Abelier Higgs model Fix T^2 , $A: T^2 \rightarrow R^2$ $\phi: T^2 \rightarrow C$ (\ddot{A}, A)

Define curvature $F_{A}^{j k} = \partial^{j} A^{k} - \partial^{k} A^{j}$
 $\begin{pmatrix} \text{Im } d=2, \\ \text{Im } d=2, \\ \text{Im } d^{2} = -F_{A}^{21} \end{pmatrix}$ Covariant devivetive: $\hat{D}^{\hat{J}}_{A}\phi = \partial^{\hat{J}}\phi + iA^{\hat{J}}\phi$ Energy functional: $E(A, \phi) = \int_{T^2} \frac{1}{4} |F_A|^2 + \frac{1}{2} |D_A \phi|^2 + \frac{1}{4} |\phi|^{4} dx$ where: $|F_{A}|^{2} = \sum_{j,k} (F_{A}^{jk})^{2}$ $|D_{\lambda}\phi|^{2} = \sum_{j} |D_{\lambda}^{j}\phi|^{2}$ Rmk: Drop A $(A=0)$ => $\int \frac{1}{2} |\partial f|^2 + \frac{1}{4} |f|^4 dx$ $\int_0^L m \, dx$ Drop & (p=0) =) guadratic ("2D version of Maxwall) gauge invariance/symmetry gauge transformation : $G=\left\{ g: \mathbb{R}^2 \rightarrow \mathbb{R} \text{ and } \nabla g, e^{-i\theta} \text{ periodic} \right\}$ $(A, \phi) \mapsto (A^{\dagger}, \phi^{\dagger}) = (A + \nabla \theta, e^{-i\theta} \phi)$ $\sqrt{F_{A}r} = F_{A}$ (This is an Abelian group action) $D_{A^3}\phi^3 = \nabla \phi^8 + i \lambda^9 \phi^9 = \nabla (e^{-i\theta} \phi) + i (A + \nabla \theta) e^{-i\theta} \phi$ = $e^{-i\theta} \partial_{\theta} \phi = (\partial_{\theta} \phi)^{\theta}$ (exercise)

Therefore: $E(A, \phi^9) = E(A, \phi)$

$$
\begin{pmatrix}\n\end{pmatrix} (A.P)'
$$
\n
$$
A \text{ gauge orbit } (i.e. a gauge equivalent class)
$$

Rmk:
$$
\int [U4]^T dx
$$
 also has symmetry under $\phi \rightarrow \phi + c$
\nBut $\int \phi e^{-\phi} \sinh(\phi) d\phi = 0$
\nThus $\int \phi e^{-\phi} \sinh(\phi) d\phi = 0$
\nThus $\int \phi e^{-\phi} \sinh(\phi) d\phi = 0$
\n $\int \phi e^{-\phi} \sinh(\phi) d\phi = 0$
\nWe $\int \phi = 0$
\nWe $\int \phi = 0$
\nWe $\int \phi = 0$
\n $\int \phi =$

$$
\begin{pmatrix}\n\text{for } (n_1, n_1) & \text{for } b \text{ is } 73 & \text{for some } 3 \in G \\
\text{i.e. } \frac{a}{d(x_n x_1)} n_1 x_1 + n_2 x_2, \quad n_1, n_2 \text{ must be in } Z\n\end{pmatrix}
$$

Stochastic PDE 2 A OA P IMCI DAG P 24 DA DA ¹⁴¹²⁹ 2 where Pt is Levay projection to diveo part PIA ^A ⁷ ^o divA Lucal Shenig global Bringman Cao ⁴ hard noterm like A measure Brydges Frohlich Seiler s king⁸⁶³ Localtheryt FEC ⁴³ Ad ^A are ill defined 24 Art are worse moresingularthan ⁴ DaPrato Debussche won't work A 9 C C 24 C CH Late ^C ^A ⁹ 7,9 assume Einstein sum rule below 7 4 where the paracuntrolled component Y solves 2 ^Δ Y ²² ^A 91 2,1 We want to solve ^X ^y ^y ^E ^x ^C ^x ^c

Top model :		
3. $A = \triangle A + A \triangle A + 3$		
$A = \int A + A \triangle A + 3$		
$(\partial_{t} - \triangle) \geq 7$	7.8	
$(\partial_{t} - \triangle) \geq 7$	8.8	
This decomposition is not enough. Since:	$2 \triangle C$ ¹⁺ at most.	
$2 \geq 1$	is problematic.	
However, for this, try model, we can write.		
$(\partial_{t} - \triangle) \geq 7$	C ⁺	C ⁺
In four Dafrat's Debundat did this, fix 2D <i>Ns</i> + while noric.		
Since AH doent have this mice feature, we should not use this, both does not be used in the image.		
0 ⁻ \triangle ≥ 7	1.2	
0 ⁻ \triangle ≥ 7	2.5	
0 ⁻ \triangle ≥ 7	3.6	
0 ⁻ \triangle ≥ 7	4.7	
0 ⁻ \triangle ≥ 7	5.7	
0 ⁻ \triangle ≥ 7	6.7	
0 ⁻ \triangle ≥ 7	7.8	
0 ⁻ \triangle $\$		

Then

\n
$$
(a-a) \gamma
$$
\nWhat to solve $(x, y) \in C^{\frac{1+x}{x}}C^{2-5k}$

\n
$$
= 8001 + 1601 + 160y + 190k
$$
\n
$$
= \sqrt{001 + x001 + y001 + 160y + 190k}
$$
\n
$$
= \sqrt{001 + x001 + y001 + 16001}
$$
\n
$$
= \sqrt{001 + x001}
$$
\n
$$
= C1
$$
\n
$$
= C2
$$
\n
$$

$$

So we essentially have
$$
BO \times C
$$

\nThe point is that we turn
\nthis, into an explicit object C
\nwhich we can use stabil analysis
\nRecall
\nIf $OB \uparrow \uparrow \uparrow$ $OM^{\text{out}} \uparrow \uparrow$ OM^{out} OM^{out}
\n $BO(Q - C) \uparrow \uparrow$ OM^{out} C^2
\n $BO(Q - C) \uparrow \uparrow$ OM^{out} C^2
\n OM^{out} OM^{out} OM^{out} OM^{out}
\n OM^{out} OM^{out} OM^{out}
\n OM^{out} OM^{out} OM^{out}
\n OM^{out} OM^{out} OM^{out}
\n OM^{out} OM^{out}
\n OM^{out} OM^{out} OM^{out}
\n OM^{out}

$$
\begin{cases}\n\frac{\partial_4 A}{\partial_4 \phi} = \Delta A - P_1 \operatorname{Im}(\overline{\phi} D_A \phi) + P_1 \zeta + CA \\
\frac{\partial_4 A}{\partial_4 \phi} = \sum_i D_A^i D_A^i \phi - \frac{1}{2} |\phi|^2 \phi + Z + \sigma \phi\n\end{cases}
$$
\n\n
$$
\text{Intensity}
$$

 $\dot{\bigcup}$ \vee \vee \vee $\sqrt{\frac{1}{2}}$ $p(Aq \cap p(A \circ q) \cdot \partial q \cap p(A \circ q) \cdot q)$ actually add up to a finite C $(\sigma \sim 6g \,div)$ 1) "diagonal": only CA in A equ. 04 in 4 equ. 1 [BC] should that: If $C = \frac{1}{8\pi}$ solution is gauge covariant": Denote $S(A, A, B, 3, 3)$ the solution (A, A) $\forall n \in \mathbb{Z}^2$ \bigcirc "A = 9 + Y + x" Dull form: