
LECTURES ON GEOMETRIC SINGULAR ANALYSIS, WITH

APPLICATIONS TO ELLIPTIC AND HYPERBOLIC PDE

PETER HINTZ

Abstract. These lectures provide an introduction to geometric singular analysis, a sys-
tematic framework for the study of partial differential equations (PDE) on noncompact or
singular spaces, and of families of PDE depending on a parameter which become singular
as the parameter tends to 0. We illustrate this framework in a number of examples rang-
ing from the Laplace operator on Euclidean space, possibly with a singular potential or
with a family of potentials which become singular at a point, and the Dirichlet problem
on polygonal domains to hyperbolic problems such as the wave equation in the interior of
a Schwarzschild black hole or on Minkowski and de Sitter spacetimes. Various problems
invite the reader to work out details and further examples.
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1. Introduction and motivation

The goal of these lectures1 is to introduce a general-purpose perspective, called2 geometric
singular analysis, for the analysis of partial differential equations (PDE) in the following
contexts.

(1) PDE on noncompact spaces such as Rn. A typical example is the Laplacian3 ∆ =
−
∑n

j=1 ∂
2
xj

, where we write x = (x1, . . . , xn) ∈ Rn.

(2) PDE on singular spaces, or PDE with singular (but structured) coefficients. Exam-
ples include the Laplacian with a Coulomb potential ∆− 1

|x| , where we are interested

in the behavior near |x| = 0, or the Laplacian on polygonal domains in R2.
(3) Families of PDEs depending on a parameter ε > 0 which degenerate or become

singular as ε ↘ 0. An example is ∆x + W (x) + ε−2V (x/ε) on Rnx, where W,V ∈
C∞c (Rn).

As we shall see, item (1) is really a (very important) special case of item (2) via the
process of compactification of the noncompact space. Moreover, in the study of singular
family of PDEs, the key work often lies in analyzing individual PDE on suitable singular
spaces. We discuss this in the example of item (3) in §7.1.

1The author produced these notes for his lectures at the PDE mini-school at the University of North
Carolina, Chapel Hill, on March 24–26, 2023. Many thanks to the organizers, Yaiza Canzani and Jian
Wang, for their kind invitation, and to their NSF RTG grant “Partial Differential Equations on Manifolds”
(DMS-2135998) for supporting the mini-school.

2The term ‘geometric microlocal analysis’ is also often used, especially in the context of constructing
(approximate) solutions for PDE on singular spaces. In these lectures, we shall not employ any microlocal
tools however, as the PDE we shall study are not particularly complicated.

3The sign convention used in these notes makes ∆ a non-negative operator, i.e. 〈∆u, u〉L2(Rn) ≥ 0 for all

u ∈ C∞c (Rn).
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1.1. The Laplacian on R3. As our first example of a partial differential operator on a
non-compact space, consider the operator

∆ = −
3∑
j=1

∂2
xj (1.1)

on R3. A good functional analytic setup for the global analysis P is not entirely trivial to
find. Ideally, we would like to find function spaces X ,Y so that P ∈ L(X ,Y) is a bounded
linear map with

• finite-dimensional nullspace (‘almost’ uniqueness),
• closed range (so that solutions of Pu = f , if they exist, can be found with norm

control ‖u‖X ≤ C‖f‖Y),
• finite-dimensional cokernel (‘almost’ solvability, i.e. Pu = f ∈ Y has a solution if

and only if f satisfies finitely many linearly independent constraints).

That is, we would like P to be a Fredholm operator from X to Y. Hölder spaces Ck,α(R3)
would be acceptable if one only cares about elliptic PDE; but hyperbolic equations (like
the wave equation) demand L2-based function spaces. In these notes, we will only work
with L2 spaces. A natural first attempt for the operator (1.1) is then to take X = H2(R3),
Y = L2(R3). (Further credibility to this choice comes from the fact that P is self-adjoint on
L2(R3) with domain H2(R3).) However, ∆: H2(R3)→ L2(R3) does not have closed range.
This remains true on all weighted Sobolev spaces too. See Problem 1.3. Thus, standard
weighted Sobolev spaces are not appropriate for our aims.

By contrast, since the Laplacian ∆g on a compact Riemannian manifold (M, g) without
boundary is Fredholm H2(M)→ L2(M) (with nullspace spanned by constants, and range
equal to the orthocomplement of the space of constant functions). Thus, the failure of the
closed range property of ∆: H2(R3)→ L2(R3) must be due to the non-compactness of R3.

A weak hint as to what is going on is given by the observation that if f ∈ C∞c (R3), then
the solution

u(x) =
( 1

4π| · |
∗ f
)

(x) =
1

4π

∫
R3

f(y)

|x− y|
dy

of ∆u = f has a full asymptotic expansion as |x| → ∞,

u(x) = |x|−1f1

( x
|x|

)
+ |x|−2f2

( x
|x|

)
+ . . . , |x| → ∞.

(See Problem 1.4.) If one (formally) differentiates this expansion along ∂xj , one gains a
factor of |x|−1. Thus, a more appropriate notion of regularity in |x| > 1 should be regularity
under application of the vector fields |x|∂xj , j = 1, . . . , 3.

In order to focus on a ‘neighborhood of infinity’, we introduce inverse polar coordinates

ρ := r−1 = |x|−1, ω =
x

|x|
∈ S2.

The Laplace operator is

∆ = −∂2
r −

2

r
∂r + r−2∆S2

= −(−ρ2∂ρ)
2 − 2ρ(−ρ2∂ρ) + ρ2∆S2

= ρ2
(
−(ρ∂ρ)

2 + ρ∂ρ + ∆S2
)
, (1.2)



4 PETER HINTZ

where ∆S2 = − 1
sin θ∂θ sin θ ∂θ−(sin θ)−2∂2

φ in standard coordinates θ ∈ (0, π), φ ∈ (0, 2π) on

the sphere S2. Thus, ρ−2∆ is constructed from ρ∂ρ and spherical derivatives, and it is an
elliptic operator of this type (i.e. its leading order part is a positive definite quadratic form
in ρ∂ρ, ∂θ, ∂φ). We say that ∆ is a (weighted) b-differential operator. A natural notion
of regularity for solutions of ∆u = f is thus regularity under precisely these derivatives
(called b-regularity). One can check that this is the same as regularity under the vector
fields |x|∂xj .

We are thus led to define weighted b-Sobolev spaces Hs,α
b for s ∈ N0 and α ∈ R by

Hs,α
b =

{
u : (〈x〉∂x)β(〈x〉αu) ∈ L2 ∀β ∈ Nn0 , |β| ≤ s

}
. (1.3)

(Usage of 〈x〉∂x ensures that we are recovering the standard Sobolev spaces over compact
subsets of R3, in the sense that if u ∈ Hs,α

b , then χu ∈ Hs(R3) for all χ ∈ C∞c (R3).) This
is a Hilbert space with squared norm

‖u‖2Hs,α
b

=
∑
|β|≤s

∥∥(〈x〉∂x)β(〈x〉αu)
∥∥2

L2 .

We have 〈x〉2∆: Hs,α
b → Hs−2,α

b for s ≥ 2, α ∈ R. (See Problem 1.5.) We might then hope
that

∆: Hs,α
b → Hs−2,α+2

b

is Fredholm. This is almost true: the weight α needs to be chosen carefully (namely, it
must avoid the discrete set 1

2 + Z). One can moreover show that for α ∈ (−3
2 ,−

1
2), this

operator is invertible.

One can see why a condition on α is necessary by considering the action of ρ−2∆ on
separated functions of the form ρλv(ω), which is

ρ−2∆(ρλv) = ρλN(ρ−2∆, λ)v, N(ρ−2∆, λ) := −λ2 + λ+ ∆S2 ∈ Diff2(S2). (1.4)

Restricting v further to be a spherical harmonic Ylm(ω) of degree l ∈ N0, N(ρ−2∆, λ)
becomes multiplication by −λ2 + λ + l(l + 1) = −(λ + l)(λ − l − 1). This vanishes for
λ = −l, l+ 1, corresponding to the fact that u(ρ, ω) := ρλYlm(ω) ∈ ker ρ−2∆. This function
should be regarded as relevant only near ρ = 0; let thus χ ∈ C∞c ([0, 1)ρ) be identically 1

near 0. For α = −3
2 + λ, the function χ(ρ)u(ρ, ω) just barely fails to lie in H2,α

b , and then

uε = χ(ρ)ρεu(ρ, ω) blows up in H2,α
b as ε↘ 0, while ∆uε remains bounded in H0,α+2

b . (See
Problem 1.5.)

The computation (1.4) also tells us what to expect about the asymptotic behavior of
solutions of ∆u = 0 (or ∆u = f where f ∈ S (R3), say): they have asymptotic expansions
as |x| → ∞, or equivalently ρ ↘ 0, into terms of the form ρλYlm(ω) where λ = −l, l + 1.
Note, finally, that the operator family N(ρ−2∆, λ), insofar as it controls the asymptotic
behavior of solutions of ∆u = f at infinity, should be regarded as living ‘at (the sphere at)
infinity’ in R3, i.e. at ‘ρ = 0’. Thus, we wish to add to R3 this sphere at infinity; this is
accomplished via the radial compactification R3, defined more generally for Rn as

Rn :=
(
Rn t

(
[0,∞)ρ × Sn−1

))
/ ∼,

Rn \ {0} 3 x = rω ∼ (r−1, ω).
(1.5)

This is a compact manifold with boundary ρ−1(0); it is diffeomorphic to the closed unit
ball. See Figure 1.1.
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ρ = r−1
Rn

∂Rn

Figure 1.1. The radial compactification R3 of R3, obtained by attaching a
sphere S2 = ρ−1(0) ‘at infinity’ to R3, where ρ = r−1.

Theme I.1. Infinity is closer than you might think. Working ‘locally near infinity’
(ρ = 0) in a systematic fashion allows one to see the structure of the PDE clearly, understand
its mapping properties, and read off the expected asymptotic behavior of solutions.

Theme I.2. Infinity is a singular place: PDEs typically degenerate in some (controlled)
fashion there. (Cf. the appearance of ρ∂ρ, not ∂ρ, in (1.2).)

As hyperbolic examples, we shall discuss the wave equation near a Schwarzschild singu-
larity in §3.2 and the wave equation on de Sitter space in §3.3.

1.2. Singular PDE. We already encountered a singular PDE that did not look like one
at first sight, namely the Laplace operator on R3 which is singular at infinity ρ = 0, cf.
(1.2). Other types of singularities are less hidden. One example is the following operator
near the origin of R3 (with Z ∈ R):

P := ∆− Z

|x|
= −∂2

r −
2

r
∂r + r−2∆S2 −

1

r
= r−2

(
−(r∂r)

2 − r∂r + ∆S2 − Zr
)
. (1.6)

If we regard this as an operator on (0,∞)r × S2, this looks quite similar to (1.2), except
for the presence of the term r in parenthesis. If one seeks approximate elements in the
nullspace of this operator of the form rλv(ω), one is led to the operator

N(r2P, λ) = −λ2 − λ+ ∆S2 ∈ Diff2(S2)

which is the same as (1.4) except for a sign change in λ. This operator, on the 2-sphere,
wants to live at r = 0. To make this happen, one regards polar coordinates as valid down
to r = 0, and thus considers P as a (weighted) b-differential operator on

[R3; {0}] := [0,∞)r × S2.

This manifold is called the blow-up of R3 at {0}. The smooth map [R3; {0}] 3 (r, ω) 7→ rω ∈
R3 is a diffeomorphism on {r > 0}, but the preimage of {0} is a 2-sphere. This perspective
has the following benefits.

(1) The operator r2P , regarded as a second order b-differential operator (constructed
from r∂r and angular derivatives) on [R3; {0}], has smooth coefficients. Thus, we
have exchanged analytic complexity (singular potential) on a simple space (R3) for
analytic simplicity (smooth coefficients) on a more complicated space ([R3; {0}]).
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(2) On the more complicated space [R3; {0}], the analysis of P naturally takes place in
the already familiar b-Sobolev spaces.

(3) Solutions of Pu = 0 have asymptotic expansions as r ↘ 0 into terms of the form
rλYlm(ω) where λ = −l − 1, l with l ∈ N0 (and possibly involving log r terms, too).
This is as simple a behavior as one can hope for at a boundary hypersurface when
studying a degenerate PDE.

Other examples of singular PDEs, such as the Laplacian on manifolds with conic singu-
larities, or the Laplacian on polygonal domains in R2, will be discussed in these notes as
well.

Theme II.4 One should trade analytic complexity (singularities) for geometric complex-
ity (e.g. via blowing up submanifolds). This cleanly exhibits the analytic structure of the
singularity, and the behavior of solutions near the singularity will be simple(r) on the more
complicated manifold.

As a hyperbolic example, we will discuss the wave equation on Minkowski space in §5.3.

Some readers might want to argue that compactifications and blow-ups do nothing but
introduce more appropriate (singular) local coordinates near infinity or some other type of
singularity; so one might as well forget about the blow-up and work with the singular local
coordinates. But then again: nobody really questions the utility of the notion of a smooth
manifold, which one could dispense of if one formulated everything in local coordinates and
described how estimates and notions of regularity etc. in different local coordinates patch
together. The ‘compactification/blow-up/manifolds with boundary or corners’ perspective
provides the analogue of the smooth manifold notion for singular analysis. Even a skeptic
may thus consider these simply as highly efficient organizing tools. (In more complicated
settings, such as spaces whose singularities have an iterated structure, such as stratified
spaces, one would get rather completely lost without these tools.)

1.3. Singular limits. Let W,V ∈ C∞c (R3), and consider for ε > 0 the operator

Pε = ∆ +W + ε−2V (·/ε)
on R3. As ε ↘ 0 and for x 6= 0, this (naively) converges to P0 := ∆ + W . On the other
hand, if we set x̂ = x

ε , then for fixed x̂ and as ε↘ 0,

ε2Pε = −
3∑
j=1

ε2∂2
xj + ε2W (x) + V (x/ε) = −

3∑
j=1

∂2
x̂j + V (x̂) + ε2W

→ P̂ := ∆̂ + V (x̂),

where ∆̂ is the Laplacian in the x̂-coordinates. Thus, P̂ lives on R3
x̂, but also somehow at

x = ε = 0. Moreover, the points x(ε) = ε1/2ω (where ω ∈ S2 is fixed) converge to 0 in

the x-coordinates as ε ↘ 0, but x̂(ε) = x(ε)
ε = ε−1/2ω converges to infinity in R3

x̂ in the

direction ω. So somehow infinity of R3
x̂ is attached to r = 0 in R3

x. The way to make these

4The distinction between Themes I.2 and II is typically not very clear-cut. Sometimes the first guess for
the compactification of the noncompact manifold on which some PDE might be easily analyzable turns out
to not be good enough yet (e.g. solutions are still highly singular on it), and the correct manifold is really
a blow-up of it. But then one could ask why one picked the wrong compactification in the first place.
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ideas rigorous is to consider Pε as a single differential operator on [0, 1)ε × R3
x and blow

up ε = x = 0. See Figure 1.2 (albeit in two dimension less, for artistic reasons). In this

manner, the limit of Pε as ε↘ 0 is described by one operator (P̂ ) on a compactification of
R3
x̂ and another operator (P0) on [R3

x; {0}].

