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9 UV limit in three dimensions

What happens in d=3. Let us go back to the a-priori estimates: test the equation (?) where V ′(𝜑)=
𝜆𝜑3+𝛽𝜑 (and as in two dimensions we take 𝛽=−3𝜆c𝜀+𝛽′) with Z and integrate in space 𝕋𝜀

3:

1
2
∂
∂t �𝕋𝜀

3
Zt
2+�

𝕋𝜀
3
�|∇𝜀Zt|2+m2|Zt|2+

𝜆
2 |Zt|4�

=−12 �𝕋𝜀
3
[𝜆𝕐3Z+3𝜆𝕐2Z 2+3𝜆𝕐1Z 3+𝛽′𝕐1Z+𝛽′Z 2].

But now 𝕐2 has regularity −1−2𝜅 and 𝕐3 even worser than −3/2−3𝜅. For Z we can hope only
for H1 regularity from these estimates. Big problem!!

The term 𝕐1Z 3,𝕐1Z are still ok because 𝕐1 has regularity −1/2−𝜅.
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We go back to the equation (?) and write it more explicitly

∂
∂t Zt+(m2−Δ𝜀)Zt=−12 𝜆𝕐

3
�
𝒞−3/2−3𝜅

− 32 𝜆𝕐
2Z+ ⋅ ⋅ ⋅

From the theory of parabolic equations one sees that Z cannot have better regularity that 2 +
−3/2−3𝜅=1/2−3𝜅>0 surely it cannot be H1. Moreover in this case we even have a worser
problem for the term 𝕐2Z which is a prod. of something of reg. −1−2𝜅 and something of reg.
1/2−3𝜅 which do not sum up to a positive quantity. The first step is to separated the problems
in the product 𝕐2Z via a decomposition, we write

𝕐2Z=𝕐2≻Z+𝕐2≼Z,

where 𝕐2≼Z =𝕐2≺Z +𝕐2 ∘Z. By paraproducts estimates one has that 𝕐2≻Z has regularity
of 𝕐2 that is −1−2𝜅 and it is well-defined. The term containing the resonant product 𝕐2≼Z is
however not well defined.

Define a new stochastic object 𝕐[3],𝜀 to be the solution of the equation

∂
∂t 𝕐t

[3],𝜀+(m2−Δ𝜀)𝕐t
[3],𝜀=−12 𝜆𝕐t

3,𝜀,

(for example, take the stationary solution). Again this is a very explicit functional of the Gaussian
process Y 𝜀 and will be easy to analyze, in particular one can show that uniformly in 𝜀 it belongs to

𝕐[3],𝜀∈C(ℝ,𝒞1/2−3𝜅(𝕋3)),

in the sense that, for example,

sup
𝜀
𝔼[[[[[[[ sup

t∈[0,T]
�𝕐t

[3],𝜀�𝒞1/2−3𝜅(𝕋3)
K ]]]]]]]<∞,

for any K,T .

Now define ℍ as the solution to

∂
∂t ℍt+(m2−Δ𝜀)ℍt=−12 𝜆𝕐t

3− 32 𝜆𝕐t
2≻ℍt, (1)

this is a linear equation which can be easily solved and analyzed and its solutionℍ does not looks
much different than 𝕐[3],𝜀 and lives also in C(ℝ,𝒞1/2−3𝜅(𝕋3)).

Define Φ as

Z ≔ℍ+Φ
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which solves

∂
∂t Φt =(Δ𝜀−m2)Φt −

𝜆
2 [−3𝜆𝕐

2≻ℍ+3𝕐2≻Z+3𝕐2∘Z+3𝕐2≺Z+3𝕐Z 2+Z 3]

=(Δ𝜀−m2)Φt −
𝜆
2 [[[[[[[[[[[[[[3𝕐

2≻Φ+3𝕐2∘Φ+3𝕐2∘ℍ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
dangerous terms!!!

+3𝕐2≺Z+3𝕐Z 2+Z 3

]]]]]]]]]]]]]]
(2)

This is the right equation to get a-priori estimates for (almost since Φ cannot be expected to be in
H1 exactly due to this equation). Let's test it with Φ to get

1
2
∂
∂t �𝕋𝜀

3
Φ2+�

𝕋𝜀
3
Φ(m2−Δ𝜀)Φ+

𝜆
2 �𝕋𝜀

3
Φ4

=�
𝕋𝜀
3
Φ�−32 𝜆𝕐

2≻Φ− 32 𝜆𝕐
2∘Φ− 32 𝜆𝕐

2∘ℍ− 12 𝛽′(𝕐
1+Z)�

+�
𝕋𝜀
3
Φ�−32 𝜆𝕐

2≺Zt −
3
2 𝜆𝕐

1Z 2�− 𝜆2 �𝕋𝜀
3
Φ((ℍ+Φ)3−Φ3)

We have now to cross fingers and check that all the terms in the r.h.s. can be controlled with the
l.h.s.

