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DISCLAIMER
Many of the statements in this
note are not literally true The intent
is to touch on the key ideas and
sometimes rigor is sacrificed as a result
In the talk I will try to mention
which statements are only approximately
true

CONCEPTUAL POINT
Understand how geometri and
singular SPDEs

interact Stillmuch
left to figure out



Stochastic Abelian Higgs
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It's not necessary but for convenience
we will workwith the initial data
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Local solution ansatz
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First attempt at global theory
let
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and try to obtain energy estimates
on Y Equation for y
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OBSTACLE
Can not absorb

Reflection the 1H12 arises b c
we defined

de Δ 9 9

as one always does for localtheory
Idea why not define modified linear
object by

de DADA 9A SHE

Forget about SAH for the moment
Take A deterministic What bounds
on SHE can we hope for



DII write as

t Δ 9A 212 APA IARA

Once you do this you just LOSE
Instead write as
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where pA is the covariant heat
kernel

Estimate 2ⁿᵈ moment
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Diamagnetic inequality forheat
kernel

IPA say t x play tix 1.1

Follows by Feynman Kac Ito
formula

PACS Yit x
t

pesiyitix7Es.se expfifsduAluWalodWa

Here W is a rate 2 BB
S y t x

Remark
The term has a beautiful
interpretation as the expectation
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of stochastic parallel transport
of the connection A alongthe
Brownian path W

Thus obtain
t
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of course this is a so need to
add in some smoothing

From this one can getbounds
on la which are essentially independent
of A
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in practice give up a power of A

Back to SAH We would like to
take 9A but problem is that A
and Y are dependent

Workaround take B etAAo
and work with

TB

This leads to unsatz
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where
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By applying various energy estimates
to the evolution of

17,4
and estimating various functionals
of 913



can eventually show forTECO 1 and
r very large y very small
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The point is to reduce the dependence
on Ao as much as possible



Remark
Technically 4 only has 1
regularity so cannot directly
apply energy estimates to 4 b c
a term like

IDA412

appears and this will be infinite

Thus we have to truncate at
frequency L where L is large
relative to the initial data At
tot and apply energy estimates tothe low frequency portion of 4
The high frequency portion turns
out to be amenable to perturbative
estimates essentially by the same
arguments as in the local theory
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Remark The 11A Ex term
in Z arises from estimating the
covariant quadratic object

IB Duh Im TBDB

Unlike for the usual quadratic
object this object actually has
a nonzero resonant term and
in the end we bound
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The non resonant piece satisfiesthe better bound



Ell IP 1
exam

in that there is no Ao dependence

Actually give up E power in
practice

The proofs of these bounds on

B

rely on covariant energy estimates
which lead to operator bounds for
integral operators such as
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It turns out that the estimates
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are enough to obtain global
existence for all odd 8 3
though this is far from obvious
at least to us

In the following we sketch the
argument Fix parameters

β 8 27

These parameters are chosen to
satisfy all the inequalities that
will appear
Take time scale
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We first prove some crude estimates
of 4 and Z using
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As in Session 3 we may
bound
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If 14H lly Gmax 1171142,1where
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for all E 0,5 then
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caitiff
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Thus 1414114 11401kg and
moreover if
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have that
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Note this extra C1 decay is
important for the global iteration later

Otherwise suppose there exists
te 10,0 St

114Cally Imax 11211 4,1

Then by similar arguments as
in Session 3 can show at
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Thus
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Suppose we guess that in fact
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Then the bound for Z gives
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sine I 11401T 1110154

Thus at best we can hope for

11711
gey

1140112 Cz
where 25 C1

By applying the continuity method
can show that indeed

1144cg 1140114 1

11211
ex

114011 Cz
where O Vcc 1 fixed

The continuity method is essentially
continuous induction first verify that
the bound holds at t o trivial



since 710 0 then show that if
bound holds on an interval 0 1

lot then in fact have the stronger
hounds on the same interval

1144cg 1140114

1121k ex
114011

by plugging in the assumed bounds
into and arguing as before
Since 4 Z are continuous in time
this implies that the assumed bounds
in fact hold on some slightly larger
interval 10,4 where ECTKE
assuming that t.ae otherwise we
are done

For instance plugging the assumed
bound into obtain
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Can absorb

Cit Ct it a

Next

114.111
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provided assuming also 114011 551

1 β 12 E 1 L Z E
recall β and take q 3 say

Can also absorb
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1140112 a 11 112
Etr

also assuming 114011 551

Similarly to bound 4
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If
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and so obtain

Hulley 114011

Finally we use the continuity bound
and to prove refined estimates
which allow us to iterate in time
Claim

max HAE Kelley 1194 Kelly

e max HA 1 Holly 4

Clearly once this is shown we may
iterate in time to obtain a soft
global existence statement With more
effort can prove uniform in time bounds



in the relevant norms

Have that
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By probalistic estimates can show
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First suppose max 1115119 11451113 4
Then we simply use the continuitybound
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and so
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Thus we may assume
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Next assume that
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Then
in 114515

From the bound with I



note 114511 G 11 11 7 C1
since β E 283 obtain that
either
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or
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can bound whole thing by
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This shows the bound for
1146 94711

To bound HAG 91411 apply the
continuity bound to obtain
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and using that

8 E 21
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can bound by
111 11

This shows the case 11 11β 11AM

Finally suppose 11A 119 5 1145113
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Then by the continuity bound
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We claim that
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To see this recall In 11A It
thus we want to show
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this inequality holds and thus
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ecellAill
It follows that
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finishing the proof of the claim