ε

x̂ = x
ε

ε

x

Figure 1.2. Blow-up of [0, 1)ε × Rx at ε = x = 0, and some local coordinates.

For example then, if both P̂ and P0 are invertible, on function spaces which are related
in an appropriate manner at the corner at the intersection of the two limiting regimes, then
one can hope to prove the invertibility of Pε for small ε > 0. We will carry this out in detail
in §7.1.

Theme III. Analyze families of PDE which depend on a parameter in a singular manner
by studying all operators at once on a total space which incorporates both the underlying
manifold and the parameter, and which is resolved (blown up) so as to exhibit all different
asymptotic regimes.

As an example from general relativity, we sketch in §7.2, following [HX22], how to study
the quasinormal mode spectrum of Schwarzschild–de Sitter black holes in the limit that the
black hole mass is small.

1.4. Plan of these lectures. In §2, we describe the notions of b-geometry and b-analysis
on general manifolds with boundary, including b-vector fields and b-differential operators
and their normal operators and indicial families, b-Sobolev spaces, and asymptotic expan-
sions (‘polyhomogeneity’). We discuss applications of this theory in §3.

The general procedure of blow-ups of suitable submanifolds of manifolds with corners is
discussed in §4. We apply it to a variety of settings (mentioned in §1.2 above) in §5.

In §6 finally, we describe, following the motivation in §1.3, how to study (a certain class
of) singular limits of families of PDE using techniques from geometric singular analysis,
with examples gives in §7.

1.5. Further reading. Grieser’s notes on the b-calculus [Gri01] provide a detailed in-
troduction to and motivation for many notions discussed here, including manifolds with
corners, blow-ups, conormality, and polyhomogeneity. The focus of later parts of those
notes is on distributions and pseudodifferential operators on manifolds with boundary. (By
contrast, in these notes, we do not use any microlocal techniques.) For a textbook account
of (microlocal) b-analysis, with applications to index theory, see Melrose’s book [Mel93]; see
also [Hör07, §18.3]. A systematic, extensive, and general treatment of analysis on manifolds
with corners is Melrose’s book (in progress) [Mel96].
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On average, applications of geometric singular analysis techniques in the literature are
skewed towards elliptic theory (spectral theory, Fredholm analysis, index theory) and re-
lated topics (such as heat kernel asymptotics) on noncompact and/or singular spaces, often
via the construction of parametrices (approximate inverses) and their integral (‘Schwartz’)
kernels. Important examples concern the spectral theory on asymptotically hyperbolic
manifolds [MM87] and low energy resolvent asymptotics on asymptotically conic spaces
[GH08]. Spectral theory on asymptotically Euclidean spaces has a non-elliptic character
when viewed through the lens of singular (‘scattering’) analysis on the radial compactifica-
tion [Mel94]. Vasy’s lecture notes [Vas18] provide a detailed account of microlocal analysis
in this setting.

Early non-elliptic applications include studies of local interactions of singularities for
nonlinear wave equations [MR85]. Applications to the global theory of (non)linear wave
have only emerged more recently [Vas10, MSBV14, Vas13, HV15], with applications to
nonlinear stability problems in general relativity [HV18, Hin18]. In these lectures, we
briefly describe two such examples using only ‘hands-on’5 techniques on de Sitter space
in §3.3 (following [Vas10, HX22]) and Minkowski space in §5.3 (following [HV20, Hin23]).
We also re-interpret some results in the literature in geometric singular analysis terms, e.g.
results by Fournodavlos–Sbierski [FS20] on the behavior of waves near the Schwarzschild
singularity in §3.2.

Geometric singular analysis has featured implicitly in gluing constructions and singular
perturbation theory; for explicit examples (and references to earlier gluing results), we
refer the reader to [KS22, SS21, HX22, Hin21, Hin22]. We briefly sketch one such example
in §7.2.

1.6. Problems.

Problem 1.1 (Utility of closed range). Let A : X → Y be an operator between two Banach
spaces (X, ‖ · ‖X), (Y, ‖ · ‖Y ). Show that A has closed range if and only if there exists a
constant C < ∞ so that for all y ∈ ranA there exists x ∈ X with Ax = y and ‖x‖X ≤
C‖y‖Y .

Problem 1.2 (Derivative on R). Show that d
dx : H1(R) → L2(R) has trivial nullspace

and dense but not closed range. Make the final statement explicit by finding a sequence
fj ∈ L2(R) in the range so that fj → f ∈ L2(R) does not lie in the range.

Problem 1.3 (Laplacian on Rn). Let n ≥ 1. Show that ∆: H2(Rn)→ L2(Rn) has trivial
nullspace and dense but not closed range. Show that for all s, α ∈ R,

∆: Hs,α(Rn) = {u ∈ S ′(Rn) : 〈x〉αu ∈ Hs(Rn)} → Hs−2,α(R)

has finite-dimensional kernel, but its range is not closed (but the closure of the range may

be positive-dimensional). Here 〈x〉 = (1 + |x|2)1/2. Hint. First prove this for α = 0.
Deduce the general statement from this by showing that 〈x〉−α∆〈x〉α = ∆ + Rα where
Rα : Hs → Hs−2 is a compact operator (use the Rellich compactness theorem).

5occasionally termed ‘physical space’, and in any case not microlocal
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Problem 1.4 (Asymptotic expansion). Let f ∈ C∞c (R3) and u = 1
4π|·| ∗ f . Show that there

exist fj ∈ C∞(S2), j = 1, 2, . . ., so that

u ∼
∞∑
j=1

|x|−jfj
( x
|x|

)
, |x| → ∞,

in the sense that rN (x) := u −
∑N−1

j=1 |x|−jfj(
x
|x|) satisfies |∂αx rN (x)| ≤ CN,α|x|−N−|α| for

all N ∈ N and α ∈ Nn0 . Compute f1.

Problem 1.5 (Laplacian on weighted b-Sobolev spaces). Recall the definition of the func-
tion space Hs,α

b on R3 from (1.3). Use polar coordinates x = rω on R3.

(1) Let s ≥ 2, α ∈ R. Show that ∆: Hs,α
b → Hs−2,α+2

b is a bounded linear operator.

(2) Let s ∈ N0. Show that 〈x〉−λ ∈ Hs,α
b if and only if α < −3

2 + λ. (Hint. Do this first
for s = 0.)

(3) Let λ ∈ {l,−l − 1}. Fix χ ∈ C∞c ([0, 1)) to be identically 1 near 0. Write ρ = |x|−1.
For ε > 0, let uε(x) = χ(ρ)ρλ+εYlm(ω), and let α = −3

2 + λ. Show that ‖uε‖H2,α
b
↗

∞ as ε↘ 0, while lim supε↘0 ‖∆uε‖H0,α+2
b

<∞.

(4) Deduce that for α ∈ 1
2 + Z, the operator ∆: H2,α

b → H0,α+2
b does not have closed

range.
(5) Compute, for every α ∈ R, the nullspace of ∆ on H2,α

b .

2. Manifolds with boundary

Throughout this section, M denotes an n-dimensional manifold with boundary. Thus,
points in M come in two flavors: those in the manifold interior M◦ which have an open
neighborhood diffeomorphic to Rn, and those in the boundary ∂M which have an open
neighborhood diffeomorphic to Rn1 := [0,∞)×Rn−1. See Figure 2.1. Examples to keep mind
are the radial compactification M = Rn of Rn defined in (1.5), in which case M◦ = Rn and
∂M is the ‘sphere at infinity’; or M = [R3; {0}] = [0,∞)r×S2, in which case M◦ = R3 \{0}
and ∂M = {0} × S2. Standard function spaces on M are

C∞(M), Ċ∞(M) := {u ∈ C∞(M) : u vanishes to infinite order at ∂M}.
Let us write V(M) = C∞(M ;TM) for the space of smooth vector fields on M . In local
coordinates x ≥ 0, y ∈ Rn−1 near a boundary point, these are linear combinations of ∂x, ∂yj
(j = 1, . . . , n−1) with smooth coefficients. For m ∈ N0, we write Diffm(M) for the space of
m-th order differential operators: these are locally finite sums of up to m-fold compositions
of elements of V(M). (For m = 0, Diff0(M) is the space of multiplication operators by
elements of C∞(M).)

Already at this point, we note how working on compact manifolds with boundary captures
uniform behavior very cleanly: in the case of Rn, smooth functions u ∈ C∞(Rn) are not
only automatically bounded as |x| → ∞, but in fact they are smooth functions of 1

|x| and
x
|x| down to 1

|x| = 0. That is, they have an asymptotic expansion

u ∼
∞∑
j=0

|x|−juj
( x
|x|

)
, uj ∈ C∞(Sn−1) (|x| → ∞). (2.1)

See Problem 2.1.
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M

H2H1

Figure 2.1. A compact manifold M whose boundary ∂M has two con-
nected components H1, H2.

2.1. b-vector fields and b-differential operators. As we saw in (1.2) and (1.6), PDEs
on M◦ viewed from the perspective of M degenerate at ∂M , and their solutions are typically
not smooth, but rather have behavior like xz(log x)kv(y) in the best of cases. What are the
vector fields with respect to which such functions are regular? The derivatives transversal to
∂M featuring in (1.2) and (1.6) are weaker (x∂x instead of ∂x). We phrase this invariantly:

Definition 2.1 (b-vector fields and b-differential operators). The space Vb(M) ⊂ V(M) of
b-vector fields consists of all smooth vector fields which are tangent to ∂M . For m ∈ N0,
the space Diffmb (M) of b-differential operators consists of all locally finite sums of up to
m-fold compositions of elements of Vb(M).

These are sometimes called totally characteristic vector fields/operators. A b-differential

operator defines continuous linear maps C∞(M) → C∞(M) and Ċ∞(M) → Ċ∞(M); thus,
two operators Pi ∈ Diffmib (M), i = 1, 2, can be composed, and we have P1 ◦ P2 ∈
Diffm1+m2

b (M).

Concretely, Vb(M) consists of all V ∈ V(M) which in local coordinates x ≥ 0, y ∈ Rn−1

near a boundary point are of the form

a(x, y)x∂x +

n−1∑
j=1

bj(x, y)∂yj , a, bj ∈ C∞([0,∞)× Rn−1),

and b-differential operators are of the form

P =
∑

j+|α|≤m

ajα(x, y)(x∂x)j∂αy , ajα ∈ C∞. (2.2)

Near an interior point, there is no difference between differential and b-differential operators.
We then have the notion of ellipticity, which in M◦ is the standard one6 and which near
∂M and in terms of (2.2) requires

∑
j+|α|≤m ajα(x, y)ξjηα 6= 0 for all (ξ, η) ∈ (R×Rn−1) \

{(0, 0)}.
In order to study b-differential operators globally near the boundary ∂M , and also to

measure growth and decay at the boundary, we introduce:

Definition 2.2 (Boundary defining functions). A boundary defining function on M is a
nonnegative function ρ ∈ C∞(M) so that ∂M = ρ−1(0) and dρ(p) 6= 0 for all p ∈ ∂M .

Lemma 2.3 (Conjugation by weights). Let P ∈ Diffmb (M) and α ∈ R. Then ραPρ−α : u 7→
ραP (ρ−αu) defines an element of Diffmb (M).

6Namely, if P =
∑
|α|≤m aα(x)∂αx , then the polynomial

∑
|α|≤m ξ

α does not vanish for ξ ∈ Rn \ {0}.
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Proof. This is ultimately due to the fact that xαx∂xx
−α = x∂x − α. See Problem 2.7. �

This result allows us to define spaces of weighted b-differential operators,

ρ−αDiffmb (M) = {ρ−αP : P ∈ Diffmb (M)}.

Operators of this class still map Ċ∞(M) → Ċ∞(M) continuously, but of course they are
not continuous anymore as operators on C∞(M).

Example 2.4 (Regular singular ODEs). On M = [0,∞), b-differential operators are of
the form P =

∑m
j=0 aj(x)(x d

dx)j where aj ∈ C∞([0,∞)). If am(x) 6= 0, the equation

Pu = f (or Pu = 0 with specified initial data) is a regular singular ODE of order m, and
the standard method for analyzing and solving it involves the characteristic polynomial
N(P, λ) =

∑m
j=0 aj(0)λj . For example, a root λ of N(P, λ) gives rise to xλ asymptotics of

u.

Example 2.5 (Laplace operator). The function7 〈x〉−1 on Rn is a boundary defining function
on Rn, and ∆ ∈ 〈x〉−2Diff2

b(Rn). Indeed, for bounded x this says nothing more than that
∆ is a second order differential operator with smooth coefficients, whereas near ∂Rn it
follows from (1.2). The analogue of the characteristic polynomial of 〈x〉2∆ at ρ = r−1 = 0
is N(〈x〉2∆, λ) = −λ2 + λ + ∆S2 from (1.4). Moreover, ∆ ∈ 〈x〉−2Diff2

b(Rn) is elliptic (in
the sense that 〈x〉2∆ ∈ Diff2

b is elliptic).

We proceed to define the ‘characteristic polynomial’ in general. First, recall that ∂M
has a collar neighborhood, i.e. an open neighborhood of ∂M is diffeomorphic to

[0,∞)ρ × ∂M.

In such a collar neighborhood, one can write P ∈ Diffmb (M) as

P =
m∑
j=0

Pj(ρ)(ρ∂ρ)
j , Pj ∈ C∞

(
[0,∞)ρ; Diffm−j(∂M)

)
.