The term

−𝜆2 �𝕋𝜀
3
Φt((ℍt+Φt)3−Φt

3),

is not scary at all since ℍ is a nice function and it contains only powers less than 4 of Φ so it can
be controlled via the ∫Φ4 is the l.h.s. (like in the infinite vol estimates of last week). The term

−32 𝜆�𝕋𝜀
3
Φt𝕐1Zt

2=−32 𝜆�𝕋𝜀
3
Φt𝕐1 (ℍ+Φt)2

is also fine since 𝕐1 is only −1/2−𝜅 irregular and we have the H1 norm of Φ and it is at most
cubic inΦ3. With some work one can get a nice estimate. Note however that this term will contain
products

𝕐1ℍ, 𝕐1ℍ2,

which are not well defined because ℍ is only of regularity 1/2−2𝜅 so the reg. do not sum up to
positive number. However these terms can be analyzed with probabilistic estimates and shown to
be well defined and not needing renormalization. We will assume in the following that they have
uniform estimates as 𝜀→0 in

𝕐1ℍ,𝕐1ℍ2∈C(ℝ;𝒞−1/2−𝜅(𝕋3)).

We are worried about the terms:

−32 𝜆�𝕋𝜀
3
Φt[𝕐2≻Φt+𝕐2≼Φt]
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since Φ is not regular enough for 𝕐2. Here we use the following fact.

Lemma 1. We have

D( f ,g,h)≔�
𝕋𝜀
3
f (g≻h)−�

𝕋𝜀
3
(g∘ f )h

is well defined and continuous when the sum of the regularities of f ,g,h is positive. For example

|D( f ,g,h)|⩽ ‖ f ‖H𝛼‖h‖H𝛾‖g‖𝒞𝛽

whenever 𝛼+𝛽+𝛾>0.

Using this lemma we have

�
𝕋𝜀
3
Φt[𝕐2≻Φt+𝕐2∘Φt]=�

𝕋𝜀
3
Φt[2𝕐2≻Φt]+D(Φt,𝕐t

2,Φt)

We got rid of the resonant product but the term

hdangerj�
𝕋𝜀
3
Φt[2𝕐2≻Φt]i

is still dangerous.

Going back to the a-priori estimate we focus on two terms

⋅ ⋅ ⋅ + hdangerj�
𝕋𝜀
3
Φt(m2−Δ𝜀)Φti= hdangerj−3𝜆�

𝕋𝜀
3
Φt[𝕐2≻Φt]i+ ⋅ ⋅ ⋅

and try to cancel the one in r.h.s. using that in the l.h.s. This is possible by defining

Ψt≔Φt+
3𝜆
2 𝒬−1[𝕐2≻Φt]

where

𝒬≔(m2−Δ𝜀).

Substituting the estimate (i.e. we are completing the above square). One get

�
𝕋𝜀
3
Φt𝒬Φt+3𝜆�

𝕋𝜀
3
Φt[𝕐2≻Φt]

=�
𝕋𝜀
3
�Ψt −

3𝜆
2 𝒬−1[𝕐2≻Φt]�𝒬�Ψt −

3𝜆
2 𝒬−1[𝕐2≻Φt]�+3𝜆�

𝕋𝜀
3
Φt[𝕐2≻Φt]

=�
𝕋𝜀
3
Ψt𝒬Ψt −3𝜆�

𝕋𝜀
3
Ψt[𝕐2≻Φt]+

9𝜆2
4 �

𝕋𝜀
3
(𝕐2≻Φt)𝒬−1(𝕐2≻Φt)+3𝜆�

𝕋𝜀
3
Φt[𝕐2≻Φt]

=�
𝕋𝜀
3
Ψt𝒬Ψt −

9𝜆2
4 �

𝕋𝜀
3
(𝕐2≻Φt)𝒬−1(𝕐2≻Φt)
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10 The paracontrolled a-priori estimate

To recap, we defined ℍ to be

∂
∂t ℍt+(m2−Δ𝜀)ℍt=−𝜆2 𝕐t

3− 3𝜆2 𝕐t
2≻ℍt,

(solve this equation by a fix-point) and defined Φ≔Z −ℍ which satisfies

∂
∂t Φt=(Δ𝜀−m2)Φt −

𝜆
2 [−3𝜆𝕐

2≻ℍ+3𝕐2≻Z+3𝕐2∘Z+3𝕐2≺Z+3𝕐Z 2+Z 3]

=(Δ𝜀−m2)Φt −
𝜆
2 [[[[[[[[[[[[[[3𝕐

2≻Φ+3𝕐2∘Φ+3𝕐2∘ℍ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
dangerous terms!!!

