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1 A stochastic integral identity for the Hermite
polynomials

Proposition 1.1. Let B : [0,∞) → R be a standard Brownian motion. We
will denote this as (Bs)s≥0. For n ∈ N and t > 0,

n!

∫ t

0

∫ sn

0

· · ·
∫ s2

0

dBs1 · · · dBsn = t
n
2 Hn

(Bt√
t

)
, (1.1)

where Hn is the nth Hermite polynomial.

Proof. We prove this by induction on n. For n = 1,∫ t

0

dBs = Bt = H1

(
Bt

)
= t

1
2H1

(Bt√
t

)
.

Now, assume that (1.1) holds for some n ≥ 1. Then,

(n+ 1)!

∫ t

0

∫ sn

0

· · ·
∫ s1

0

dBs1 · · · dBsndBsn+1

= (n+ 1)

∫ t

0

s
n
2 Hn

(Bs√
s

)
dBs. (1.2)

We show this equals t
n+1
2 Hn+1

(
Bt√
t

)
by an Itô formula calculation. Along the

way, we need to recall the following two identities for the Hermite polynomials:

H ′
n(x) = nH ′

n−1(x), and Hn+1(x) = xHn(x)−H ′
n(x). (1.3)

When differentiating t
n+1
2 Hn+1

(
Bt√
t

)
, we get a dt term and a dB term. The

dB term is

t
n
2 H ′

n+1

(Bt√
t

)
dBt = (n+ 1)t

n
2 Hn

(Bt√
t

)
dBt,
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and this agrees with (1.2). Thus, we just need to show that the dt term is 0.
We compute this as follows:

n+ 1

2
t
n−1
2 Hn+1

(Bt√
t

)
− 1

2
t
n−2
2 BtH

′
n+1

(Bt√
t

)
+

1

2
t
n−1
2 H ′′

n+1

(B(t)√
t

)
,

where the last term is the Itô correction term. Using the relations in (1.3), this
is

n+ 1

2
t
n−1
2

(
Hn+1

(Bt√
t

)
− Bt√

t
Hn

(Bt√
t

)
+H ′

n

(Bt√
t

))
= 0.

2 A word of caution with multiple stochastic in-
tegrals

One may naively wish to write the left-hand side of (1.3) as∫ t

0

∫ t

0

· · ·
∫ t

0

dBs1 · · · dBsn = Bn
t ,

but this is not true, as seen from the right-hand side of (1.3). Indeed, one must
be careful when dealing with multiple stochastic integrals. We define the left-
hand side of (1.3) as an iterated integral. However, one may wish to make sense
of an integral ∫

Rn
+

f(s1, . . . , sn) dBs1 · · · dBsn

for some function f ∈ L2(Rn
+), without going through iterated integrals. To do

so, we follow the conventions of the book [Tud23]. For a two-sided Brownian
motion B, and a function f ∈ L2(R+), define B(f) =

∫
R+

f(t) dB(t). For a

Boret set A ⊆ R+ of finite Lebesgue measure, define B(A) = B(1A).
Let En be the set of functions f : Rn

+ → R that may be written as

f(t1, . . . , tn) =

N∑
i1,...,in=1

ai1,...,in1Ai1
×···×Ain

(t1, . . . , tn),

where N ≥ 1, the Borel sets A1, . . . , AN ⊆ R+ are disjoint, and ai1,...,in = 0 if
any two indices are equal. For f ∈ En, define

In(f) :=

N∑
i1,...,in=1

ai1,...,inB(Ai1) · · ·B(Ain).

The condition that A1, . . . , AN are disjoint and ai1,...,in = 0 if any two indices
are the same is essential; we will see that this explains why we don’t obtain Bn

t
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in (1.3). One can show that the set En is dense in L2(Rn
+), and for f ∈ L2(Rn

+),
we define

In(f) = lim
k→∞

In(fk),

where fk is a sequence of functions in En converging to f in L2(Rn
+). One can

show, as in [Tud23, page 10] that this limit exists and is independent of the
choice of approximating sequence.

To see a concrete example, let’s look at the value of the integral∫
R2

+

1[0,1]×[0,1] dBs1 dBs2 .

The function 1[0,1]×[0,1] is a simple function which could be used for construct-
ing the classical integral on R2

+, but it is not an element of E2. We instead
approximate 1[0,1]×[0,1] by the sum∑

1≤j,k≤N
j ̸=k

1( j
N , j+1

N ]×( k
N , k+1

N ],

and note each term 1( j
N , j+1

N ]×( k
N , k+1

N ] for j ̸= k is in E2. Then,

I2

( ∑
1≤j,k≤N

j ̸=k

1( j
N , j+1

N ]×( k
N , k+1

N ]

)
=

∑
1≤j,k≤N

j ̸=k

(
B j+1

N
−B j

N

)(
B k+1

N
−B k

N

)

=

N∑
j=1

(
B j+1

N
−B j

N

)(
B1 −B j+1

N
+B j

N

)
= B2

1 −
N∑
j=1

(
B j+1

N
−B j

N

)2
,

and this second term may be thought of as approaching
∫ 1

0
(dBt)

2 =
∫ 1

0
dt = 1.

Hence, we have ∫
R2

+

1[0,1]×[0,1] dBs1 dBs2 = B2
1 − 1 = H2(B1).

