SL Math Stochastic Quantization Summer School TA Session on tightness of probability measures

Evan Sorensen

Monday, July 1, 2024

1 Definitions

For a metric space S, let $\mathcal{B}(S)$ be its Borel σ -algebra. Let $\mathcal{P}(S)$ be the set of probability measures on $(S, \mathcal{B}(S))$. Let $C_b(S)$ be the set of all bounded continuous functions $S \to \mathbb{R}$, and let $B_b(S)$ be the set of all bounded Borel measurable functions $S \to \mathbb{R}$.

We say that a set collection of probability measures $\Lambda \subseteq \mathcal{P}(S)$ is **tight** if, for every $\varepsilon > 0$, there exists a compact set $K_{\varepsilon} \subseteq S$ so that, for all $\mu \in \mathcal{P}(S)$, $\mu(K_{\varepsilon}) > 1 - \varepsilon$.

We may also refer to tightness of a set of random variables. For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a collection \mathcal{X} of random variables $X : \Omega \to S$, is tight, if for every $\varepsilon > 0$, there exists a compact set $K_{\varepsilon} \subseteq S$ so that, for every $X \in \mathcal{X}$, $\mathbb{P}(X \in K_{\varepsilon}) > 1 - \varepsilon$. Note that, if for a random variable $X : \Omega' \to \Omega$, we let μ_X be push-forward of \mathbb{P} under X, then this definition is equivalent to saying that the set $\{\mu_X\}_{x \in \mathcal{X}}$ is a tight family of measures in $\mathcal{P}(S)$.

We say a sequence of probability measures $(\mu_n)_{n \in \mathbb{N}} \subseteq \mathcal{P}(S)$ converges weakly to $\mu \in \mathcal{P}(S)$, if for every $f \in C_b(S)$,

$$\int_{S} f(x) \, \mu_n(dx) \stackrel{n \to \infty}{\longrightarrow} \int_{S} f(x) \, \mu(dx).$$

We also say a sequence of random variables $X_n : \Omega \to S$ converges in distribution to a random variable $X : \Omega \to S$ if, for every $f \in C_b(S)$,

$$\mathbb{E}[f(X_n)] \stackrel{n \to \infty}{\longrightarrow} \mathbb{E}[f(X)],$$

where \mathbb{E} denotes expectation under \mathbb{P} .

We say that a set of measures $\Lambda \subseteq \mathcal{P}(S)$ is **relatively compact** if, for every sequence in Λ , there exists a weakly convergent subsequence (the limit lies in $\mathcal{P}(S)$, but not necessarily Λ).

The following is proved, for example, in [Bil99, Section 5]. See also [DP06, Section 6.3] for a proof of the forward implication in the case where Ω is a Hilbert space.

Theorem 1.1 (Prohorov's Theorem). Let S be a metric space. If $\Lambda \subseteq \mathcal{P}(S)$ is tight, then Λ is relatively compact. If S is Polish, then the converse also holds.

Recall that a topological space S is **Polish** if it is separable and completely metrizable. The "metrizable" part is important because a Polish space may be complete with respect to one metric but not another. A classic example is the space (0, 1), which is homeomorphic to \mathbb{R} and hence Polish; however, it is not complete under the Euclidean metric. In this summer school, we will typically take S to be a separable Hilbert space, which is Polish.

Recall that a G_{δ} set is a countable intersection of open sets. We will not make use of the following fact in these notes, but it may be helpful to know. (For a proof, see, for example, [Sri98, Theorems 2.2.1 and 2.2.7])

Theorem 1.2 (Alexandrov's Theorem). Let S be a Polish space and $A \subseteq S$. Then, A is a Polish space under the subspace topology if and only if A is a G_{δ} subset of S.

2 Some examples

Example 2.1. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $(X_n)_{n \in \mathbb{N}}$ be a sequence of random variables taking values in \mathbb{R}^d , and let $|\cdot|$ be the Euclidean norm on \mathbb{R}^d . If there exist C, p > 0 so that $\mathbb{E}|X_n|^p \leq C$ for all $n \in \mathbb{N}$, then $(X_n)_{n \in \mathbb{N}}$ is tight.

Proof. For $\varepsilon > 0$, let K_{ε} be the compact set $\{x \in \mathbb{R}^d : |x| \leq \left(\frac{C}{\varepsilon}\right)^{1/p}\}$ By Markov's inequality,

$$\mathbb{P}(X_n \notin K_{\varepsilon}) = \mathbb{P}\left(|X_n|^p > \frac{C}{\varepsilon}\right) \le \varepsilon.$$

The above example is quite simple in finite dimensions. Suppose we instead have random variables $(X_n)_{n\in\mathbb{N}}$ taking values in an infinite-dimensional normed vector space S, with norm $|\cdot|_S$ and we have uniform bounds $\mathbb{E}|X_n|_B^p \leq C$ for some C, p > 0. It turns out that this is not enough to conclude tightness in this more general setting, because, for T > 0, the set $\{x \in S : |x|_S \leq T\}$ is not necessarily contained in a compact set. However, these uniform moment bounds are enough to conclude tightness in a larger space S', if S is compactly embedded in S'.