+3𝕐2≺Z+3𝕐Z 2+Z 3

]]]]]]]]]]]]]].

Recall the various regularities (we use 𝜅 for an arbitrary small >0 which can be different from
line to line)

term reg

𝕐1 −1/2−𝜅
𝕐2 −1−𝜅
𝕐3 “−3/2−𝜅”(as space-time distribution)

ℍ 1/2−𝜅
𝕐2≻Φ −1−𝜅
Φ 1−𝜅

Then we tested with Φ to get

1
2
∂
∂t �𝕋𝜀

3
Φt
2+ �

𝕋𝜀
3
Φt(m2−Δ𝜀)Φt + 𝜆

2 �𝕋𝜀
3
Φt
4

= �
𝕋𝜀
3
Φ�−32 𝜆𝕐

2≻Φ− 32 𝜆𝕐
2∘Φ�

+�
𝕋𝜀
3
Φ�−32 𝜆𝕐

2∘ℍ− 12 𝛽′(𝕐
1+Z)�

−32 𝜆�𝕋𝜀
3
Φ(𝕐2≺Z+𝕐1Z 2)− 𝜆2 �𝕋𝜀

3
Φ((ℍ+Φ)3−Φ3)

and we did a transformation to the combination (in which all the terms are “ill defined”, i.e. I
cannot hope to control them separately in the limit)

A≔�
𝕋𝜀
3
Φ(m2−Δ𝜀)Φ+�

𝕋𝜀
3
Φ�32 𝜆𝕐

2≻Φ+ 3
2 𝜆𝕐

2∘Φ�
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we use a “commutator lemma” to replace ∫Φ(𝕐2∘Φ)with ∫(𝕐2≻Φ)Φmodulo nice error term:

A=�
𝕋𝜀
3
Φ(m2−Δ𝜀)Φ+�

𝕋𝜀
3
Φ[3𝜆𝕐2≻Φ]+𝜆D(Φ,𝕐2,Φ)

Then we defined Ψ so that

Φ=−3𝜆2 (m2−Δ𝜀)−1[𝕐2≻Φ]+Ψ,

A= �
𝕋𝜀
3
Ψt(m2−Δ𝜀)Ψt+

9𝜆
4 �

𝕋𝜀
3
(𝕐2≻Φt)(m2−Δ𝜀)−1(𝕐2≻Φt)+𝜆D(Φ,𝕐2,Φ)

At this point we have decomposed X as

X=𝕐1+ℍ− 3𝜆2 (m2−Δ𝜀)−1[𝕐2≻Φ]+Ψ (3)

where

Φ=X −𝕐1−ℍ=−3𝜆2 (m2−Δ𝜀)−1[𝕐2≻Φ]+Ψ

with these different functions satisfying the a-priori equation

1
2
∂
∂t �𝕋𝜀

3
Φ2+�

𝕋𝜀
3
Ψ(m2−Δ𝜀)Ψ+ 𝜆

2 �𝕋𝜀
3
Φ4

= �
𝕋𝜀
3 [[[[[[[[[[[[−9𝜆

2

4 �
𝕋𝜀
3
(𝕐2≻Φt)(m2−Δ𝜀)−1(𝕐2≻Φt)− 32 𝜆Φ𝕐

2∘ℍ− 12 𝛽′Φ(𝕐
1+Z)]]]]]]]]]]]]

+𝜆D(Φ,𝕐2,Φ)− 32 𝜆�𝕋𝜀
3
Φ(𝕐2≺Z+𝕐1Z 2)− 𝜆2 �𝕋𝜀

3
Φ((ℍ+Φ)3−Φ3)

The good guys are on the l.h.s and the bad guys on the r.h.s., with the ugly guys in orange.

The terms in orange are still out of control, in particular they contain products which are not well
defined (because the regularities do not sum up to positive).

Let us pause a moment and try to understand the meaning of the decomposition (3): this is the
key point of these new approaches to singular SPDEs (i.e. regularity structures or paracontrolled
distributions). The message is that we cannot just look at generic functions in a given vector
space (like in classical PDE theory) but we need to specify the solution as an “expansion” in
terms (explicit or implicit) of different character. In the paracontrolled approach this involves the
regularity of the various terms

X= 𝕐1�
−1/2−𝜅

+ ℍ�
1/2−𝜅

− 3𝜆2 (m2−Δ𝜀)−1[𝕐2≻Φ]|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
1−𝜅

+Ψ�
H1

,

(actually Ψ is even better than H1, if I remember correctly it has regularity 3/2).
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For example one could see from this that for the LP blocks one has

Δi X ∼ (2i)1/2+𝜅,
Δi X −Δi𝕐1 ∼ (2i)−1/2−𝜅

Δi X −Δi𝕐1−Δiℍ ∼ (2i)−1−𝜅

Δi X −Δi𝕐1−Δiℍ+ 3𝜆
2 Δi{(m2−Δ𝜀)−1[𝕐2≻Φ]} ∼ (2i)−1

which can be interpreted by saying that my solution lives in a very particular subspace of the space
of Besov functions of regularity −1/2 (we could take for example H−1/2−𝜅).