Freezing coefficients at ρ = 0 gives the normal operator8

N(P ) :=
m∑
j=0

Pj(0)(ρ∂ρ)
j ∈ Diffmb ([0,∞)× ∂M). (2.3)

Unlike P , which does not need to have any symmetries, the operator N(P ) is invariant
under dilations in ρ. Just as the principal symbol of P captures P modulo operators of lower
differential order, i.e. modulo Diffm−1

b (i.e. the principal symbol of P ∈ Diffmb (M) vanishes

if and only if P ∈ Diffm−1
b (M)), the normal operator captures P modulo operators with

additional decay at ∂M : if P ∈ Diffmb (M), then N(P ) = 0 if and only if P ∈ ρDiffmb (M).
It is useful to express this more quantitatively as follows: if χ ∈ C∞c ([0,∞)× ∂M) is equal
to 1 near {0} × ∂M , then χN(P )χ is a well-defined operator on M , and

P − χN(P )χ ∈ ρDiffmb (M). (2.4)

7or more precisely its continuous extension to Rn, which is then a smooth function on Rn
8One can define this in a manner that is independent of the choice of collar neighborhood, namely as a

dilation-invariant m-th order b-differential operator on the inward pointing normal bundle +N∂M .
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Next, we define the indicial family9 of P by

N(P, λ) :=

m∑
j=0

Pj(0)λj ∈ Diffm(∂M), λ ∈ C. (2.5)

(Generalizing the situation encountered in Example 2.5, we observe that if P ∈ Diffmb (M)
is elliptic, then N(P, λ) is elliptic for all λ ∈ C; see Problem 2.9.) We then define the
boundary spectrum of P to be the generalization of the set of indicial roots:10

specb(P ) := {λ ∈ C : N(P, λ) : C∞(∂M)→ C∞(∂M) is not invertible}. (2.6)

Example 2.6 (Boundary spectrum of the Laplacian). For ∆ ∈ 〈x〉−2Diff2
b(R3), we have

specb(〈x〉2∆) = {−l − 1, l : l ∈ N0} = Z. See Problem 2.10 for a generalization.

Remark 2.7 (Multiplicity). When N(P, λ)−1 is meromorphic, one can define the finer set

Specb(P ) = {(λ, k) ∈ C× N0 : N(P, z)−1 has a pole of order k + 1 at z = λ}.

In the case of a regular singular ODE, this is the set of pairs (λ, k) where λ is a root of the
characteristic polynomial and k is its multiplicity. For simplicity, we will ignore issues of
multiplicities in these lectures.

In the best of cases, solutions of Pu = f , with f = 0 or f ∈ Ċ∞(M), have asymptotic
expansions at ∂M involving terms ρλuλ where λ ∈ specb(P ) and uλ ∈ kerN(P, λ). In the
case of ‘multiplicities ≥ 1’, or when f itself has an expansion at ∂M , one should also allow
for logarithmic terms ρλ(log ρ)kuλ,k, just as in the case of regular singular ODEs.

2.2. Conormality and asymptotic expansions. A more permissive notion than smooth-
ness on M is the following:

Definition 2.8 (Conormality). Let ρ ∈ C∞(M) denote a boundary defining function. Let
α ∈ R. We then define the space of conormal functions on M as

Aα(M) := {u ∈ C∞(M◦) : ∀m ∈ N0, P ∈ Diffmb (M), χ ∈ C∞c (M) ∃C s.t. |χPu| ≤ Cρα}.

(When M is compact, one can omit the cutoff function χ here.)

One can think of α as the order of vanishing at ∂M of elements of Aα(M). For example,
we have C∞(M) ⊂ A0(M), and ρα ∈ Aα(M), while for k ∈ N we have ρα(log ρ)k ∈ Aα−ε(M)

for all ε > 0. As another example, if f ∈ C∞c (R3), then ∆−1f = 1
4π|·| ∗ f ∈ A

1(R3).

A stronger notion than conormality is polyhomogeneity : the existence of (generalized)
Taylor expansions. This is the best one can really hope for for the behavior of solutions of
b-differential equations at ∂M .

Definition 2.9 (Polyhomogeneity). An index set is a subset E ⊂ N×N0 so that (z, k) ∈ E
implies (z + 1, k) ∈ E and also (z, k − 1) ∈ E if k ≥ 1; and so that for all C ∈ R there
exist only finitely many (z, k) ∈ E with Re z < C. The space AEphg(M) then consists of all

9This is often called the Mellin-transformed normal operator family, though I do not wish to say this out
loud more than a handful of times.

10For general P ∈ Diffmb (M), this need not be a discrete set. In all our applications however, it will be.
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smooth functions u on M◦ for which, in a collar neighborhood [0,∞)ρ × ∂M , there exist
u(z,k) ∈ C∞(∂M), (z, k) ∈ E , so that

u(ρ, y) ∼
∑

(z,k)∈E

ρz(log ρ)ku(z,k)(y), ρ↘ 0.

The notation ‘∼’ means the following: if χ ∈ C∞c ([0,∞)×∂M) is equal to 1 near {0}×∂M ,
then

u−
∑

(z,k)∈E
Re z≤C

χ(ρ, y)ρz(log ρ)ku(z,k)(y) ∈ AC(M) ∀C ∈ R. (2.7)

We say that u is polyhomogeneous with index set E , or E-smooth.

The requirements on index sets guarantee that all sums in (2.7) are finite and the space
AEphg(M) is independent of the choice of collar neighborhood. As a special case, we have

AEphg(M) = C∞(M) for E = N0 × {0}, and more generally AEphg(M) = ραC∞(M) for

E = (α+N0)× {0}.
In Problem 2.13 you are tasked to show that solutions of regular singular ODEs Pu = 0

(see Example 2.4) are polyhomogeneous. Here, we prove a slightly weaker result, namely
that solutions which are conormal are necessarily polyhomogeneous. (This re-proves Prob-
lem 2.13 once one shows that solutions of Pu = 0 are necessarily conormal; see Prob-
lem 2.14.) The key tool is the Mellin transform:

Definition 2.10 (Mellin transform). The Mellin transform of a function u on (0,∞) is
defined by

(Mu)(λ) =

∫ ∞
0

x−λu(x)
dx

x
.

The inverse Mellin transform of a function v = v(λ) is, for a choice of α ∈ R, defined by

(M−1
α v)(x) :=

1

2π

∫ α+i∞

α−i∞
xλv(λ) dλ.

When u is a function on (0,∞)×Y where Y is a smooth manifold (possibly with boundary
or corners), we define its Mellin transform (Mu)(λ, y) parametrically in y ∈ Y .

Via the coordinate change x = e−t, λ = −iσ, we have (Mu)(λ) =
∫∞
−∞ e

−iσtu(e−t) dt,

which is the Fourier transform of t 7→ u(e−t). Similarly, M−1
α v is the same, in logarithmic

coordinates, as the inverse Fourier transform, with integration contour Imσ = α. For
example then, if u ∈ C∞c ((0,∞)), then (Mu)(λ) is well-defined for all λ ∈ C, and it is
indeed holomorphic. When u ∈ L2((0,∞), dx

x ), then (Mu)(λ) is well-defined as an L2-
function of λ ∈ R.

That the Mellin transform is a good tool for b-analysis is evidenced by the fact that

M
(
x

d

dx
u
)

(λ) = λ(Mu)(λ). (2.8)

This implies that N(P, λ) is the conjugation of N(P ) by the Mellin transform.

Lemma 2.11 (Mellin transform characterization of conormality and polyhomogeneity).
Let C > 0, and let u : (0,∞)→ C be a function with u(x) = 0 for x ≥ C and |u(x)| ≤ Cxβ
for some C, β.11

11One can significantly weaken these assumptions to u an element of the dual space of Ċ∞([0,∞)).



14 PETER HINTZ

(1) We have u ∈
⋃
ε>0Aα−ε([0,∞)) if and only if (Mu)(λ) is holomorphic in Reλ < α

and satisfies |(Mu)(λ)| ≤ CN (1 + | Imλ|)−N for all N .
(2) Let E ⊂ C × N0 be an index set. Then u ∈ AEphg([0,∞)) if and only if (Mu)(λ)

extends from Reλ� −1 to a meromorphic function in λ ∈ C so that

{(z, k) ∈ C× N0 : (Mu)(λ) has a pole of order k + 1 at λ = z} ⊂ E ,

and so that for all C there exists C ′ so that |(Mu)(λ)| ≤ CN | Imλ|−N for all λ ∈ C
with |Reλ| < C and | Imλ| > C ′.

Proof. The a priori assumptions on u ensure that u =M−1
γ (Mu) for all γ < β, as follows

from the Fourier inversion formula applied to x−γu ∈ L2([0,∞), dx
x ). We only prove one

direction for part (2). Namely, if (Mu)(λ) has the stated property, then in

u(x) =
1

2π

∫ γ+i∞

γ−i∞
xλ(Mu)(λ) dλ

we can shift the contour of integration from γ + iR to γ′ + iR for any γ′ > γ so that
(Mu)(λ) has no poles on γ′+ iR. The poles z of order k+1 of (Mu)(λ) with γ < Reλ < γ′

produce terms ρz(log ρ)j , j ≤ k, by the residue theorem. The integral over the final
contour lies in Aγ([0,∞)). (The conormal regularity follows from (2.8) and the rapid decay
as | Imλ| → ∞.) �

Proposition 2.12 (Conormal implies polyhomogeneous: regular singular ODE setting).
Let P =

∑m
j=0 pj(x)(x d

dx)j, with pj ∈ C∞([0,∞)) and pm(0) 6= 0, be a regular singular

ordinary differential operator. Suppose that u ∈ Aα([0,∞)) solves Pu = 0. Then u is poly-
homogeneous, with an index set depending only on the set of λ ∈ specb(P ) (with multiplicity,
i.e. really on (λ, k) ∈ Specb(P )) with Reλ ≥ α.12

Proof. Let χ ∈ C∞c ([0, 1)) be equal to 1 near 0. Write the equation Pu = 0 as

N(P )(χu) = f := [N(P ), χ]u− χ(P −N(P ))u. (2.9)

The first term on the right lies in C∞c ((0, 1)); the second term (by (2.4)) lies in Aα+1([0,∞)).
Thus f ∈ Aα+1([0,∞)), with supp f ⊂ [0, 1) compact. We now pass to the Mellin transform,

N(P, λ)(M(χu))(λ) = (Mf)(λ), Reλ < α.

Therefore, we have

M(χu)(λ) = N(P, λ)−1(Mf)(λ). (2.10)

The right hand side is meromorphic in the larger domain Reλ < α + 1, with poles at
λ ∈ specb(P ). Lemma 2.11 implies that χu is the sum of a polyhomogeneous function
(with index set determined by Specb(P )) and a conormal function in

⋃
ε>0Aα+1−ε([0,∞)).

Plugging this improved information into (2.9) shows that f is the sum of a polyhomo-
geneous function and a function in

⋃
ε>0Aα+2−ε, and thus so is χu in view of (2.10). We

can iterate this argument any finite number of times, and thus deduce that u is polyhomo-
geneous (cf. the characterization (2.7)). �

12More generally, this holds when Pu = f ∈ Ċ∞([0,∞)). More generally still, if f ∈ AFphg([0,∞)) is itself
polyhomogeneous, then so is u, and the index set of u takes into account both the boundary spectrum of P
and the index set of F . Careful inspection of the proof produces upper bounds on the index set of u.
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2.3. b-Sobolev spaces. Estimates for b-differential operators take place naturally take
place on function spaces which measure regularity with respect to b-vector fields.

Definition 2.13 (Weighted b-Sobolev spaces). Let M be a compact manifold with bound-
ary; let ρ ∈ C∞(M) denote a boundary defining function. Let µ0 be a smooth positive
density on M , and let µ = ρw−1µ0 where w ∈ R. Then H0

b(M,µ) := L2(M◦, µ). For s ∈ N0

and α ∈ R, we let

Hs
b(M,µ) :=

{
u ∈ H0

b(M,µ) : Pu ∈ H0
b(M,µ) ∀P ∈ Diffsb(M)

}
,

Hs,α
b (M,µ) :=

{
ραu : u ∈ Hs

b(M,µ)
}
.

When the density µ is clear from the context (or fixed but otherwise irrelevant), we omit
it from the notation.

These spaces can be given the structure of Hilbert spaces: one can set ‖u‖2Hs
b(M,µ) =∑

P∈P ‖Pu‖2L2(M◦,µ) where P ⊂ Diffmb (M) is a finite set of b-differential operators which

spans Diffmb (M) over C∞(M); and ‖u‖Hs,α
b (M,µ) := ‖ρ−αu‖Hs

b(M,µ). Directly from the defi-

nition, every A ∈ ρ−βDiffmb (M) defines a bounded linear map

A : Hs,α
b (M,µ)→ Hs−m,α−β

b (M,µ).

Let us make Definition 2.13 concrete in a coordinate patch [0,∞)x × Rn−1
y near a point

in ∂M . Let us take µ0 = |dx dy| and µ = xw |dxx dy|.13 Pulling back along the map

φ : (t, y) 7→ (x, y) = (e−t, y) (2.11)

gives φ∗µ = e−wt |dt dy|. Suppose now u is a distribution on M◦ which has compact support
in this chart; if w = 0, then u ∈ Hs

b(M,µ) is equivalent to φ∗u ∈ Hs(Rn). For general

w,α, the membership u ∈ Hs,α
b (M,µ) is equivalent to φ∗(x

w
2 x−αu) ∈ Hs(Rn). Thus,

weighted b-Sobolev spaces are the same as (exponentially weighted) Sobolev spaces on Rn
in logarithmic coordinates.14

The following variant of Sobolev embedding links the L2-based function spaces here with
the L∞-based spaces discussed in §2.2. It follows directly from the standard Rn-version
using the logarithmic change of coordinates (2.11).

Proposition 2.14 (b-Sobolev embedding). Let µ be as in Definition 2.13. If s > dimM
2 ,

then Hs,α
b (M,µ) ↪→ ρα−

w
2 L∞(M◦). Moreover,

H∞,αb (M,µ) =
⋂
s∈R

Hs,α
b (M,µ) ↪→ Aα−

w
2 (M).

Conversely, Aβ(M) ⊂
⋂
ε>0H

∞,β+w
2
−ε

b (M,µ).

Similarly, the Rellich compactness theorem on Rn implies:

13The general case merely amounts to multiplying these by smooth positive functions of (x, y); the spaces
Hs,α

b (M,µ) are unchanged by such modifications of the density.
14While this perspective is conceptually unappealing (since we are passing from a compact setting to a

noncompact one), it gives us a convenient shortcut for b-analysis in these lectures.
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Proposition 2.15 (Compact inclusions). Let s, s′ ∈ N0 and α, α′ ∈ R. Suppose that s > s′

and α > α′. Then the inclusion map

Hs,α
b (M)→ Hs′,α′

b (M)

is compact.

