
 

Lecture 5 Converge to equilibrium

Last time we showed
existence of infinite volume 04 measure

by tightness limit of Man as M is

To show wni nessofinfintevolume su.ve
One could argue by

the following steps

step on the whole 2d
dx AX

3 de dB A 0 m

has unique strong solution

Write its semigroup by Pa

Step 2 Invariant measure of Pt is unique
call it a

step Every tight limit of my must be u

Step is standard

e.g tight limit in
CCIRt.IR'd

identify it as solution to the right martingale problem
Pathwise uniqueness by Gronwall typeargument



Step just argue that every fight limit

of Mm is an invariant meas of Pt

steps is the crucial step
and relies on some additional structure of P

we will show convexity is sufficient

To better understand the role of convexity
consider general DX AX IU X de dB

corresponding to ét
a m'd Ucd
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Write Pt semigroup for dynamic on 2d

suppose M V are invariant measures of Pt

One can find Um M

Vm u

We have solution to SDE starting from Um

Semigroup PM
Similar as step1 Xm m is tight Limit satisfy SDE on2d

with i C U
By Step 1 Xm

So FMF dam SP Fda Mso

E XN E FIX it D
Similarly f FFF dVm fP FdV Mto

Therefore
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