In particular the stochastic objects 𝕐1,ℍ,𝕐2 do not have better regularity as those stated (i.e.
they are almost surely not in 𝒞−1/2,𝒞1/2,𝒞1 (think about Hölder regularity of BM).

11 The second renormalization

We need to understand what is going on with the red term

�
𝕋𝜀
3 [[[[[[[[[[[[−9𝜆

2

4 �
𝕋𝜀
3
(𝕐2≻Φt)(m2−Δ𝜀)−1(𝕐2≻Φt)− 32 𝜆Φ𝕐

2∘ℍ− 12 𝛽′Φ(𝕐
1+Z)]]]]]]]]]]]]

which contains not-well defined products.

Start with 𝕐2∘ℍ: use the definition of ℍ (where ℒ=∂t+(m2−Δ𝜀))

ℍ=−𝜆2 𝕐
[3]− 3𝜆2 ℒ−1(𝕐2≻ℍ),

recall also that 𝕐[3]=ℒ−1𝕐3 (with reg. 1/2−𝜅), and write it as

𝕐2∘ℍ=−𝜆2 𝕐
2∘𝕐[3]− 3𝜆2 𝕐2∘ℒ−1(𝕐2≻ℍ).

For 𝕐2 ∘𝕐[3] we can show by probabilistic arguments involving Wick products (i.e. explicit
formulas for polynomials of Gaussian) that one can define other polynomials 𝕐2∘[3] and 𝕐2∘[2]

𝕐2∘𝕐[3]=𝕐2∘ℒ−1𝕐3=⟦Y 2⟧∘ℒ−1⟦Y 3⟧=𝕐2∘[3]+3d𝜀𝕐1,

𝕐2∘ℒ−1𝕐2=𝕐2∘[2]+d𝜀

where d𝜀 is a constant which diverges logarithmically with 𝜀. This is not much different from
what we did in d =2 and in d=3 for the products Y 3,Y 2. The random field 𝕐2∘[3] and 𝕐2∘[2]

converge as 𝜀→0 to well defined random field such that

𝕐2∘[3]≔𝕐2∘𝕐[3]−3d𝜀𝕐1∈C(ℝ+,𝒞1/2−𝜅)

𝕐2∘[2]≔𝕐2∘ℒ−1𝕐2−d𝜀∈C(ℝ+,𝒞−𝜅)
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In terms of Feynman graphs one could write

𝕐2∘𝕐[3]= 𝕐2 𝕐3ℒ−1

which can be decomposed in orthogonal terms

=
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦
⟦

𝕐2 𝕐3

⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧
⟧
+32

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦
⟦

𝕐2 𝕐3

⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧
⟧
+322

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦

⟦

⟦
𝕐2 𝕐3

⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧

⟧

⟧

=⟦Y 2⟧⋄0ℒ−1⟦Y 3⟧+32⟦Y 2⟧⋄1ℒ−1⟦Y 3⟧+322⟦Y 2⟧⋄2ℒ−1⟦Y 3⟧

and one has that the last one is diverging while the other two are well defined

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦

⟦

⟦
𝕐2 𝕐3

⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧

⟧

⟧
≈�

𝕋𝜀
3
dxP(x− y)�

ℒ−1

G(x− y)2�
two contraction lines

Y(y)≈�
𝕋𝜀
3
dx 1
|x|3|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

∝d𝜀

Y(y)

since the correlation function

G(x− y)=𝔼[Y(x)Y(y)]≈ �
k∈ℤ3∩[−𝜀−1,𝜀−1]3

e ik(x−y)

k2+m2 ≈
1

|x− y|

and the kernel P of ℒ−1 behaves in the same way

P(x− y)≈ |x− y|−1.

For 𝕐2∘ℒ−1𝕐2 one can do the same:

𝕐2∘𝕐[2]= 𝕐2 𝕐2ℒ−1

=

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

⟦

⟦
𝕐2 𝕐2ℒ−1

⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧

⟧

⟧
+22

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

⟦

⟦
𝕐2 𝕐2ℒ−1

G

⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧

⟧

⟧

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
∝∫ dx

|x|2
<+∞

+22

⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦
⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦⟦

⟦

⟦
𝕐2 𝕐2ℒ−1

G

G ⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧
⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧

⟧

⟧

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
≔d𝜀∝∫

dx
|x|3
≈log𝜀−1

=𝕐2∘[2]+d𝜀

where 𝕐2∘[2] denotes the sum of the first two graphs.