Example 2.16 (b-Sobolev spaces on the radial compactification). If M = Rn, then µ =

|dx| = rn−1 |dr dgSn−1 |; near ρ := r−1 = 0, this is ρ−n+1|dρ
ρ2

dgSn−1 |. Thus, µ is of the form

required in Definition 2.13 with w = −n. In the case n = 3, Proposition 2.14 gives (in the
notation of (1.3)) for all β ∈ R and ε > 0 the inclusions

H
∞,− 3

2
+β

b ⊂ Aβ(R3) ⊂ H∞,−
3
2

+β−ε
b

Finally, we characterize b-Sobolev spaces on the ‘model space’ [0,∞) × ∂M (where the
normal operator of a b-differential operator lives as a dilation-invariant operator, cf. the
expression (2.3)) using the Mellin transform:

Lemma 2.17 (Weighted b-Sobolev spaces and the Mellin transform). Let ν0 denote a pos-
itive density on ∂M , and define Hs

b([0,∞)× ∂M ;xw|dxx dν0|) to consist of all distributions

u so that (x∂x)jPu ∈ L2((0,∞) × ∂M ;xw|dxx dν0|) for all j ≤ s and P ∈ Diffs−j(∂M).
Then the Mellin transform is an isomorphism

M : xαHs
b

(
[0,∞)× ∂M ;xw

∣∣∣dx
x

dν0

∣∣∣)
→
{
v ∈ L2

({
Reλ = α− w

2

}
;Hs(∂M)

)
:

〈λ〉jv ∈ L2
({

Reλ = α− w

2

}
;Hs−j(∂M)

)
∀ j ≤ s

}
.

(2.12)

Proof. One can easily reduce this to the case α = w = 0. For s = 0, this is then Plancherel’s
theorem in logarithmic coordinates. For s ≥ 1, one uses the intertwining property (2.8). �

2.4. Problems.

Problem 2.1 (Smoothness on the radial compactification). Show that C∞(Rn) consists of
all smooth functions on Rn which have an asymptotic expansion (2.1).

Problem 2.2 (Projective coordinates on the radial compactification). Let n ≥ 1. For
j = 1, . . . , n, define on

Ũ±(j) =
{
x = (x1, . . . , xn) ∈ Rn : ±xj > 1

2
max
k 6=j
|xk|

}
⊂ Rn

the functions ρ(j) = 1
|xj | and x̂k(j) = xk

|xj | , k 6= j; set x̂(j) = (x̂k(j))k 6=j ∈ Rn−1. (Thus, we have

ρ(j) ∈ (0,∞) and x̂k(j) ∈ BRn−1(0, 2) on Ũ±(j).) Set

U±(j) = [0,∞)×BRn−1(0, 2),

and show that the map (0,∞)× BRn−1(0, 2) 3 (ρ(j), x̂(j)) 7→ x ∈ Ũ±(j) extends to a smooth

map U±(j) → Rn which is a diffeomorphism onto its image C±(j) ⊂ Rn. (In other words,
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(ρ(j), x̂(j)) defines a smooth coordinate system on C(j).) Show that

Rn = Rn ∪
n⋃
j=1

⋃
±
C±(j).

Problem 2.3 (Linear maps on Rn). Let n ≥ 1, and let A ∈ GL(n,R) be an invertible linear
map on Rn. Show that A extends, by continuity from the interior, to a diffeomorphism
Rn → Rn. Conclude that the radial compactification of an n-dimensional real vector space
is well-defined.

Problem 2.4 (Radial compactifications of vector bundles). Let E →M denote a smooth
real vector bundle of rank n ∈ N over the smooth manifold M . Show that its fiberwise
radial compactification (or ‘fiber-radial compactification’) Ē =

⊔
p∈M Ep →M can be given

a structure of a smooth fiber bundle which is uniquely determined by the requirement that
a trivialization U×Rn of E over an open set U ⊂M extends by continuity from the interior
of Rn ⊂ Rn to a smooth trivialization U × Rn of Ē over U .

Problem 2.5 (Diffeomorphisms on manifolds with boundary). The goal of this problem is
to show that b-vector fields are in essence the generators of families of diffeomorphisms of
manifolds with boundary.

(1) Suppose (−1, 1) 3 s 7→ φs is a smooth family of diffeomorphisms of a manifold M
with boundary, with φ0 = Id. For p ∈ M , set V (p) := d

dsφs(p)|s=0. Show that
V ∈ Vb(M).

(2) Conversely, if M is compact and V ∈ Vb(M), show that the time s flow of V defines
a smooth (1-parameter) family of diffeomorphisms of M .

Problem 2.6 (Lie algebra). Show that Vb(M) is a Lie algebra, where the Lie bracket is
the vector field commutator. That is, show that [V,W ] ∈ Vb(M) whenever V,W ∈ Vb(M).

Problem 2.7 (Conjugation by weights). Prove Lemma 2.3.

Problem 2.8 (*-algebra of weighted b-differential operators). Let M be a manifold with
boundary, and let ρ denote a boundary defining function.

(1) Let mi ∈ N0, αi ∈ R, and Pi ∈ ρ−αiDiffmib (M). Show that

P1 ◦ P2 ∈ ρ−α1−α2Diffm1+m2
b (M).

(2) Suppose M is equipped with a smooth positive density µ0. If P ∈ ρ−αDiffmb (M),
show that P ∗ ∈ ρ−αDiffmb (M). Show that this remains true for densities µ = ρwµ0

for any w ∈ R. Make this concrete in the special case M = Rn, µ = |dx|, and
P = ∆.

Problem 2.9 (Ellipticity). Suppose P ∈ Diffmb (M) is elliptic. Show that N(P, λ) is elliptic
for all λ ∈ C, and its principal symbol is independent of λ.

Problem 2.10 (Boundary spectrum). Let n ≥ 1, and write ∆ = −
∑n

j=1 ∂
2
xj
∈ Diff2(Rn)

for the Laplacian.

(1) Compute specb(〈x〉2∆).
(2) Let V ∈ 〈x〉−2C∞(Rn) (i.e. V = 〈x〉−2V0 where V0 ∈ C∞(Rn)). Suppose that

C := (|x|2V )|∂Rn is constant. (Thus, for |x| > 1 we have V (x) = C
|x|2 + O(|x|−3).)

Compute specb(〈x〉2(∆ + V )).
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Problem 2.11 (Polyhomogeneous conormal functions). Let M be a manifold with bound-
ary.

(1) What is A∅phg(M)?

(2) Let E ⊂ C×N0 be an index set. Determine the set of α ∈ R for which AEphg(M) ⊂
Aα(M).

(3) Show that the space AEphg(M) is well-defined, i.e. it does not depend on the choice
of collar neighborhood of ∂M .

(4) Given a function u(z,k) ∈ C∞(∂M) for each (z, k) ∈ E , show that there exists

u ∈ AEphg(M) so that u ∼
∑

(z,k)∈E ρ
z(log ρ)ku(z,k).

Problem 2.12 (Mellin transform characterization). Fill in the details in the proof of
Lemma 2.11. Prove the same result only assuming that u is an element of the dual space
of Ċ∞([0,∞)) with support in x ≤ C. (One can furthermore read off an upper bound for
C from the growth properties of (Mu)(s) as Re s ↘ −∞. Try to prove such a result, or
look up the Paley–Wiener theorem.)

Problem 2.13 (Polyhomogeneity for regular singular ODEs). Consider a solution u of the
regular singular ODE

Pu =
m∑
j=0

pj(x)
(
x

d

dx

)j
u = 0, (2.13)

where pj ∈ C∞([0,∞)) and pm(0) 6= 0. Denote its characteristic polynomial by N(P, λ) :=∑m
j=0 pj(0)λj .

(1) If the roots λj , j = 1, . . . ,m, of N(P, λ) are pairwise distinct, construct m linearly

independent solutions uj of Pu = 0 with leading order term xλj . Show that uj is
polyhomogeneous. Conclude that every solution u of (2.13) is polyhomogeneous.

(2) Generalize this result to the case that N(P, λ) has repeated roots.

Problem 2.14 (Polyhomogeneity for regular singular ODEs, II). Let P be as in the pre-
vious problem. Suppose Pu = 0. We shall give a new (and more robust) proof of the
polyhomogeneity of u by reducing the situation to Proposition 2.12. To wit, show that
there exists α ∈ R so that u ∈ Aα([0,∞)) as follows.

(1) Define E(x) =
∑m−1

j=0 |(x
d

dx)ju(x)|2. Show that there exists a constant C > 0 so that

−x d
dxE(x) ≤ CE(x) for x ∈ (0, 1]. Conclude that

∫ 1
0 x
−2α

∑m−1
j=0 |(x

d
dx)ju|2 dx

x <∞
for all α < −C.

(2) Prove a similar estimate for the solution of Pu = f when
∫ 1

0 x
−2α|u(x)|2 dx

x <∞.

(3) Writing P (x d
dxu) = [P, x d

dx ]u, and similarly for higher derivatives, show that∫ 1

0
x−2α

∣∣∣(x d

dx

)j
u
∣∣∣2 dx

x
<∞ ∀ s ∈ N.

Conclude that u is conormal.

Problem 2.15 (b-Sobolev spaces). Show that the stated definition of the norm ‖·‖Hs,α
b (M,µ)

after Definition 2.13 is independent of the choice of P and ρ up to equivalence of norms.
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3. Applications: I

3.1. The Laplacian on R3 revisited. We consider only the case of n = 3 dimensions
here, and leave the general case to the problems. We already saw that

∆ =

3∑
j=1

−∂2
xj ∈ 〈x〉

−2Diff2
b(R3),

and we computed its boundary spectrum to be specb(〈x〉2∆) = Z.

Theorem 3.1 (Laplacian on weighted b-Sobolev spaces). Let s ≥ 3 and α /∈ 1
2 + Z. Fix

on R3 the density |dx|. Then ∆: Hs,α
b (R3) → Hs−2,α+2

b (R3) is Fredholm. For α > −3
2 , it

is injective, and for α < −1
2 it is surjective; in particular, it is invertible for α ∈ (−3

2 ,−
1
2).

Remark 3.2 (Generalization). The Fredholm statement holds also for every elliptic b-

operator which differs from ∆ by an element of 〈x〉−3Diff2
b(R3). (Adding to ∆ an element of

〈x〉−3Diff2
b changes P by an element in 〈x〉−1Diff2

b(R3), and in particular leaves the normal
operator of P unchanged.) This includes the Laplace operator on certain asymptotically
Euclidean spaces, and also allows for the addition of terms a∂xj and V where a ∈ 〈x〉−2C∞
and V ∈ 〈x〉−3C∞.

As far the literature is concerned, a more general result was proved by Melrose in [Mel93,
§5.17] (see also Theorem 3.3 below). The application to the Laplace operator appears to
have been first given in Carron–Coulhon–Hassell in [CCH06, Lemma 3.2].

Proof of Theorem 3.1. We only consider P = 〈x〉2∆ ∈ Diff2
b(R3).

• Step 1. Elliptic estimate. Near a point in ∂R3, we can pull back P via a logarithmic

coordinate change to a uniformly elliptic operator on R×R2: schematically, P = −(ρ∂ρ)
2−

∂2
y where ρ = r−1 and y ∈ R2 denotes local coordinates on S2, so with t = − log ρ this

becomes P = −∂2
t − ∂2

y . We can thus use (uniform) elliptic estimates on standard Sobolev

spaces on R× R2 and pull them back to estimates on b-Sobolev spaces on R3 to get the a
priori estimate15

‖u‖
Hs,α

b (R3)
≤ C

(
‖Pu‖

Hs−2,α
b (R3)

+ ‖u‖
H0,α

b (R3)

)
. (3.1)

Since the inclusion Hs,α
b ↪→ H0,α

b is not compact, this estimate does not tell us much yet.
(It neither implies the finite-dimensionality of kerP nor the closed range property.)

• Step 2. Inversion of the indicial family; semi-Fredholm estimate. With ρ = r−1, let

now χ ∈ C∞c ([0,∞)ρ × S2) be identically 1 near ρ = 0. Then

‖u‖
H0,α

b
≤ ‖χu‖

H0,α
b

+ CN‖(1− χ)u‖
H0,−N

b
(3.2)

for any N , since supp(1−χ) is disjoint from ∂R3. The norm on χu here is, by Lemma 2.17
(with s = 0)

‖χu‖
ραL2([0,∞)×S2;ρ−3|dρ

ρ
dgS2 |)

≤ C‖M(χu)‖
L2({Reλ=α+ 3

2
};L2(S2)).

15The weight α in this estimate is arbitrary. When α = − 3
2
, then this indeed follows from estimates on

unweighted Sobolev spaces on R×R2. One can reduce the case of general α to this special case by working
with 〈x〉βP 〈x〉−β instead of P for appropriate β.
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But since α /∈ 1
2 + Z, we have α + 3

2 /∈ specb(P ) = {−l − 1, l : l ∈ N0}. Therefore,

N(P, λ) = −λ2 + λ + ∆S2 : H2(S2) → L2(S2) is invertible for Reλ = α + 3
2 .16 Moreover,

there exists a constant C so that for v ∈ L2(S2) we have17

‖v‖L2 ≤ C‖N(P, λ)v‖L2 , Reλ = α+
3

2
. (3.3)

Indeed, for any bounded set of λ this follows (with the L2-norm on the left replaced by the
H2-norm) from the invertibility of N(P, λ). For λ = (α+ 3

2) + is, s ∈ R, we have

−λ2 + λ = s2 +O(|s|),
and therefore N(P, λ) = ∆S2 + 1 + c(α, s) where Re c(α, s) ≥ 0 when |s| = | Imλ| is
sufficiently large, and the estimate (3.3) then follows (with C = 1 for such λ) from
〈N(P, λ)v, v〉L2 ≥ ‖v‖2L2 .

We can thus estimate

‖M(χu)‖
L2({Reλ=α+ 3

2
};L2(S2)) ≤ C‖N(P, ·)M(χu)‖

L2({Reλ=α+ 3
2
};L2(S2)),

and therefore

‖χu‖
H0,α

b
≤ C‖N(P )(χu)‖

H0,α
b
≤ C

(
‖χPu‖

H0,α
b

+ ‖χ(P −N(P ))u‖
H0,α

b
+ ‖[P, χ]u‖

H0,α
b

)
.

Since χ(P − N(P )) ∈ ρDiff2
b, the second term is bounded by C‖ρu‖

H2,α
b

= ‖u‖
H2,α−1

b
.

Moreover, [P, χ] is a first order operator whose coefficients are compactly supported in M◦,
and thus the third term is bounded by CN‖u‖H1,−N

b
for any N . Plugging this, together

with (3.2), into (3.1) gives

‖u‖
Hs,α

b (R3)
≤ C

(
‖Pu‖

Hs−2,α
b (R3)

+ ‖u‖
H2,α−1

b (R3)

)
. (3.4)

This is the semi-Fredholm estimate one is after in this business: it implies that P : Hs,α
b (R3)→

Hs−2,α
b (R3) has finite-dimensional kernel and closed range (see Problem 3.1).