To show this, we first recall some important definitions: A subset A of a metric space S is **bounded** if there exists C > 0 so that $|x|_S \leq C$ for all $x \in A$. The set A is **totally bounded** if every sequence in A contains a Cauchy subsequence.

For two normed vector spaces S_1 S_2 with norms $|\cdot|_{S_1}$ and $|\cdot|_{S_2}$, we say that S_1 is **compactly embedded** in S_2 if $S_1 \subseteq S_2$ and the following hold

1. The inclusion map $i: S_1 \to S_2$ is continuous; i.e., there exists a constant C > 0 such that $|ix|_{S_2} \leq C|x|_{S_1}$ for all $x \in S_1$.

2. For every bounded set $A \subseteq S_1$, the set A is totally bounded in S_2 .

Example 2.2. On $(\Omega, \mathcal{F}, \mathbb{P})$, let $(X_n)_{n \in \mathbb{N}}$ be a sequence of random variables taking values in a normed vector space $(S_1, |\cdot|_{S_1})$, and suppose that S_1 is compactly embedded in the complete vector space $(S_2, |\cdot|_{S_2})$. Suppose also that there exist C, p > 0 so that $\mathbb{E}|X_n|_{S_1}^p \leq C$ for all $n \in \mathbb{N}$. Then, the sequence $(X_n)_{n \in \mathbb{N}}$ is tight in the larger space S_2 .

Proof. Let $\varepsilon > 0$, and set $K_{\varepsilon} = \{x \in S_1 : |x|_{S_1} \leq \left(\frac{C}{\varepsilon}\right)^{1/p}\}$. This set is bounded in S_1 , so K_{ε} is totally bounded in S_2 . It is a standard fact that, if S is a complete metric space, then a subset $A \subseteq S$ is has compact closure if and only if it totally bounded. Hence, the closure of K_{ε} in S_2 , denoted $Cl_{S_2}(K_{\varepsilon})$ is compact.

By the same computation as in the finite-dimensional case,

$$\mathbb{P}(X_n \notin Cl_{S_2}(K_{\varepsilon})) \le \mathbb{P}(X_n \notin K_{\varepsilon}) \le \varepsilon.$$

We now give a concrete example of a compact embedding which will appear in the lectures.

Example 2.3. Consider the weighted ℓ^p spaces n the lattice \mathbb{Z}^d :

$$\ell^p_\sigma = \{f: \mathbb{Z}^d \to \mathbb{R}: |f|_{\ell^p_\sigma} := |\rho f|_{\ell^p} < \infty, \quad \rho(x) = (1+b|x|)^{-\sigma}\},$$

where b > 0 is a constant. If $\sigma' > \sigma$, then $\ell^p_{\sigma} \hookrightarrow \ell^p_{\sigma'}$ is a compact embedding.

Proof. It follows immediately that $|f|_{\ell_{\sigma'}^{p}} \leq |f|_{\ell_{\sigma}^{p}}$, so the embedding is continuous. Now, let A be a bounded set in $\ell_{\sigma'}^{p}$. We show A is totally bounded in $\ell_{\sigma'}^{p}$. Let $(f_k)_{k\in\mathbb{N}}$ be a sequence in A. By boundedness of A, there exists a constant $C_A > 0$ so that, for all $k \in \mathbb{N}$,

$$|f_k|_{\ell_{\sigma}}^p = \sum_{x \in \mathbb{Z}^d} (1+b|x|)^{-\sigma p} |f_k(x)|^p \le C_A.$$
(2.1)

In particular, $(1 + b|x|)^{-\sigma p} |f_k(x)|^p \leq C_A$ for all $k \in \mathbb{N}$ and $x \in \mathbb{Z}^d$. Enumerate the points of \mathbb{Z}^d as x_1, x_2, \ldots By compactness of bounded sets in \mathbb{R} , there exists a subsequence $(f_{1,k})_{k\in\mathbb{N}}$ of (f_k) so that $f_{1,k}(x_1)$ converges, and we call the limit $f(x_1)$. There exists a further subsequence $(f_{2,k})_{k\in\mathbb{N}}$ so that $f_{2,k}(x_2)$ converges, and we call the limit $f(x_2)$. Continue this way, constructing sequences $(f_{j,k})_{k\in\mathbb{N}}$ for each $j \in \mathbb{N}$ so that each subsequence is a subsequence of the previous, and $f_{j,k}(x_j)$ converges to a limit, which we call $f(x_j)$. This defines a function $f : \mathbb{Z}^d \to \mathbb{R}$, and it is standard to show that the diagonal subsequence $(f_{k,k})_{k\in\mathbb{N}}$ is Cauchy.