Let us go back to 𝕐2 ∘ℍ. The first step is to use commutator lemmas for paraproducts and
resonant products:

8



Commutator lemmas roughly say that one can usually write

f ∘(g≻h)≈( f ∘g)h

modulo “nice terms”. Similar statements can be made when there are other nice linear opera-
tions in between, e.g.

f ∘ℒ−1(g≻h)≈( f ∘ℒ−1g)h, f ∘(m2−Δ)−1(g≻h)≈( f ∘(m2−Δ)−1g)h

This is enough to show that

𝕐2∘ℒ−1(𝕐2≻ℍ)=[𝕐2∘ℒ−1(𝕐2)]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
ugly guy!

ℍ+C(𝕐2,𝕐2,ℍ)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
nice commutator

=(𝕐2∘[2]+d𝜀)ℍ+C(𝕐2,𝕐2,ℍ)

Therefore we can handle the full term 𝕐2∘ℍ as

𝕐2∘ℍ=−𝜆2𝕐
2∘𝕐[3]||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
uglyguy!

− 3𝜆2 𝕐2∘ℒ−1(𝕐2≻ℍ)

=−𝜆2 (𝕐
2∘[3]+3d𝜀𝕐1)− 3𝜆2 (𝕐2∘[2]+d𝜀)ℍ− 3𝜆2 C(𝕐2,𝕐2,ℍ)

=−𝜆2 𝕐
2∘[3]− 3𝜆2 𝕐2∘[2]ℍ− 3𝜆2 C(𝕐2,𝕐2,ℍ)− 3𝜆2 d𝜀(𝕐1+ℍ)

and we see precisely how 𝕐2∘ℍ diverges as 𝜀→0, due to the presence of d𝜀.

Now our task is to handle the other dangerous term (highlighted in red):

�
𝕋𝜀
3
(𝕐2≻Φt)𝒬−1(𝕐2≻Φt)

with 𝒬=(m2−Δ𝜀). We can decompose it with paraproducts and some commutator lemma as

B= �
𝕋𝜀
3
(𝕐2≻Φt)𝒬−1(𝕐2≻Φt) = �

𝕋𝜀
3
(𝕐2≻Φt)∘𝒬−1(𝕐2≻Φt)

(only the resonant term counts in integrals)

B= �
𝕋𝜀
3
(𝕐2∘𝒬−1𝕐2)Φ2 +C′(𝕐2,𝕐2,Φ,Φ)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

nice commutator

The same considerations as above apply to the explicit polynomial 𝕐2∘𝒬−1𝕐2 and one defines

𝕐2∘{2}≔𝕐2∘𝒬−1𝕐2−d𝜀

9



with the same constant as above. It is very similar to𝕐2∘ℒ−1𝕐2, in particular the divergent part
is the same! (very important). So the analysis of B gives

B=�
𝕋𝜀
3
𝕐2∘{2}Φ2+C′(𝕐2,𝕐2,Φ,Φ)+ �

𝕋𝜀
3
d𝜀Φ2 .

Putting all together we have

�
𝕋𝜀
3 [[[[[[[[[[[[−9𝜆

2

4 �
𝕋𝜀
3
(𝕐2≻Φt)(m2−Δ𝜀)−1(𝕐2≻Φt)− 32 𝜆Φ(𝕐

2∘ℍ)− 12 𝛽′Φ(𝕐
1+Z)]]]]]]]]]]]]

=−9𝜆
2

4 �
𝕋𝜀
3
𝕐2∘{2}Φ2− 9𝜆4 C′(𝕐2,𝕐2,Φ,Φ)

−3𝜆2 �
𝕋𝜀
3
Φ�−𝜆2 𝕐

2∘[3]− 3𝜆2 𝕐2∘[2]ℍ− 3𝜆2 C(𝕐2,𝕐2,ℍ)�

−9𝜆
2

4 �
𝕋𝜀
3
Φ[d𝜀(𝕐1+ℍ+Φ)] − 12 𝛽′Φ(𝕐

1+Z),

and now the remarkable fact is that we can choose𝛽′=−9𝜆2d𝜀/2 in order to cancel the divergences
coming from d𝜀. This means by choosing appropriately 𝛽 we can remove all the divergences
coming from ill-defined products of irregular Gaussian polynomials.