• Step 3. Fredholm property. The L2-orthogonal complement of the range ∆(Hs,α
b (R3)) ⊂

Hs−2,α+2
b (R3) is equal to the kernel of the formal adjoint ∆∗ on H−s+2,−α+2

b (R3).18 By

elliptic regularity, elements of this kernel lie in Hs′,−α+2
b (R3) for all s′. By what we have

already shown, we deduce that the range of ∆ has finite codimension.

• Step 4. Kernel and cokernel. Suppose α > −3
2 and u ∈ Hs,α

b (R3) ∩ ker ∆. Then

u ∈ Hs′,α
b for all s′ by elliptic regularity, and thus u ∈ Aα+ 3

2 (R3) by Sobolev embed-
ding (Proposition 2.14). That is, u decays at infinity, and by the maximum principle it

16Here is one way to see this. Since N(P, λ) is elliptic, it is Fredholm as an operator H2(S2)→ L2(S2).
Elements of its kernel are automatically smooth; by decomposing an element in kerN(P, λ) into spherical
harmonics and studying the action of N(P, λ) on each piece, one concludes that kerN(P, λ) = {0}, cf.
the discussion after (1.4). Moreover, N(P, λ) is a compact perturbation of the operator ∆S2 + 1 which
is invertible (being symmetric and having trivial kernel); therefore, N(P, λ) has index 0, which due to its
injectivity implies its surjectivity.

17This estimate is technically correct, but morally wrong: N(P, λ) is elliptic, so one expects Sobolev
spaces to appear on both side. However, one should not use standard Sobolev spaces, but rather ‘large
parameter Sobolev spaces’, with Imλ the large parameter; these are the spaces which secretly feature on
the right hand side of (2.12).

18We have not defined this space appearing here; but using logarithmic coordinates it can be defined in
terms of negative order Sobolev spaces on R× R2.
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must be 0. Surjectivity of ∆ for α < −1
2 follows from the same argument since −α+2 > −3

2

for α < −1
2 . �

Most of Theorem 3.1 is a special case of a general result about elliptic b-differential
operators:

Theorem 3.3 (Fredholm property of elliptic b-differential operators). Let P ∈ Diffmb (M)
be an elliptic operator on the compact manifold M with boundary. Fix on M a smooth
positive density as in Definition 2.13 with w = 0. Then:

(1) specb(P ) ⊂ C is discrete; and for all C there exists C ′ so that all λ ∈ specb(P ) with
|Reλ| < C have | Imλ| < C ′.

(2) Let α ∈ R be such that Reλ 6= α for all λ ∈ specb(P ). Let s ≥ m. Then

P : Hs,α
b (M)→ Hs−m,α

b (M)

is Fredholm.
(3) Solutions of Pu = f ∈ Ċ∞(M) which lie in some weighted Sobolev space are poly-

homogeneous.

We do not give the proof here. It is similar to that of Theorem 3.1; the main technical
task is to prove an estimate of the type (3.3) for the indicial family in this generality.

Solutions of elliptic b-differential equations are polyhomogeneous. We sketch this in the
case of the Laplace equation on R3:

Proposition 3.4 (Polyhomogeneity of solutions of the Laplace equation). Suppose u ∈
Hs,α

b (R3) satisfies ∆u = f ∈ Ċ∞(R3) = S (R3). Then u is polyhomogeneous with index set

contained in (Z∩ {λ > α+ 3
2})×N0. This is true also if one replaces ∆ by a more general

operator as in Remark 3.2.

Proof. Let P = 〈x〉2∆. Elliptic regularity gives u ∈ H∞,αb (R3) ⊂ Aα+ 3
2 (R3). Write Pu =

〈x〉2f using a cutoff χ ∈ C∞(R3) which is 1 near ∂R3 and 0 near 0 as

N(P )(χu) = f̃ := χ〈x〉2f + [N(P ), χ]u− χ(P −N(P ))u ∈ Aα+ 5
2 (R3).

Therefore,

χu =M−1
α−ε
(
N(P, λ)−1(Mf̃)(λ)

)
.

The key point is that N(P, λ)−1 : C∞(S2) → C∞(S2) is meromorphic in λ, with simple
poles at λ = −l, l + 1, and satisfies appropriate uniform estimates when Reλ is bounded
and | Imλ| → ∞. Thus, one can shift the contour in the inverse Mellin transform to
Reλ = α+ 1− ε, which is how one picks up terms in the polyhomogeneous expansion of u
corresponding to the poles of N(P, λ)−1 with α ≤ Reλ < α+ 1. �

3.2. Waves in the interior of a Schwarzschild black hole. The metric of a Schwarz-
schild black hole with mass m > 0 is

g = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2gS2 ,

defined on Mint ∪Mext where

Mint = Rt × (0, 2m)r × S2, Mext = Rt × (2m,∞)r × S2.
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One can perform a change of variables near r = 2m to extend the metric smoothly across
the ‘event horizon’ r = 2m. We shall not discuss the global geometric properties of the
Schwarzschild metric, such as its Ricci-flatness or its maximal analytic extension, and refer
the interested reader to the lecture notes [DR08].

OnMint where 1− 2m
r < 0, the metric g is ∼ −dr2 +dt2 +r2gS2 . (Compare this with the

Minkowski metric −dt2 +dr2 +r2gS2 !) so r is a time coordinate and t is a space coordinate.
This reflects the fact that ‘time’ r is monotone for freely falling observers in Mint, and
indeed r ↘ 0 along all timelike geodesics in Mint.

We will study the wave equation

�gu =
[(

1− 2m

r

)−1
∂2
t − r−2∂rr

2
(

1− 2m

r

)
∂r + r−2∆S2

]
u(t, r, ω) = 0

on Mint following Fournodavlos–Sbierski [FS20].19 Multiplying through by −r3 gives

Pu = 0, P = (−2m + r)(r∂r)
2 + r2∂r − r∆S2 +

r4

2m− r
∂2
t .

This is now a b-differential operator on

M := [0, 2m)r × Rt × S2,

with normal operator at ∂M = r−1(0) and indicial family given by

N(P ) = −2m(r∂r)
2, N(P, λ) = −2mλ2.

Note however that it is very degenerate even as a b-operator: it is really built from r2∂t
and r1/2V (V ∈ V(S2)). (This is also reflected by the fact that N(P, λ), which for general
P ∈ Diff2

b(M) is an element of Diff2(∂M) = Diff2(Rt×S2), is actually an operator of order
0.) It is thus rather fortuitous that we can analyze it using b-techniques only. As we will
see, the reason is that P commutes with the (much stronger) b-vector fields ∂t and V(S2).
This (or at least the weaker property of ‘almost commuting’ with b-vector fields) is fairly
common; we give another, and in a way simpler, example in §3.3 below.

Theorem 3.5 (Asymptotics of waves near the Schwarzschild singularity). Fix r0 ∈ (0, 2m).
Suppose u solves the initial value problem

�gu = 0, (u|r=r0 , ∂ru|r=r0) = (u0, u1), (3.5)

where u0, u1 ∈ C∞c (Rt × S2). Then u is polyhomogeneous at r = 0, with

u ∼
∞∑
j=0

(
Ajr

j(log r) +Bjr
j
)
, Aj , Bj ∈ C∞c (Rt × S2). (3.6)

Moreover, there is a bijection between initial data (u0, u1) and the leading order coefficients
(A0, B0).

Proof. The existence of a smooth solution u on (0, r0)× R× S2 follows from the standard
theory of wave equations. Moreover, using the finite speed of propagation for solutions of
wave equations, the solution u(r, t, ω) vanishes for |t| > T , r ∈ (0, r0], where T <∞ can in
principle be computed explicitly from the support of the initial data u0, u1.

19Unlike [FS20], we work here strictly in the interior, and do not study the behavior near the event
horizon r = 2m.
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• Energy estimate. Write /∇ for the gradient on (S2, gS2). Define the energy

E(r) :=
1

2

∫∫
R×S2

(2m− r)|r∂ru(r, t, ω)|2 + |r
1
2 /∇u(r, t, ω)|2 +

1

2m− r
|r2∂tu(r, t, ω)|2 dtdgS2 .

We then compute

−r d

dr
E(r) = −

∫∫
R×S2

(2m− r)(r∂ru)((r∂r)
2u) +

(1

2
|r

1
2 /∇u|2 + r

1
2 /∇u · (r

1
2 /∇r∂ru)

)
+
( r

(2m− r)2
|r2∂tu|2 +

2

2m− r
|r2∂tu|2 +

1

2m− r
(r2∂tu)(r2∂tr∂ru)

)
dtdgS2

= −
∫∫

R×S2
(r∂ru)

(
(2m− r)(r∂r)2 + r∆S2 −

1

2m− r
(r2∂t)

2
)
u

+
1

2
|r

1
2 /∇u|2 +

4m− r
(2m− r)2

|r2∂tu|2 dr dgS2

= −
∫∫

R×S2
(r∂ru)(−r3�gu+ r2∂ru) +

1

2
|r

1
2 /∇u|2 +

4m− r
(2m− r)2

|r2∂tu|2 dr dgS2

≤ 0.

Therefore, E(r) ≤ E(r0).20 We also need to control u itself; but since

u(r, t, ω) = u0(t, ω) +

∫ r

r0

s∂su(s, t, ω)
ds

s
,

we have∫∫
R×S2

|u(r, t, ω)|2 dt dgS2

≤ 2

∫∫
R×S2

|u0(t, ω)|2 dtdgS2 + 2

∫∫
R×S2

(∫ r

r0

ds

s

)(∫ r

r0

CE(s)
ds

s

)
dtdgS2

≤ C0 + C1E(r0)(log r)2.

Altogether, we conclude that for any α < 0,∫∫∫
(0,r0]×R×S2

r−2α
(
|u|2 + |r∂ru|2 + |r2∂tu|2 + |r

1
2 /∇u|2

) dr

r
dtdgS2 ≤ C, (3.7)

where C only depends on ‖u0‖H1 and ‖u1‖L2 .

• Higher regularity. Since �g(∂tu) = ∂t�gu = 0 and �gΩu = Ω�gu for every rotation

vector field Ω ∈ V(S2), we have (3.7) also for ∂jtΩ
γu for all j, k ∈ N0 and |γ|-fold compo-

sitions Ωγ of rotation vector fields. Moreover, we can express (r∂r)
2u in terms of Pu = 0

and t- and spherical derivatives and first order derivatives in r:

(−2m + r)(r∂r)
2u = Pu− r2∂ru+ r∆S2u−

r4

2m− r
∂2
t .

20We would be content here even with an estimate −r d
dr
E(r) ≤ CE(r), giving E(r) ≤ E(r0)( r

r0
)−C , for

any constant C.
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Therefore, we also obtain the bound (3.7) for derivatives of u along (any number of) r∂r.
Thus, we have full b-regularity: for s ∈ N,

‖u‖2Hs,α
b

:=
∑

i+j+|γ|≤s

∫∫∫
(0,r0]×R×S2

r−2α|(r∂r)i∂jtΩγu|2 dr

r
dtdgS2 <∞.

By Sobolev embedding (Proposition 2.14), this gives

u ∈ Aα(M), α < 0.

• Asymptotic expansion. We now proceed as in the proof of Proposition 2.12. If χ ∈
C∞c ([0, r0)) is equal to 1 near 0, we write

N(P )(χu) = f := [N(P ), χ]u− χ(P −N(P ))u. (3.8)

Thus, f ∈ Aα+1(M). We now pass to the Mellin transform, with M(χu)(λ, t, ω) initially
defined for λ < 0; but (Mf)(λ, t, ω) is defined on the larger region λ < α + 1, while
N(P, λ)−1 = − 1

2mλ
−2 has a double pole at 0. Shifting the contour in the formula χu =

M−1
α (N(P, λ)−1(Mf)(λ)) from Reλ = α to Reλ = α+ 1 gives

χu = A(t, ω) log r +B(t, ω) + ũ(r, t, ω), ũ ∈
⋂
ε>0

A1−ε(M).

One can then plug this information back into (3.8) and iterate the argument to obtain the
full expansion of u.

The final statement is left to the reader; see Problem 3.8. �

3.3. The wave equation on de Sitter space. One popular description of the de Sitter
spacetime is Rt×Rnx with metric g = −dt2 + e2tdx2 (or e2t replaced by e2Ht for the Hubble
constant H > 0). We replace here the spatial manifold by the (compact) n-torus Tn. The
initial value problem for the wave equation for u = u(t, x) reads

�gu =
(
e−nt∂te

nt∂t − e−2t∂2
x

)
u = 0,

(u, ∂tu)|t=1 = (u0, u1),
(3.9)

where u0, u1 ∈ C∞(Tn). Being interested in the asymptotic behavior of u(t, x) as t → ∞,
we compactify the spacetime manifold Rt × Tnx at t =∞ by defining

M := [0,∞)τ × Tnx

and identifying M◦ with (0,∞)× Tn via τ = e−t. Thus ∂t = −τ∂τ , and therefore

�g = (τ∂τ )2 − nτ∂τ − (τ∂x)2.

This is thus a b-differential operator, but again a degenerate one since x-derivatives appear
only via τ∂x.21 Nonetheless, we can again study solutions of (3.9) using b-techniques:

21Thus, the underlying Lie algebra of vector fields is the Lie algebra of uniformly degenerate vector fields,
or 0-vector fields in the terminology of Mazzeo–Melrose [MM87]: these are the smooth vector fields on M
which vanish at ∂M .
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Theorem 3.6 (Asymptotics of waves on a de Sitter type spacetime). Let n ≥ 1. Suppose
u is a solution of the initial value problem (3.9). Then u is polyhomogeneous on M . More
precisely, for suitable Aj , Bj ∈ C∞(Tn) we have

u ∼

{∑∞
j=0

(
Ajτ

j +Bjτ
n+j
)
, n odd,∑∞

j=0

(
Ajτ

j +Bjτ
n+j log τ

)
, n even.

Moreover, there is a bijection between initial data (u0, u1) and the leading order coefficients
(A0, B0).

This can easily be generalized to more general metrics g. (One can also include lower
order terms in the wave operator.) See [Vas10], where also the precise analytic structure
of the map (u0, u1) 7→ (A0, B0) is described (it is a Fourier integral operator). In these
lectures, we follow the presentation of [HX22, §2].

Proof of Theorem 3.6. The proof is very similar to that of Theorem 3.6, and hence we shall
be brief. Defining the energy

E(τ) :=
1

2

∫
Tn
|τ∂τu(τ, x)|2 + |τ∂xu(τ, x)|2 dx,

one finds by direct differentiation and usage of the wave equation for u that

−τ d

dτ
E(τ) ≤ 0.