We show that $(f_{k,k})_{k\in\mathbb{N}}$ is Cauchy in $\ell^p_{\sigma'}$ for all $\sigma' > \sigma$. Let $\varepsilon > 0$, and let q' > 1 be sufficiently large so that

$$\sum_{x\in\mathbb{Z}^d\setminus [-M,M]^d}(1+b|x|)^{(\sigma-\sigma')pq'}<\infty.$$

Then, we may choose $M = M(\varepsilon)$ sufficiently large so that

$$\left(\sum_{x\in\mathbb{Z}^d\setminus[-M,M]^d}(1+b|x|)^{(\sigma-\sigma')pq'}\right)^{\frac{1}{q'}}\leq\frac{\varepsilon}{4C_A}$$

Next, let $N = N(M, \varepsilon)$ be sufficiently large so that, for all $x \in [-M, M]^d$ and $k, j \ge N$, $(1+b|x|)^{-\sigma'p} |f_{k,k}(x) - f_{j,j}(x)|^p \le \frac{\varepsilon}{2(2M+1)^d}$. Let p' > 1 be defined by $\frac{1}{q'} + \frac{1}{p'} = 1$. Then, for $k, j \ge N$,

$$\begin{split} |f_{k,k} - f_{j,j}|_{\ell_{\sigma'}}^p &\leq \sum_{x \in [-M,M]^d} (1+b|x|)^{-\sigma'p} |f_{k,k}(x) - f_{j,j}(x)| \\ &+ \sum_{\mathbb{Z}^d \setminus [-M,M]^d} (1+b|x|)^{(\sigma-\sigma')p} (1+b|x|)^{-\sigma p} |f_{k,k}(x) - f_{j,j}(x)|^p \\ &\leq \frac{\varepsilon}{2} + \left(\sum_{x \in \mathbb{Z}^d \setminus [-M,M]^d} (1+b|x|)^{(\sigma-\sigma')pq'}\right)^{\frac{1}{q'}} \left(\sum_{\mathbb{Z}^d \setminus [-M,M]^d} (1+b|x|)^{-\sigma pp'} |f_{k,k}(x) - f_{j,j}(x)|^{pp'}\right)^{\frac{1}{p'}} \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{4C_A} (|f_{k,k}|_{\ell_{\sigma'}^{pp'}}^p + |f_{j,j}|_{\ell_{\sigma'}^{pp'}}^p) \leq \varepsilon, \end{split}$$

where in the second equality, we used Hölder's inequality, and in the last inequality, we used the monotonicity of ℓ_p norms $|g|_{\ell^{pp'}} \leq |g|_{\ell^p}$ (see, for example, [Fol99, Proposition 6.11]), together with (2.1).

3 The Krylov-Bogoliubov theorem

In this section, we loosley follow the notation and conventions of [DP06, Sections 5 and 7], although we shall work more generally with a metric space S, instead of a Hilbert space H.

Let $L(C_b(S))$ be the space of all linear bounded operators $C_b(S) \to C_b(S)$. A **Markov semigroup** $(P_t)_{t\geq 0}$ on S, is a function $[0,\infty) \to L(C_b(S))$, denoted $t \mapsto P_t$ satisfying the following:

- 1. $P_0 = 1$ (the identity operator), and $P_{t+u} = P_t P_u$ for all $t, s \ge 0$.
- 2. For any $t \ge 0$ and $x \in S$, there exists a probability measure $\pi_t(x, \cdot) \in \mathcal{P}(S)$ so that

$$P_t f(x) = \int_S f(y) \pi_t(x, dy) \quad \text{for all } f \in B_b(S).$$

3. For all $f \in C_b(S)$ (resp. $B_b(S)$) and $x \in S$, the mapping $t \mapsto P_t f(x)$ is continuous (resp. Borel).

For a Markov chain $(X_t)_{t\geq 0}$ with state space S, the probability measure $\pi_t(x, dy)$ is the probability density of X_t when started from $X_0 = x$. Then, $P_t f(x) = \mathbb{E}^x[f(X_t)]$, where \mathbb{E}^x denotes the expectation with respect to the probability measure \mathbb{P}^x of the chain $(X_t)_{t\geq 0}$ started from $X_0 = x$.

A Markov semigroup $(P_t)_{t\geq 0}$ has the **Feller property** if $P_t f \in C_b(S)$ for all $t \geq 0$ whenever $f \in C_b(S)$.