This is possible because this model is “superrenormalizable”, or also called “subcritical”, i.e. the
linear part of the equation dominates the irregular terms in small scales, or said otherwise the non-
linear irregular terms can be treated as a perturbation of the linear part.

We are at the point where in our a-priori estimate we do not have any more ugly term, all the
products are well defined with the available regularity and the only step remaining is to check that
we can close the a-priori estimates, i.e. estimate every term in the l.h.s. with the good terms in the
r.h.s.

Let's summarize the discussion of this morning by writing down the final equation which will give
rise to our a-priori estimates.

1
2
∂
∂t �𝕋𝜀

3
Φ2+�

𝕋𝜀
3
[|∇𝜀Ψ|2+m2Ψ2]+ 𝜆

2 �𝕋𝜀
3
Φ4=𝒜

𝒜≔−9𝜆
2

4 �
𝕋𝜀
3
𝕐2∘{2}Φ2− 9𝜆4 C′(𝕐2,𝕐2,Φ,Φ)

−3𝜆2 �
𝕋𝜀
3
Φ�−𝜆2 𝕐

2∘[3]− 3𝜆2 𝕐2∘[2]ℍ− 3𝜆2 C(𝕐2,𝕐2,ℍ)�

+𝜆D(Φ,𝕐2,Φ)− 32 𝜆�𝕋𝜀
3
Φ(𝕐2≺Z+𝕐1Z 2)− 𝜆2 �𝕋𝜀

3
Φ((ℍ+Φ)3−Φ3)

−[[[[[[[[[[9𝜆
2

4 + 1
2 𝛽′]]]]]]]]]]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

=0

�
𝕋𝜀
3
Φ[d𝜀(𝕐1+ℍ+Φ)]

(4)

10



where we have a series of explicit probabilistic objects

𝕐1=Y ∈𝒞−1/2−𝜅 𝕐2∘{2}≔𝕐2∘𝒬−1𝕐2−d𝜀 ∈𝒞−𝜅

𝕐2=Y 2−c𝜀 ∈𝒞−1−𝜅 𝕐2∘[2]≔𝕐2∘ℒ−1𝕐2−d𝜀 ∈𝒞−𝜅

𝕐[3]=ℒ−1(Y 3−3c𝜀Y) ∈𝒞1/2−𝜅 𝕐2∘[3]≔𝕐2∘ℒ−1𝕐3−3d𝜀Y ∈𝒞−1/2−𝜅

ℍ=−𝜆2 𝕐
[3]− 3𝜆2 ℒ−1(𝕐2≻ℍ), ∈𝒞1/2−𝜅

(meaning that we can have uniform estimates in the corresponding spaces which do not blow up as
𝜀→0). The unknowns X∈H−1/2−𝜅, Z∈H1/2−𝜅, Φ∈H1−𝜅, Ψ∈H1, satisfying the decomposition

X=𝕐1+ℍ− 3𝜆2 (m2−Δ𝜀)−1[𝕐2≻Φ]+Ψ (5)

where

Z≔X −𝕐1,

Φ≔X −𝕐1−ℍ=−3𝜆2 (m2−Δ𝜀)−1[𝕐2≻Φ]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
∈𝒞1−𝜅=B∞,∞

1−𝜅

+ Ψ�
∈H1=B2,21

.

With this decomposition one is able to prove that for small 𝛿>0 there exist an explicit function
Q(𝕐) such that

|𝒜|⩽Q(𝕐)+𝛿��
𝕋𝜀
3
[|∇𝜀Ψ|2+m2Ψ2]+ 𝜆

2�𝕋𝜀
3
Φ4� (6)

(at this point this kind of argument proceed as in d=2, i.e. via functional analytic estimates). The
function Q(𝕐) depends only on

𝕐≔(𝕐1,𝕐2,𝕐[3],𝕐2∘{2},𝕐2∘[2],𝕐2∘[3])

via norms of the kind

Q(𝕐)=Q(‖𝕐1‖C([0,T],𝒞−1/2−𝜅), ‖𝕐2‖C([0,T],𝒞−1−𝜅), . . . ),

in particular

sup
𝜀>0

𝔼[Q(𝕐𝜀)K]<∞

for any power K⩾1.

Using (6) in (4) we get that for 𝛿 small enough

Theorem 2. We have

1
2
∂
∂t �𝕋𝜀

3
Φ2+(1−𝛿)��

𝕋𝜀
3
[|∇𝜀Ψ|2+m2Ψ2]+ 𝜆

2�𝕋𝜀
3
Φ4�⩽Q(𝕐𝜀)

provided 𝛽 is chosen depending on 𝜀 in a precise divergent way

𝛽=C1𝜀−1+C2𝜆log(𝜀−1),

with constants C1,C2 which we computed above.