Furthermore, one can compute u(τ, x) in terms of u(1, x) = u0(x) by integrating τ∂τu. In
this manner, one finds∫∫

(0,1]×Tn
τ−2α

(
|u|2 + |τ∂τu|2 + |τ∂xu|2

) dτ

τ
dx ≤ C

for any α < 0, where C only depends on ‖u0‖H1 and ‖u1‖L2 (and α).

Next, since [�, ∂x] = 0, one obtains the same estimate for ∂βxu, β ∈ Nn0 . More generally,

since (τ∂τ )2u = �gu + nτ∂τu + (τ∂x)2u, one obtains the same estimate for (τ∂τ )i∂βxu for
all i ∈ N0, β ∈ Nn0 . That is,

‖u‖Hs,α
b (M) :=

∑
i+|β|≤s

∫∫
(0,1]×Tn

τ−2α|(τ∂τ )i∂βxu|2
dτ

τ
dx <∞

for all s ∈ N0. Sobolev embedding gives

u ∈ Aα(M), α < 0.

The asymptotic expansion of u can be extracted by inverting N(�g, λ) = λ(λ−n) (with
poles at λ = 0, n). The appearance of log τ terms for n = 2k even is due to an ‘integer
coincidence’: the leading order term A0τ

0 = A0(x) produces error terms (via (τ∂x)2) with
two, four, six, etc. more powers of τ in the second, third, fourth, etc. step in the extraction of
the expansion. But since 2k is an indicial root, the solution of ((τ∂τ )2−2kτ∂τ )v = τ2kÃk(x)
in the k-th step has a logarithmic singularity ∼ τ2k log τ . The reader is asked to fill in the
details in Problem 3.9. �
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3.4. Problems.

Problem 3.1 (Semi-Fredholm estimates). Let X,Y, Z be Banach spaces, P ∈ L(X,Y ),
and suppose R : X → Z is a compact operator. Suppose that there exists a constant C so
that

‖Px‖Y ≤ C
(
‖x‖X + ‖Rx‖Z

)
.

(1) Show that dim kerP <∞.
(2) Denote by V ⊂ X a topological complement of kerP . Show that there exists a

constant C ′ < ∞ so that ‖Px‖Y ≤ C ′‖x‖X for all x ∈ V . Deduce that ranP ⊂ Y
is closed.

Problem 3.2 (Failure of Fredholmness). Let s ≥ 3. Show that the operator ∆: Hs,α
b (R3)→

Hs−2,α+2
b (R3) is not Fredholm when α ∈ 1

2 + Z. Hint. What properties does the operator

family 〈x〉2+α∆〈x〉−α ∈ L(Hs
b, H

s−2
b ) have?

Problem 3.3 (Lower regularity). Show that the Fredholm property in Theorem 3.1 and
Problem 3.2 holds also for s = 2.

Problem 3.4 (General dimensions). Let n ≥ 1. Find the set of weights α ∈ R for which

∆: Hs,α
b (Rn) → Hs−2,α+2

b (Rn) (with s ≥ 3) is Fredholm. For which α is it injective, for

which surjective? Find the set of weights (depending on n) for which ∆: Hs,α
b (Rn) →

Hs−2,α+2
b (Rn) is an isomorphism.

Problem 3.5 (Inverse square potentials). Let V ∈ 〈x〉−2C∞(Rn). Prove that the operator

∆ + V : Hs,α
b (Rn) → Hs−2,α+2

b (Rn) is Fredholm for all α ∈ R which avoid the discrete set
{Reλ : λ ∈ specb(∆ + V )}.

Problem 3.6 (Fredholm theory for elliptic b-differential operators). Prove Theorem 3.3.

Problem 3.7 (Polyhomogeneity). Fill in the details in the proof of Proposition 3.4. Prove

the polyhomogeneity of u when ∆u = f where f ∈ AFphg(R3) is itself polyhomogeneous.

Problem 3.8 (Scattering data for the wave equation in the interior of a Schwarzschild
black hole). Show that there is a linear bijection between initial data (u0, u1) ∈ C∞c (Rt ×
S2) ⊕ C∞c (Rt × S2) for the wave equation (3.5) and leading order coefficients (A0, B0) ∈
C∞c (Rt×S2)⊕C∞c (Rt×S2). Hint. Show that if u is of the form (3.6), then Aj , Bj for j ≥ 1
are uniquely determined by A0, B0. Show moreover that if the expansion (3.6) holds with

A0 = B0 (and thus Aj = Bj = 0 for all j, so u ∈ Ċ∞(M)), then u vanishes identically; to

do this, prove an energy estimate r d
drE(r) ≤ CE(r) (which thus estimates the growth of

energy in the direction of increasing r, i.e. in the backward time direction).

Problem 3.9 (Wave equation on a de Sitter like space). Fill in the details of the proof
of Theorem 3.6. Prove also the statement about the bijection between initial data (u0, u1)
and scattering data (A0, B0).

4. Manifolds with corners and blow-ups

In these lectures, we will only encounter manifolds with codimension 2 corners. In
general, points on an n-dimensional manifold with corners come in two flavors: points in
the manifold interior M◦, with open neighborhoods that are diffeomorphic to Rn as usual;
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and points on the manifold boundary ∂M . We require that for each p ∈ ∂M there exists a
number k ∈ N so that a neighborhood of p is diffeomorphic to

Rnk = [0,∞)k × Rn−k.
The closure of the set of points in ∂M where k is a fixed number is denoted ∂kM . Thus,
∂M = ∂1M , while ∂2M is the closure of the set of points which lie in a codimension 2
corner, and so on. A boundary hypersurface is the closure of a connected component of the
set of points with k = 1. We require that all boundary hypersurfaces of M are embedded
submanifolds. See Figure 4.1.

Figure 4.1. On the left: a manifold with corners. On the right: a space
which has the correct local structure, but a non-embedded boundary hyper-
surface. We do not regard this as a manifold with corners.

Manifolds with boundary are special cases, with ∂jM = ∅ for j ≥ 2. The space Rnk itself

is of course a manifold with corners; writing the standard coordinates as x1, . . . , xk ≥ 0,
y1, . . . , yn−k ∈ R, the boundary hypersurfaces are {xj = 0} for j = 1, . . . , k. Another simple
example is the cube [0, 1]n.

Definition 4.1 (Boundary defining functions). If H ⊂M is a boundary hypersurface, then
a smooth nonnegative function ρ ∈ C∞(M) is a defining function of H if H = ρ−1(0) and
dρ(p) 6= 0 for all p ∈ H.

Example 4.2 (Boundary defining function, I). A defining function of x1 = 0 in Rnk , k ≥ 1,
is x1.

In §1.2, we encountered the idea of blowing up a submanifold (in that case, a 0-dimensional
one consisting of just a single point) of a given manifold in order to desingularize a PDE
(and thus the behavior of its solutions). We proceed to describe this in general.

Definition 4.3 (Blow-up of the origin in Rn). Let n ≥ 1. Then [Rn; {0}] is defined to be
the manifold with boundary

[Rn; {0}] := [0,∞)× Sn−1,

together with the blow-down map β : [0,∞) × Sn−1 3 (r, ω) 7→ rω. We call {0} × Sn−1 the
front face of the blow-up, written ff[Rn; {0}].

Thus β restricts to the complement of the front face to a diffeomorphism

[Rn; {0}] \ ff[Rn; {0}]
∼=−→ Rn \ {0}.

In this sense, the manifolds Rn and [Rn; {0}] are the same except {0} is replaced by a copy
of Sn−1.

Example 4.4 (Boundary defining function, II). A defining function of the front face of
[Rn; {0}] is the polar coordinate r.
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Example 4.5 (Trading analytic for geometric complexity). In the spirit of Theme II, consider
on R2

x,y the PDE
(x∂x + y∂y)u(x, y) = 0, u|S1 = x, (4.1)

where S1 = {x2 + y2 = 1} is the unit circle. The solution is given by

u(x, y) =
x

(x2 + y2)1/2

and thus has a rather complicated singularity at (x, y) = (0, 0). For instance, u is constant
along (r cos θ, r sin θ), r > 0, for fixed θ, but all these rays intersect at the origin. If,
however, we instead work on [R2; {(0, 0)}] = [0,∞)× S1, then the PDE becomes

r∂ru(r, θ) = 0, u(1, θ) = cos θ,

and its solution is u(r, θ) = cos θ. This is smooth on [R2; {(0, 0)}].22

It is often computationally convenient to work with projective coordinates. For example,
in the subset of Rn where x1 > cmaxj 6=1 |xj |, c > 0, the functions

ρ := x1, x̂j =
xj

x1
(j = 2, . . . , n) (4.2)

extend to a smooth local coordinate system [0, 1)ρ × BRn−1(0, c−1) on [Rn; {0}]. See Fig-
ure 4.2.

ρ = x1

x̂2 = x2

x1

Figure 4.2. Illustration of the blow-up [R2; {0}], together with local coordinates (4.2).

Lemma 4.6 (Lifts of invertible maps). Let A ∈ GL(n,R). Then A : Rn \ {0} → Rn \ {0}
extends by continuity to a diffeomorphism of [Rn; {0}]. More generally, if φ : Rn → Rn
is a diffeomorphism with φ(0) = 0, then φ extends from Rn \ {0} to a diffeomorphism of
[Rn; {0}].

22In this particular example, where we blow up a point in the interior of the manifold R2 on which the
PDE is posed, there is a small but occasionally important technical caveat: the original PDE (4.1) makes
sense on all of R2 in the sense of distributions. Working on [R2; {(0, 0)}] on the other hand, the standard
distributional formulation of the PDE r∂ru = 0 involves integration against test functions which are smooth
and compactly supported in the manifold interior R2 \ {(0, 0)} of [R2; {(0, 0)}]. Thus, upon passage to the
blown-up manifold, one loses information about possible (differentiated) δ-distributions supported at the
point (0, 0) one blows up.
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Proof. See Problem 4.1. �

The first part of this lemma implies that the blow-up of the origin of a finite-dimensional
vector space is well-defined. The second part allows us to define blow-ups of points p in a
smooth n-dimensional manifold M : we define

[M ; {p}] := (M \ {p}) t Sn−1

as a smooth manifold with boundary Sn−1 in the following way: if φ : Rn → U is a diffeomor-
phism to a neighborhood U ⊂M of p, then φ extends by continuity from Rn\{0} → U \{p}
to a diffeomorphism [Rn; {0}] → (U \ {p}) ∪ Sn−1.23 (Lemma 4.6 ensures that the smooth
structure of [M ; {p}] does not depend on the choice of φ.) Thus Sn−1 is the front face, and
the blow-down map

β : [M ; {p}]→M

is the identity on M \ {p} and the map Sn−1 → {p} on the front face.

If S ⊂M is any subset, then the lift of S is defined as

β∗S =

{
β−1(S), S ⊂ {p},
β−1(S \ {p}), S 6⊂ {p}.

The blow-up procedure can be generalized in three successive ways.

(1) Blow up {0} ⊂ Rnk : this is the lift of Rnk to [Rn; {0}]. For example, [R2
2; {0}] =

[[0,∞)2; {0}] = [0,∞)r× [0, π2 ]θ, with blow-down map (r, θ) 7→ (r cos θ, r sin θ). One
can then also define the blow-up of points in the boundary of a manifold with
corners.

(2) Blow up p-submanifolds of a manifold with corners: these are submanifolds X ⊂
M so that for each point p ∈ X there exist local coordinates x1, . . . , xk ≥ 0,
y1, . . . , yn−k ∈ R on M near p so that X = {x1 = . . . = xp = 0, y1 = . . . = yq = 0}
for some 0 ≤ p ≤ k, 0 ≤ q ≤ n− k. In such coordinates, the blow-up [M ;X] is then
given locally by ([[0,∞)p; {0}]× [0,∞)k−p)× ([Rq; {0}]× Rn−k−q).

(3) Iterated blow-ups: if S, T ⊂M are two p-submanifolds so that the lift β∗T of T to
[M ;S] is a p-submanifold, then one can define [M ;S;T ] := [[M ;S];β∗T ]. This can
be iterated to arbitrary depths. We will not need such iterated blow-ups here, but
they feature frequently in the resolution of the compactified manifold underlying
PDEs with complicated (iterated) singular behavior.

As a special case, we can blow up points in the boundary of a manifold with corners.

Example 4.7 (Blowing up the origin in the half space). Let n ≥ 1 and consider the space

M := [Rnx × [0,∞)s; {(0, 0)}].
(See Figure 4.3 for the case n = 1.) We proceed to describe its boundary hypersurfaces.

(1) The front face ff of M is the closed hemisphere Sn1 := Sn ∩ Rn+1
1 . A more useful

way to think about ff is as follows: as local coordinates on M near the interior ff◦

of the front face, we may use the projective coordinates (cf. Problem 2.2)

s ≥ 0, x̂ :=
x

s
∈ Rn.

23Simply put, the smooth structure of [M ; {p}] is obtained by regarding polar coordinates r > 0, ω ∈ Sn−1

around p as valid down to r = 0.
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On the other hand, near the corner of M and where x1 > cmaxj 6=1 |xj |, we can use

ρ̂ := x1, ω̂j :=
xj

x1
(j = 2, . . . , n), ρ◦ :=

s

x1
.

On ff (i.e. at s = 0, resp. ρ̂ = 0) and on the overlap of the two charts, we have the
relationship

ω̂ =
x̂j

x̂1
, ρ◦ =

1

x̂1
,

and x̂1 > cmaxj 6=1 |x̂j |. But this precisely means that ω̂, ρ◦ are themselves projec-
tive local coordinates near the boundary at infinity of the radial compactification
of Rnx̂! Therefore, we have shown that

ff = Rnx̂.
(2) The lift H of the ‘original boundary’ Rn × {0} is then [Rn; {0}] in the sense that

the ‘identity’ map Rn \ {0} → (Rn \ {0}) × {0} ⊂ H extends by continuity to a
diffeomorphism [Rn; {0}]→ H. Indeed, this needs to be verified in a neighborhood
U of the front face ff, with U diffeomorphic to [0,∞)×Sn1 ; and H∩U is diffeomorphic
to [0,∞)× Sn−1 = [Rn; {0}] where Sn−1 ⊂ Sn1 is the equator.

A defining function of ff is
√
|x|2 + s2, and a defining function of H is s

(|x|2+s2)1/2
= (1 +

|x̂|2)−1/2. See Problem 4.4 for a geometric generalization.

y

y
ŷ = y

x

y

|y|

x
|y|

Figure 4.3. Blow-up of Rx × [0,∞)y at {(0, 0)}, with local coordinate charts.