Going back to (1.3), it can be shown that, for a symmetric function f ∈
L2(R+),

In(f) = n!

∫ ∞

0

∫ sn

0

· · ·
∫ s2

0

f(s1, . . . , sn)dBs1 · · · dBsn

= n!

∫
0≤s1≤···≤sn<∞

f(s1, . . . , sn)dBs1 · · · dBsn

=

∫
Rn

+

f(s1, . . . , sn)dBs1 · · · dBsn

̸=
∫ ∞

0

· · ·
∫ ∞

0

f(s1, . . . , sn)dBs1 · · · dBsn .

(2.1)
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To get a feel for why the second equality is true for n = 2, take 10≤s1≤s2≤t and
approximate f by ∑

j<k

1( j
N , j+1

N ]×( k
N , k+1

N ].

Then,

I2

(∑
j<k

1( j
N , j+1

N ]×( k
N , k+1

N ]

)
=
∑
j<k

(
B j+1

N
−B j

N

)(
B k+1

N
−B k

N

)

=

N∑
k=1

(
B k+1

N
−B k

N

)
B k

N
→
∫ 1

0

Bs dBs =

∫ 1

0

∫ s

0

dBu dBs.

In (2.1), we made the remark that f must be symmetric. Indeed, this certainly
must be the case for the second equality of (2.1) to hold. However, we have also
seen from the proof of (1.1) that it can be useful to use the iterative definition
for doing proof by induction. For a function f : Rn

+ → R+, we define the
symmetrization

f̃(s1, . . . , sn) :=
1

n!

∑
σ∈Sn

f(sσ1
, . . . , sσn

).

We now show the following:

Lemma 2.1. For all f ∈ L2(Rn
+), In(f) = In(f̃).

Proof. We show this for functions of the form 1A1×···×An
. Then, the general

result follows by linearity and passing to a limit. We have

f̃(t1, . . . , tn) =
1

n!

∑
σ∈Sn

1Aσ(1)×···×Aσ(m)
(t1, . . . , tn).

Then,

In(f̃) =
1

n!

∑
σ∈Sn

B(Aσ(1)) · · ·B(Aσ(n))

=
1

n!

∑
σ∈Sn

B(A1) · · ·B(An) = B(A1) · · ·B(An) = In(f).

For f ∈ L2(Rn
+) and a Borel subset A ⊆ Rn

+, we define∫
A

f(s1, . . . , sn) dBs1 · · · dBsn := In(f1A).
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Using Lemma 2.1, for a general function f ∈ L2(Rn
+),

In(f) =

∫
Rn

+

f(s1, . . . , sn)dBs1 · · · dBsn

=

∫
Rn

+

f̃(s1, . . . , sn)dBs1 · · · dBsn

= n!

∫
0≤s1≤···≤sn<∞

f̃(s1, . . . , sn)dBs1 · · · dBsn

= n!

∫ ∞

0

∫ sn

0

· · ·
∫ s2

0

f̃(s1, . . . , sn)dBs1 · · · dBsn .

We can also show the following starting from an argument of simple functions
(see, for example [Tud23, Propositions 1.1-1.2])

Lemma 2.2. For f ∈ L2(Rn
+) and g ∈ L2(Rm

+ ),

E
(
In(f)Im(g)

)
=

{
n!⟨f̃ , g̃⟩L2(Rn

+) n = m

0 n ̸= m.

3 General Hermite polynomial identity and re-
lation to Wiener Chaos:

The following generalizes (1.3). For a proof, see [NN18, Proposition 4.1.2] or
[Tud23, Proposition 1.6]

Proposition 3.1. For f ∈ L2(R2
+),

n!

∫ t

0

∫ sn

0

· · ·
∫ s2

0

f(s1) · · · f(sn)dBs1 · · · dBsn = ∥f∥nL2(R+)Hn

(
B(f)

∥f∥L2(R+)

)
.

To relate this to the Wiener Chaos discussed last time, consider the space
Ω = C(R+) with the σ-algebra generated by the projection maps (the smallest
σ-algebra so that Bt is a random variable for each t. We take the measure P on
Ω to be that of a standard Brownain motion B. Let H be the Gaussian Hilbert
space {

B(f) :=

∫
R+

f(t) dBt : f ∈ L2(R+)
}
.

By the Itô isometry, for each f ∈ L2(R+), we have,

E[B(f)2] = ∥f∥L2(R+).
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Hence, by our result proved last time combined with Proposition 3.1,

: B(f)n : = :

(∫
R+

f(t) dBt

)n

: = ∥f∥nL2(R+)Hn

(
B(f)

∥f∥L2(R+)

)

= n!

∫ t

0

∫ sn

0

· · ·
∫ s2

0

f(s1) · · · f(sn)dBs1 · · · dBsn .

This representation of the iterated Chaos term can give us a nice tool for study-
ing the regularity of the Wick powers.

Another way of saying this is that the Wick product turns the iterated
integral ∫ ∞

0

· · ·
∫ ∞

0

f(s1) · · · f(sn) dBs1 · · · dBsn

into the multiple integral∫
Rn

+

f(s1) · · · f(sn) dBs1 · · · dBsn ,

and the two integrals are not the same for n ≥ 2.
An analogue of this result also holds when we instead work with space-time

white noise instead of one-dimensional Brownian motion. See [Nua06].
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