11



As in d=2 this can be now used to obtain a-priori estimates for the measure by taking the average
and use “stationarity”.

Remark. I'm ignoring some technical problem which need to be addressed, in particular one
cannot construct stationary solutions to the equation for ℍ, as a consequence both Φ and Ψ are
not stationary and the argument to get the appropriate estimates in average has to be modified. But
the changes are minor.

Anyway one obtain at the end that for any t∈[0,T],

𝔼��
𝕋𝜀
3
[|∇𝜀Ψt|2+m2Ψt

2]+ 𝜆
2�𝕋𝜀

3
Φt
4�⩽𝔼Q(𝕐𝜀),

which given the relation of Ψ,Φ with X allows to obtain tightness, i.e. one can prove that

sup
𝜀
𝔼�‖X0

𝜀‖H−1/2(𝕋𝜀
3)

p �<∞,

for any p>1. And even better, with some more care one can prove that

sup
𝜀
𝔼�exp�𝛽‖X0

𝜀‖H−1/2(𝕋𝜀
3)

1−𝜅 ��=sup
𝜀
�exp�𝛽‖𝜑‖H−1/2(𝕋𝜀

3)
1−𝜅 �𝜈𝜀(d𝜑)<∞,

for small 𝜅>0 and 𝛽>0. So the measure 𝜈𝜀 allows uniform exponential integrability for some
power less than 1 of the norm ‖𝜑‖H−1/2(𝕋𝜀

3). This is more than enough to obtain tightness.

12 The Φ3
4 measure without cutoffs

We must now combine the 𝜀→0 proof with the M→∞ proof. This is not difficult but one needs
to pay attention to some subtle detail.

Let us start by noting that the above a-priori estimates works also with weights, i.e. instead of
testing the elaborated equation with Φ one tests with 𝜌2Φ for some polynomial weight 𝜌. This
make appear weighted Besov norms of the type

‖𝜌𝜎𝕐1‖C([0,T],𝒞−1/2−𝜅(Λ𝜀,M)), ‖𝜌
𝜎𝕐2‖C([0,T],𝒞−1−𝜅(Λ𝜀,M)), . . .

for some 𝜎>0, and also norms like

‖𝜌1/2Φ‖L4(Λ𝜀,M), ‖𝜌∇𝜀Φ‖L2(Λ𝜀,M), ‖𝜌Φ‖L2(Λ𝜀,M)

for the solution. The first point is to make sure that norms like

‖𝜌𝜎𝕐1‖C([0,T],𝒞−1/2−𝜅(Λ𝜀,M))

12



are uniformly bounded in M as M→∞. The idea is that all the processes (𝕐𝜏)𝜏 growth at infinity
at most polynomially with a small power, e.g. one can prove

|Δi𝕐t
1(x)|⩽C (1+ |x|)𝛿(1+ |t|)𝛿, t∈ℝ, x∈Λ𝜀,M

uniformly in M and 𝜀 for some finite random constant C. It is somehow clear that one cannot get
better estimates, in particular this kind of stochastic processes cannot be bounded in the full space
without weight.

Example. A discrete model. Let (Gn)n⩾1 a family of i.i.d 𝒩(0,1), then one can prove that there
exists a random constant C<∞ almost surely such that

|Gn(𝜔)|⩽(C(𝜔)+c log1/2n), n⩾1

almost surely for some deterministic constant c. To prove this one shows that

Q(𝜔)≔�
n⩾1

1
n2

e𝛽|Gn(𝜔)|2

is integrable for small 𝛽. This implies that it is finite a.s. and then of course that

e𝛽|Gn(𝜔)|2⩽n2Q(𝜔), ⇒ |Gn(𝜔)|⩽�
2
𝛽 logn+ 1

𝛽 logQ(𝜔)�
1/2

for all n⩾1.

However the biggest problem come from the equation of ℍ:

ℍ=−𝜆2 𝕐
[3]− 3𝜆2 ℒ−1(𝕐2≻ℍ),

since it cannot be solved in weighted spaces: indeed there is a loss of weight in the estimate of the
second term. One can then use a trick to solve this problem. See the paper.

At the end one obtains estimates of the form

sup
𝜀,M

𝔼𝜀,M[exp(𝛽‖𝜌X0
𝜀‖H−1/2(Λ𝜀)
1−𝜅 )]=sup

𝜀,M
�exp(𝛽‖𝜌𝜑‖H−1/2(Λ𝜀)

1−𝜅 )𝜈𝜀,M(d𝜑)<∞. (7)

It is well enough to have full tightness both in the 𝜀→0 and in the M→∞ limit, irrespective of
the size of 𝜆 (can be arbitrary large). This is a fully non-perturbative technique.