On manifolds M with corners, one can again study b-vector fields and b-differential
operators; here,

Vb(M) =
{
V ∈ V(M) : V is tangent to each boundary hypersurface of M

}
.

In local coordinates x1, . . . , xk ≥ 0 and y1, . . . , yn−k ∈ R near a boundary point as above,
b-vector fields are linear combinations, with smooth coefficients, of

xi∂xi (i = 1, . . . , k), ∂yj (j = 1, . . . , n− k).

4.1. Problems.

Problem 4.1 (Lifts of invertible maps). Prove Lemma 4.6.

Problem 4.2 (Lifts of vector fields, I). Let M be a smooth manifold, and let p ∈ M .
Show that Vb([M ; {p}]) is spanned over C∞([M ; {p}]) by the lifts of all smooth vector fields
on M which vanish at p. (Here, the lift of V ∈ V(M) is simply defined to be V on the
interior M \ {p} of [M ; {p}]. Convince yourself that this extends to a smooth vector field
on [M ; {p}] if and only if V (p) = 0.)
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Problem 4.3 (Lifts of vector fields, II). Let M be a smooth manifold with corners. Let
F ⊂M be a boundary face, i.e. an intersection of boundary hypersurfaces.

(1) Show that the space of lifts of Vb(M) to [M ;F ] spans Vb([M ;F ]) over C∞([M ;F ]).
(2) Conclude that u : M◦ → C is bounded conormal on M (i.e. Pu ∈ L∞(M◦) for all

P ∈ Diffmb (M), m ∈ N0) if and only if u is bounded conormal on [M ;F ].

Problem 4.4 (Blow-up of boundary points: geometric setting). Let X be a smooth man-
ifold without boundary, and let p ∈ X. Set M = [[0, 1)×X; {(0, p)}].

(1) Show that the lift of {0} ×X to M is equal to [X; {p}].
(2) Show that there exists a ‘natural’ diffeomorphism of the front face ff of M and

the radial compactification24 TpX of TpX. More precisely, show that the following
map ψ : TpX → ff is well-defined and extends by continuity to a diffeomorphism

TpX → ff: given V ∈ TpX, let γ : [0, 1] → X be a smooth curve with γ(0) = p,
γ′(0) = V , and define the smooth curve (0, 1) 3 t 7→ γ̃(t) = (t, γ(t)) ∈ M ; set then
ψ(V ) := limt↘0 γ̃(t) ∈ ff.

Problem 4.5 (Diffeomorphisms on manifolds with corners). Prove the analogue of Prob-
lem 2.5 on manifolds with corners.

Problem 4.6 (One point compactification). Recall the stereographic projection

φ : Sn \ {N} = {(ω′, ωn+1) ∈ Rn × R : |ω′|2 + ω2
n+1 = 1, (ω′, ωn+1) 6= N := (0, 1)} → Rn,

φ(ω′, ωn+1) =
ω′

1− ωn+1
,

with inverse

φ−1(x) =
( 2x

|x|2 + 1
,
|x|2 − 1

|x|2 + 1

)
.

(1) Show that X = φ∗( x
|x|2 ) is a smooth Rn-valued function on Sn near N = (0, 1) which

defines a coordinate system on Sn near N .
(2) Show that φ extends from Sn \ {N} → Rn to a diffeomorphism [Sn; {N}]→ Rn.
(3) Compute the form of P := ∆Rnx in terms of X using polar coordinates X = RΩ,

R = |X|, Ω = X
|X| ∈ Sn−1. Show that R−4P is a smooth coefficient differential

operator on Sn near N if and only if n = 2.25 Show that R−2P is a smooth
coefficient b-differential operator on [Sn; {N}] near the front face.

5. Applications: II

5.1. The Laplacian with a singular potential. As a very simple example of blow-ups,
we consider the operator

∆− Z

|x|
from §1.2 as an operator on R3. Blowing up the origin, this becomes

−∂2
r −

2

r
∂r + r−2∆S2 −

Z

r

24Since TpX is a vector space, this is well-defined; the obvious notation would be TpX, but we write TpX
as it is more commonly used.

25This is related to the conformal invariance properties of the Laplace equation in 2 dimensions.



32 PETER HINTZ

on [R3; {0}], and r2 times it is the elliptic b-differential operator

P = −(r∂r)
2 − r∂r + ∆S2 − Zr ∈ Diff2

b([R3; {0}]).
The indicial family

N(P, λ) = −λ2 − λ+ ∆S2 (5.1)

is invertible unless λ = −l − 1, l, l ∈ N0, in which case the kernel consists of spherical
harmonics of degree l; one can thus show that conormal solutions of Pu = 0 or Pu = f ∈
Ċ∞([R3; {0}]) are polyhomogeneous at ff[R3; {0}].

One can make this a bit more exciting by fixing χ ∈ C∞c (R3), χ ≥ 0, to be equal to 1
near 0 and considering

Q = r2
(

∆− Z

|x|
χ
)
∈ Diff2

b

(
[R3; {0}]

)
.

Since [R3; {0}] has two boundary hypersurfaces, r = 0 and ρ = r−1 = 0, the analysis of Q
should take place on function spaces with two weights,

Hs,α0,α∞
b ([R3; {0}]) := ρα0

0 ρα∞∞ Hs
b([R3; {0}]), ρ0 =

r

r + 1
, ρ∞ =

1

1 + r
,

where we use the Euclidean volume density to define the underlying L2-space.

Theorem 5.1 (Mapping properties). Let s ≥ 3 and α0, α∞ /∈ 1
2 + Z. Then

∆− Z

|x|
χ : Hs,α0,α∞

b ([R3; {0}])→ Hs−2,α0−2,α∞+2
b ([R3; {0}])

is Fredholm. If Z < 0, α0 ∈ (1
2 ,

3
2), and α∞ ∈ (−3

2 ,−
1
2), it is invertible.

Proof. The proof combines elliptic estimates on the one hand and the inversion of the
indicial families −λ2 − λ + ∆S2 at ff[R3; {0}] (with Reλ = 3

2 + α0) and −λ2 + λ + ∆S2 at

∂R3 (with Reλ = −3
2 + α∞ as in the proof of Theorem 3.1) on the other hand.

The injectivity for Z < 0 and α0 >
1
2 , α∞ > −3

2 follows from the fact that u in the

kernel of ∆− Z
|x|χ lies in ρ

α0− 3
2

0 ρ
α∞+ 3

2∞ A0,0([R3; {0}]) (where A0,0 denotes bounded conormal

functions on [R3; {0}]). This suffices to justify integration by parts in the L2-pairing

0 =

〈(
∆− Z

|x|
χ
)
u, u

〉
= ‖∇u‖2 +

∥∥∥∥(−Z|x| χ)1/2
u

∥∥∥∥2

,

which gives u = 0. The surjectivity for Z < 0 and α0 <
3
2 , α∞ < −1

2 , follows by duality.

The reader is asked to fill in the details in Problem 5.1. �

5.2. The Laplace equation on polygonal domains. Let M ⊂ R2 be a (connected)
bounded polygonal domain with vertices p1, . . . , pN ∈ M and edges ei = pipi+1 where
pN+1 := p1. That is, all points in M come in three types:

(1) points in M◦ which have neighborhoods in M diffeomorphic to R2;
(2) points p ∈

⋃
e◦i (where e◦i is the interior of ei) which have neighborhoods U so that

M∩U = H ∩ U where H ⊂ R2 is a half space; and
(3) the points pj , j = 1, . . . , N , which have neighborhoods U so thatM∩U = U ∩{pj +

r(cos θ, sin θ) : θj ≤ θ ≤ θj + αj} for some θj ∈ R and αj ∈ (0, 2π).
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The numbers αj are the interior angles of M at pi.

Lemma 5.2 (Polygonal domains as manifolds with corners). (1) M is a manifold with
corners if and only if all cone angles αj, j = 1, . . . , N , satisfy αj ∈ (0, π].

(2) The lift M of M to [R2; {p1, . . . , pN}] is a manifold with corners (no matter what
the cone angles are).

See Figure 5.1.

M

p1
p2

p3

p4

p5

α1

M M

Figure 5.1. On the left: a polygonal domain with cone angles < π. In the
middle: a polygonal domain M with one cone angle > π (not a manifold
with corners). On the right: the lift M ofM to blow-up of R2 at the vertices.

Proof of Lemma 5.2. For part (1), the main observation is that the map (x, y) 7→ (x −
(cotα)y, y) is a diffeomorphism

{(r cos θ, r sin θ) : r ≥ 0, 0 ≤ θ ≤ α} → [0,∞)2.

This is well-defined for α ∈ (0, π). (Vertices with interior angles of π can be discarded of
course.)

For part (2), one observes that near the lift of {pj}, M is diffeomorphic to a neighborhood
of {0} × [0, αj ] inside [0,∞)× [0, αj ] via the lift of (r, θ) 7→ (r cos θ, r sin θ). �

Theorem 5.3 (Full asymptotics for the Laplace equation on polygonal domains). Let M
be a bounded polygonal domain with vertices p1, . . . , pN and interior angles α1, . . . , αN ∈
(0, 2π). Let M be the lift of M to [R2; {p1, . . . , pN}]. Suppose f ∈ Ċ∞(M), i.e. f is the
restriction to M of a smooth function which vanishes to infinite order at ∂M.26 Let27

u ∈ H1
0 (M◦) be the unique weak solution of ∆u = f , i.e.

∫
M◦ ∇u · ∇φ dx =

∫
M◦ fφdx for

all φ ∈ C∞c (M◦). Then the lift of u to M is smooth at the lift of ∂M and polyhomogeneous
at the lift ffj of {pj}. More precisely, in local coordinates r ≥ 0 and θ ∈ [0, αj ] near pj

28

there exist uj,k ∈ C∞([0, αj ]), k ∈ N, with uj,k(0) = uj,k(αj) = 0 so that

u
(
pj + (r cos(θj + θ), r sin(θj + θ))

)
∼
∑
k∈N

ck,jr
kπ
αj sin

(kπ
αj
θ
)
, r ↘ 0, (5.2)

for some constants cj,k.

26All elements of C∞c (M◦) satisfy this property.
27Recall that H1

0 (M◦) is the closure of C∞c (M◦) in the norm ‖u‖H1
0 (M◦)

:= ‖∇u‖L2 .
28By this we mean that {pj+(r cos(θj+θ), r sin(θj+θ)) : 0 ≤ r < rj , θ ∈ [0, αj ]} is an open neighborhood

of pj in M for some θj ∈ R and some small rj > 0.
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The reader is tasked with generalizing this to the case that the edges are not straight
lines anymore in Problem 5.6. In the right choice of local coordinates near the vertices, the
result is ‘the same’ except for the description of the coefficients uj,k of the polyhomogeneous

expansion and the possibility of additional factors of (log r)l, 0 ≤ l ≤ lmax(j, k).

Proof of Theorem 5.3. We first motivate the form of the result by working in local polar
coordinates r ≥ 0 and θ ∈ [0, αj ] near the boundary hypersurface ffj ⊂ M . In these
coordinates,

−r2∆ = −r2
(
−∂2

r −
1

r
∂r − r−2∂2

θ

)
= (r∂r)

2 + ∂2
θ .

The indicial family is N(−r2∆, λ) = λ2 + ∂2
θ ∈ Diff2([0, αj ]). Since we are considering the

Dirichlet problem, we only study the action of N(−r2∆, λ) on functions v(θ) vanishing at
0 and αj ; but then N(−r2∆, λ)v = 0 and v(0) = v(αj) = 0 requires v to be a multiple of

sin(λθ), with λαj ∈ Zπ, so λ = kπ
αj

for some k ∈ Z. Therefore, N(−r2∆, λ) has a nontrivial

nullspace only for λ = kπ
αj

for k ∈ Z \ {0}, spanned by sin(kπαj θ). The corresponding (local)

solution

r
kπ
αj sin

(kπ
αj
θ
)
∈ ker ∆

lies in L2((0, 1)r × [0, αj)θ, r|dr dθ|) provided 2kπ
αj

> −2, and its derivative along ∂r lies in

L2 iff 2(kπαj − 1) > −2, i.e. k > 0.

In order to show that u indeed has the structure (5.2), it suffices to show that V1 · · ·VIu ∈
L2(M◦) for all I ∈ N and smooth vector fields Vi ∈ V(M) which are tangent to all ffj :
this says that u is conormal at each ffj and smooth at the lift of ∂M, and then the
standard Mellin transform argument produces the asymptotic expansion of u. (Since −r2∆
is already dilation-invariant in r, i.e. equal to N(−r2∆), the terms in the expansion lie in
kerN(−r2∆, λ).)

One can further simplify the task: we claim that it suffices to show

V1 · · ·VIu ∈ H1
0 (M◦) ∀ I ∈ N, V1, . . . , VI ∈ Vb(M). (5.3)

This follows from a standard trick in the regularity theory for the Dirichlet problem: tan-
gential regularity implies normal regularity since ∆u = 0 roughly speaking expresses two
normal derivatives of u in terms of two tangential derivatives. Concretely, in the coordinates
r ≥ 0, θ ∈ [0, αj ] as above, and near θ = 0,

Ċ∞(M) 3 −r2f = −r2∆u = ∂2
θu+ (r∂r)

2u.

Thus, if (r∂r)
2u ∈ H1

0 (locally near the vertex), then ∂2
θu ∈ H1

0 . Higher order normal
derivatives are controlled by applying (powers of) ∂θ to ∆u = f .

Finally, in order to prove (5.3), recall that

∆: H1
0 (M◦)→ H−1(M◦) := (H1

0 (M◦))∗, (∆u)(v) = 〈∇u,∇v〉L2 ,

is an isomorphism. Given V ∈ Vb(M), the idea is to approximate V u by difference quotients
Dhu, 0 < h < 1, which gives ∆Dhu = Dhf + [∆, Dh]u. If [∆, Dh] : H1

0 → H−1 is uniformly

bounded, and Dhf → V f in Ċ∞(M) = Ċ∞(M), we find that Dhu ∈ H1
0 is uniformly

bounded and converges in distributions to V u; therefore V u ∈ H1
0 . Higher derivatives are
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handled inductively. It suffices to define Dh when V is supported near ffj . Indeed we only
need to consider V = r∂r, in which case one can take

(Dhu)(r, θ) = h−1
(
u(ehr, θ)− u(r, θ)

)
,

and V = θ∂θ in θ < 3
4αj (and similarly V = (αj − θ)∂θ in θ > 1

4αj), in which case one can
take

(Dhu)(r, θ) = h−1
(
u(r, ehθ)− u(r, θ)

)
.

