specifically, any subsequential limit of (u7°)r>0 is invariant.

We remark here that the assumption that (u7°)r>¢ is tight is weaker than

the assumption that (m(zo, '))t>0 is tight.

Proof. We follow the proof in [DP06, Theorem 7.1]. To get a rough sense of the
idea, think of starting the Markov process at time 0 from p7° for some large
T. Then, for 0 < u < T, the operator P, does not change the measure p7° by
much since p7° is an average of measures over a long time.

We move to the full proof. By Prohorov’s theorem, there exists a subse-
quential limit p of ( /f%o) which means there exists a sequence Ty, — oo such
that, for all f € Cy(S),

>0’

i [ 1) () = [ ) tas). (3.1)

k—o0

We use Fubini’s Theorem to rewrite the prelimiting object on the left-hand side
as follows:

o [ 1@ " o
/Sf(x)uTk(dx)— STT/ mlan. do)dt = = [ Pf@)dr (32)

0

Combining (3.1) and (3.2), for all f € Cy(S),

Tk
lim — P, f(xg)dt = /Sf(x) wu(dz). (3.3)

Let g € Cy(S). For u > 0, we seek to show that [ g(x) pu(dz) = [4 Pug(z) p(dz).
We apply (3.3) to f = P,g (using the Feller property so that f € Cy(S)) an
use the semigroup property P4, = PP, to obtain

lim TL/SPHuQ(xO)dt:/SPuQ(x) w(dz). (3.4)

k—oo L



It thus suffices to show that the left-hand side of (3.4) is [ g(z)u(dx). Observe
that

1 T 1 T +u
- Piiyg(xo) dt = / Pig(xp) dt

0 /o Ty
1 T Tr+u 1 u (35)
= — P, dt + — P, dt — — P, dt.
T/, +9(x0) dt + T I +9(20) Tk/o +9(20)

By (3.3) applied to f = g, T% fOTk Pig(zo) dt converges to [ g(x) p(dz) as k —
oo. Hence, it remains to show the other two terms on the right of (3.5) converge
to 0. This follows because g € Cy(S), so for each ¢t > 0,

Prg(o)] < /S ()| m(a0. da) < suplg(o)],

and the right-hand side is a finite bound not depending on ¢. O
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