In conclusion one obtain accumulation points of the family (𝜈𝜀,M) and then it is easy to prove
that any of these acc. points is translation invariant and RP, moreover the estimate (7) allow
to prove the technical condition required by the OS reconstruction. Any limit point 𝜈 give rise
to a translation invariant (no rotation so far), RP and “nice” measure and then to a QFT by OS
reconstruction.

13



We do not have uniqueness, nor rotation invariance. If one can prove uniqueness it should be
“easy” to prove rotation invariance.

13 Some properties of Φ3
4

Let's now prove some properties of this measure. First of all that for any 𝜆>0 any accumulation
point is non-Gaussian.

Remark. Ideally one would like to have non-triviality, i.e. that the corresponding QFT describes
interacting particles. A Gaussian measure is trivial.

Let us call 𝜈 a arbitrary accumulation point. The first remark is that one can actually prove tight-
ness for the triple of stationary processes �X𝜀,M,Y𝜀,M,𝕐𝜀,M

[3] �𝜀,M. Let us call

(X,Y ,𝕐[3]),

a limit in law of the family. Of course X0∼𝜈 (i.e. is an accumulation point for (𝜈𝜀,M)𝜀,M). But
we have also the dynamics and a coupling of X,Y , in particular this coupling satisfy the same
estimates as we have before the limit, that is

𝜁≔X −𝕐1+ 𝜆
2 𝕐

[3]∈H1−𝜅

in particular we have that

�Δi X −Δi𝕐1+ 𝜆
2 Δi𝕐[3]�≈ (2i)−1+𝜅.

This estimate tells us that there exists a coupling between the interacting field X and the free field
Y so that X is in “first approximation” given as above. In this very precise sense that if I look
at the interacting field Δi X at high-momenta, then I see essentially the free field Δi Y and then
a correction 𝜆

2 Δi𝕐[3] coming from the interaction (first-order in perturbation theory) and the
something else whose size is well controlled. This is not perturbation theory because 𝜆 can be
very large.

This is an expression of asymptotic freedom in the UV of the theory.

In order to show that X0 is not gaussian one can show that the 4-th moment is not given by the
usual formula for Gaussians. So we look at four-point function

U4
i(X,X,X,X)≔𝔼[Δi X0(x)Δi X0(x)Δi X0(x)Δi X0(x)]−3(𝔼[Δi X0(x)Δi X0(x)])2

and we want to prove that

U4(X,X,X,X)≠0

because this implies that X is non-Gaussian. Note that

U4(Y ,Y ,Y ,Y)=0

14



since Y is Gaussian. Moreover U4 is a multilinear function, so we can use our decomposition of
X to write

X=Y − 𝜆2 𝕐
[3]+𝜁,

and

U4(X,X,X,X)=U4(Y ,Y ,Y ,Y)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=0

−2𝜆U4(Y ,Y ,Y ,𝕐[3])

+cU4(Y ,Y ,𝕐[3],𝕐[3])+cU4(Y ,𝕐[3],𝕐[3],𝕐[3])+cU4(Y ,Y ,Y , 𝜁)+ ⋅ ⋅ ⋅

An explicit computation shows that (both upper and lower bounds)

U4(Y ,Y ,Y ,𝕐[3])≈𝔼|Δi Y |3�
(2i)3/2

|Δi𝕐[3]|�
(2i)−1/2

≈(2i)3/2−1/2≈2i,

and rough bounds show that

|U4(Y ,Y ,𝕐[3],𝕐[3])|≈[(2i)1/2+𝜅]2[(2i)−1/2+𝜅]2≈(2i)4𝜅

and all the other terms are as small and cannot compensate for U4(Y ,Y ,Y ,𝕐[3]) so finally one
deduce that

U4(X,X,X,X)=−2𝜆U4(Y ,Y ,Y ,𝕐[3])+O((2i)(1/2+5𝜅))≠0

for i large enough and 𝜆≠0. This proves non-Gaussianity of X0. And actually shows that the
correlation functions in the UV are given by first order perturbation theory.

14 Conclusion
The lectures end here. Our main goal was to present several topics:

• The basic conceptual structure of QM and link with probability theory via the Euclidean
approach

• The meaning of RP as the bridge between QM and EQM or QFT and EQFT.

• How stochastic quantization via a Langevin equation allows to study certain “difficult” mea-
sures as push-forward of “easy” Gaussian measures.

• How to control the infinite volume limit via PDE arguments involving weighted spaces.

• How to control the UV limit via paraproducts and decompositions involving paraproducts.

• How divergences can be extracted and matched with local counter-terms in the “bare” inter-
action.

• How the resulting measure can be analyzed via the decompositions obtained and the coupling
with the free theory (despite the fact that Φ3

4 is not absolutely continuous wrt. the free field).
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