A probability measure $\mu \in \mathcal{P}(S)$ is **invariant** for P_t if, for all t > 0 and all $f \in C_b(S)$,

$$\int_{S} f(x) \,\mu(dx) = \int_{S} P_t f(x) \,\mu(dx).$$

For a Markov semigroup $(P_t)_{t\geq 0}$ on $S, x_0 \in S$, and T > 0, define the timeaveraged measure

$$\mu_T^{x_0}(B) := \int_0^T \pi_t(x_0, B) \, dt, \qquad B \in \mathcal{B}(S).$$

Theorem 3.1 (The Krylov-Bogobliubov Theorem). Let $(P_t)_{t\geq 0}$ be a Markov Feller semigroup with state space S, where S is a matric space. Assume that for some $x_0 \in S$, the set $(\mu_T^{x_0})_{T>0}$ is tight. Then, there exists an invariant measure for $(P_t)_{t\geq 0}$. Specifically, any subsequential limit of $(\mu_T^{x_0})_{T>0}$ is invariant.

We remark here that the assumption that $(\mu_T^{x_0})_{T>0}$ is tight is weaker than the assumption that $(\pi_t(x_0, \cdot))_{t>0}$ is tight.

Proof. We follow the proof in [DP06, Theorem 7.1]. To get a rough sense of the idea, think of starting the Markov process at time 0 from $\mu_T^{x_0}$ for some large T. Then, for $0 \le u \ll T$, the operator P_u does not change the measure $\mu_T^{x_0}$ by much since $\mu_T^{x_0}$ is an average of measures over a long time.

We move to the full proof. By Prohorov's theorem, there exists a subsequential limit μ of $(\mu_T^{x_0})_{T>0}$, which means there exists a sequence $T_k \to \infty$ such that, for all $f \in C_b(S)$,

$$\lim_{k \to \infty} \int_{S} f(x) \,\mu_{T_{k}}^{x_{0}}(dx) = \int_{S} f(x) \,\mu(dx).$$
(3.1)

We use Fubini's Theorem to rewrite the prelimiting object on the left-hand side as follows:

$$\int_{S} f(x) \,\mu_{T_{k}}^{x_{0}}(dx) = \int_{S} \frac{f(x)}{T_{k}} \int_{0}^{T_{k}} \pi_{t}(x_{0}, \, dx) \, dt = \frac{1}{T_{k}} \int_{0}^{T_{k}} P_{t}f(x_{0}) \, dt.$$
(3.2)

Combining (3.1) and (3.2), for all $f \in C_b(S)$,

$$\lim_{k \to \infty} \frac{1}{T_k} \int_0^{T_k} P_t f(x_0) \, dt = \int_S f(x) \, \mu(dx).$$
(3.3)

Let $g \in C_b(S)$. For $u \ge 0$, we seek to show that $\int_S g(x) \mu(dx) = \int_S P_u g(x) \mu(dx)$. We apply (3.3) to $f = P_u g$ (using the Feller property so that $f \in C_b(S)$) and use the semigroup property $P_{t+u} = P_t P_u$ to obtain

$$\lim_{k \to \infty} \frac{1}{T_k} \int_S P_{t+u} g(x_0) \, dt = \int_S P_u g(x) \, \mu(dx). \tag{3.4}$$

It thus suffices to show that the left-hand side of (3.4) is $\int_S g(x)\mu(dx)$. Observe that

$$\frac{1}{0} \int_{0}^{T_{k}} P_{t+u}g(x_{0}) dt = \frac{1}{T_{k}} \int_{u}^{T_{k}+u} P_{t}g(x_{0}) dt$$

$$= \frac{1}{T_{k}} \int_{0}^{T_{k}} P_{t}g(x_{0}) dt + \frac{1}{T_{k}} \int_{T_{k}}^{T_{k}+u} P_{t}g(x_{0}) dt - \frac{1}{T_{k}} \int_{0}^{u} P_{t}g(x_{0}) dt.$$
(3.5)

By (3.3) applied to f = g, $\frac{1}{T_k} \int_0^{T_k} P_t g(x_0) dt$ converges to $\int_S g(x) \mu(dx)$ as $k \to \infty$. Hence, it remains to show the other two terms on the right of (3.5) converge to 0. This follows because $g \in C_b(S)$, so for each t > 0,

$$|P_t g(x_0)| \le \int_S |g(x)| \, \pi_t(x_0, dx) \le \sup_{x \in S} |g(x)|,$$

and the right-hand side is a finite bound not depending on t.

References

- [Bil99] Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1999. A Wiley-Interscience Publication.
- [DP06] Giuseppe Da Prato. An introduction to infinite-dimensional analysis. Universitext. Springer-Verlag, Berlin, 2006. Revised and extended from the 2001 original by Da Prato.
- [Fol99] Gerald B. Folland. *Real analysis*. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, second edition, 1999. Modern techniques and their applications, A Wiley-Interscience Publication.
- [Sri98] S. M. Srivastava. A course on Borel sets, volume 180 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.