We leave the detailed implementation of these arguments to the reader. �

5.3. The wave equation on Minkowski space. Perhaps somewhat surprisingly, geo-
metric singular analysis perspectives on the wave equation on Minkowski space which
are robust (i.e. works also for suitable perturbations) are rather nontrivial to find; see
[Wan13, BVW15, HV20, HV23, Hin23] for several options. For a general perspective in
the exterior region r > t, we refer the reader to [Hin23] (see in particular [Hin23, §1.2] for
the main vector field multiplier in a basic energy estimate); see [HV23] for a microlocal
treatment. Here, we shall merely work on exact Minkowski space in (n+ 1) dimensions,

(Rt × Rnx, g), g = −dt2 +
n∑
j=1

(dxj)2,

and study the solution u of the initial value problem

�gu =
(
∂2
t −

n∑
j=1

∂2
xj

)
u = 0, (u, ∂tu)|t=0 = (u0, u1), (5.4)

to verify that a certain compactification of Rn+1 is the ‘correct’ one on which u is polyho-
mogeneous when the Cauchy data u0, u1 are.

Consider first the radial compactification Rn+1 of Rn+1, with boundary defining function
% = (1 + t2 + |x|2)−1/2. This is defined directly by analogy with the case of the Laplace

operator; and indeed one has �g ∈ %2Diff2
b(Rn+1). However, solutions of �gu = 0 are known

to be asymptotic as r = |x| → ∞ and t− r = O(1) to r−1F (t− r, ω) where ω = x
|x| ∈ Sn−1,

and F is the radiation field. However, if ω ∈ Sn−1 is fixed, the future null-geodesics t−r = c,
r → ∞, being parallel, limit to the same point in ∂Rn+1 depending only on ω but not on
c ∈ R. The set of all these points is the future ‘light cone at infinity’,

Y + := {% = 0, t/r = +1} ⊂ Rn+1.

Local coordinates near it are ρ = r−1, v = t−r
r , ω ∈ Sn−1. If we blow up Y (which is locally

given by ρ = v = 0), then coordinates in the interior of the front face are v
ρ = t− r, i.e. one

resolves the radiation field. Defining Y − similarly, we thus set

M :=
[
Rn+1;Y − ∪ Y +

]
. (5.5)

We write I ± (future and past null infinity) for the lift of Y ±. The lift of ∂Rn+1 has

three connected components which we label I−, I0, I+. For example, a chart on R4 in a
neighborhood of Y + is [0, 1) × (−1, 1) × Sn−1 with coordinates 1/r, (r − t)/r, ω ∈ Sn−1;
therefore, a chart on M near I0 ∩I + is

[0, 1)ρI × [0, 1)ρ0 × Sn−1, ρI :=
r − t
r

, ρ0 :=
1/r

(r − t)/r
=

1

r − t
. (5.6)
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See Figure 5.2.

I−

I0I0

I+

I +I +

I −I −

M

Figure 5.2. The compactification M of Rn+1 (see (5.5)) on which solutions
of the wave equation on Minkowski space are polyhomogeneous.

The compactification M has nice properties related to the Minkowski metric:

Proposition 5.4 (Poincaré group, scalings, and b-vector fields). Denote by Ωµν (0 ≤
µ, ν ≤ 3) the generators of the Lorentz group,

Ω0j = t∂xj + xj∂t (1 ≤ j ≤ n), Ωij = xi∂xj − xj∂xi (1 ≤ i 6= j ≤ n).

Then the vector fields Ωµν and the translation vector fields ∂t, ∂xj (1 ≤ j ≤ n)—which
taken together are the generators of the Poincaré group—together with the scaling vector
field S = t∂t +

∑n
j=1 x

j∂xj span Vb(M) over C∞(M).

Proof. We check this only near a point in I0 ∩I + using the coordinates (5.6).

The vector fields Ωij span V(Sn−1), and we have S = t∂t + r∂r = −ρ0∂ρ0 . If we work

near a point where x1 > cmax{|x2|, . . . , |xn|}, c > 0, we may use ωk = xk

x1
, 2 ≤ k ≤ n,

as coordinates on Sn−1. In the coordinates ρI , ρ0, ω
k (2 ≤ k ≤ n), we then compute

r = (ρIρ0)−1, t = 1−ρI
ρIρ0

, and ∂x1r = x1

r = 〈ω〉−1 := (1+(ω2)2 +(ω3)2)−1/2, so 1
x1

= ρ0ρI〈ω〉,
∂xkr = xk

r = ωk

〈ω〉 and xk = ωk

ρ0ρI〈ω〉 for 2 ≤ k ≤ n, and

∂t = ρ0(ρ0∂ρ0 − ρI∂ρI ),

∂x1 =
tx1

r3
∂ρI −

x1

r(r − t)2
∂ρ0 −

ω2

x1
∂ω2 −

ω3

x1
∂ω3

= ρ0

(
〈ω〉−1

(
(1− ρI)ρI∂ρI − ρ0∂ρ0

)
− ρI〈ω〉(ω2∂ω2 + ω3∂ω3

)
,

∂xk =
txk

r3
∂ρI −

xk

r(r − t)2
∂ρ0 + ρ0ρI〈ω〉∂ωk

= ρ0

(
〈ω〉−1ωk

(
(1− ρI)ρI∂ρI − ρ0∂ρ0

)
+ ρI〈ω〉∂ωk

)
,

where 2 ≤ k ≤ n. This shows that ∂t, ∂xi (1 ≤ i ≤ n) lie in Vb(M); and moreover

t∂x1 + x1∂t = 〈ω〉−1
(
ρ0∂ρ0 − (2− ρI)ρI∂ρI

)
− (1− ρI)〈ω〉(ω2∂ω2 + ω3∂ω3),

t∂xk + xk∂t = −〈ω〉−1ωk
(
(1− ρI)ρI∂ρI − ρ0∂ρ0

)
+ (1− ρI)〈ω〉∂ωk ,
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so Ω0j ∈ Vb(M) for 1 ≤ j ≤ n, and ρI∂ρI can be expressed as a linear combination
with coefficients in C∞(M) of Ω01 and the vector fields S = −ρ0∂ρ0 and ∂ωk ∈ V(Sn−1),
2 ≤ k ≤ n.

The verification near other points of M is left to the reader. �

Since [�g,Ωµν ] = 0 and [�g, S] = 2�g, Proposition 5.4 implies that a bound for the
solution u of the initial value problem for �g in any spacetime L2-space29 implies full
b-regularity and thus conormality of u (and therefore pointwise estimates for u), albeit
without further work with not particularly strong weights, if the initial data are conormal
on R3.

Corollary 5.5 (A variant of Klainerman–Sobolev embedding). (See [Kla85] or [Sog95,
Chapter II.1].30) Let V = {Ωµν , ∂t, ∂xj}. Then for t > 0,

(1 + |t|+ |x|)
n−1
2 (1 + |t− r|)

1
2 |u(t, x)| ≤ C

∑
|α|≤dn+2

2
e

‖V αu‖(1+|t|+|x|)1/2L2 (5.7)

for all u for which the right hand side is finite.

Proof. In brief, this follows from Sobolev embedding for b-Sobolev spaces in view of Pro-
position 5.4; the weights in the estimate arise from the weights of the density |dt dx| at the
various boundary hypersurfaces from M (cf. w in Definition 2.13 and Proposition 2.14).

We makes this concrete near I0 ∩I + in the coordinates (5.6), so

|dtdx| = rn−1|dt dr dgSn−1 | = ρ−n−1
0 ρ−nI

∣∣∣dρI
ρI

dρ0

ρ0
dgSn−1

∣∣∣.
Therefore, for s > n+1

2 (i.e. s = dn+2
2 e works), elements of (1 + 〈t〉+ 〈x〉)1/2Hs

b(M, |dtdx|)

locally lie in (1 + 〈t〉 + 〈x〉)1/2ρ
n+1
2

0 ρ
n
2
I L
∞ by a simple generalization of Proposition 2.14.

Since (1 + 〈t〉+ 〈x〉)1/2 ∼ ρ−1/2
0 ρ

−1/2
I , this gives (5.7). �

Proposition 5.6 (Radiation field). Suppose u0, u1 ∈ S (Rn) = A∅phg(Rn). Then the solu-

tion u of (5.4), expressed in the coordinates (5.6), is

u = u(ρI , ρ0, ω) ∼
∞∑
j=0

ρ
n−1
2

+j

I uj(ρ0, ω), uj ∈ Ċ∞([0, 1)ρ0 × Sn−1).

The radiation field is (r
n−1
2 u)|I + = (r − t)

n−1
2 u1( 1

r−t , ω) ∈ Ċ∞(I + ∩ {ρ0 < 1}).

Proof. Since r = ρ−1
0 ρ−1

I and

∂t = ρ0(ρ0∂ρ0 − ρI∂ρI ), ∂r = ρ0

(
−ρ0∂ρ0 + (1− ρI)ρI∂ρI

)
,

29Such a bound follows e.g. from something as simple as energy conservation.
30Compared to the references, we use a weighted spacetime L2-norm on the right hand side here (allowing

for (1+ |t|+ |x|)1/2 growth relative to L2(Rn, |dtdx|)), instead of the L2(Rnx) norm on a fixed t-level set, and
we use 1 derivative more on the right hand side when n is odd. One can apply this estimate to wu where
w is a product of real powers of defining functions of the boundary hypersurfaces of M to get a weighted
version.



38 PETER HINTZ

one finds

�g = ∂2
t − ∂2

r −
n− 1

r
∂r + r−2∆Sn−1 = P0 + P̃,

P0 = −2ρ2
0ρI(ρ0∂ρ0 − ρI∂ρI )

(
ρI∂ρI −

n− 1

2

)
,

P̃ = −(ρ0ρ
2
I∂ρI )

2 + (n− 1)ρ2
0ρ

2
IρI∂ρI + ρ2

0ρ
2
I∆Sn−1 .

Thus P0 ∈ ρ2
0ρIDiff2

b([0, 1)ρI × [0, 1)ρ0 × Sn−1), while P̃ ∈ ρ2
0ρ

2
IDiff2

b is of lower order (in
the sense of decay) as a b-differential operator. Similarly to the settings considered in §§3.2
and 3.3, the wave operator here is degenerate even as a (weighted) b-differential operator,
but can nonetheless be studied using b-techniques. (For a nondegenerate perspective, see
[HV23].) We only sketch the argument here.

• Step 1. Energy estimate. In this step, the term ρ2
0ρI · ρI∆Sn−1 in P̃ still plays a crucial

role. Using a suitable vector field multiplier (essentially: ρβ00 ρ
βI
I ((1 − c)ρ0∂ρ0 − ρI∂ρI ),

0 < c� 1), one can prove an energy estimate

‖ρ0∂ρ0u‖2H + ‖ρI∂ρIu‖
2
H + ‖ρ1/2

I ∇
Sn−1

u‖2H ≤ C, (5.8)

where C depends only on the initial data, and

‖u‖H := ‖ρ−α0
0 ρ−αII u‖L2

for any fixed31 α0 ∈ R and αI < min(α0 + 1
2 ,−

1
2).

• Step 2. Conormal regularity. Commuting Poincaré vector fields and the scaling vector
field through �gu = 0, one obtains (5.8) also for all derivatives V αu. Thus, one obtains
full b-regularity, and by Sobolev embedding

u ∈ ρα0+n+1
2

0 ρ
αI+n

2
I A0,0,

where A0,0 denotes the space of bounded conormal functions on (5.6). Since α0 is arbitrary,
we obtain

u ∈ ρN0 ρ
n−1
2
−ε

I A0,0 ∀N ∈ R, ε > 0.

We remark that in this step one does not actually need the Poincaré invariance of �g; it
suffices to commute with b-vector fields which leave the structure of the leading order terms
P0 + ρ2

0ρ
2
I∆Sn−1 intact (insofar as they play a role in the energy estimate (5.8)).

• Step 3. Expansion at I +. We now rewrite 0 = �gu = P0u+ P̃ = 0 as

(ρ0∂ρ0 − ρI∂ρI )
(
ρI∂ρI −

n− 1

2

)
u = Q̃u, Q̃ =

1

2
ρ−2

0 ρ−1
I P̃ ∈ ρIDiff2

b. (5.9)

Thus, if u ∈ ρN0 ρ
n−1
2
−ε

I A0,0, then Q̃u ∈ ρN0 ρ
n−1
2

+1−ε
I A0,0 has an extra order of vanishing at

I + = {ρI = 0}. One can integrate the vector field ρ0∂ρ0 − ρI∂ρI starting at the Cauchy
surface ρ0 = 1 to obtain (

ρI∂ρI −
n− 1

2

)
u ∈ ρN0 ρ

n−1
2

+1−ε
I A0,0.

Integrating the Fuchsian vector field ρI∂ρI − n−1
2 from ρI = 1 towards ρI = 0 gives

u = ρ
n−1
2

I u0(ρ0, ω) + ũ, ũ ∈ ρN0 ρ
n−1
2

+1−ε
I A0,0

31If the initial data are not Schwartz, then there is an upper bound for α0.
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and thus produces the leading order term of u at I +. Plugging this improved information
back into (5.9) and iterating the argument proves the result. �

5.4. Problems.

Problem 5.1 (Laplacian with potential). Fill in the details of the proof of Theorem 5.1.

Problem 5.2 (Polygonal domains). Fill in the details in the proof of Lemma 5.2.

Problem 5.3 (Regularity of solutions of the Laplace equation on polygonal domains). Use
the notation of Theorem 5.3; let αmax = max{αj : j = 1, . . . , N}. Let k ∈ N0, β ∈ [0, 1)
with π

αmax
= k + β denote the integer and fractional parts of π

αj
.

(1) Show that the solution u ∈ H1
0 (M◦) of ∆u = f ∈ Ċ∞(M) lies in Ck,β(M). In

particular, if all interior angles are < π, then u ∈ C2(M) is a classical solution all
the way down to ∂M.

(2) Show that there exists f ∈ Ċ∞(M) so that u /∈ C1,β+ε(M) for any ε > 0. Hint. Fix
χ ∈ C∞([0, r0)) to be equal to 1 near 0, where r0 is smaller than the distance from

pj to the next non-adjacent edge or vertex. Then f0 := ∆(χ(r)rπ/αj sin( παj θ)) =

[∆, χ](rπ/αj sin( παj θ)) is supported near the smooth part of ∂M; construct then (the

Taylor series at ∂M of) a smooth function u0 on M with support in supp dχ so

that f0 −∆u0 ∈ Ċ∞(M), and conclude.

Problem 5.4 (Eigenfunctions on polygonal domains). In the notation of Theorem 5.3,
show that all Dirichlet eigenfunctions of ∆ have a polyhomogeneous expansion at ffj of the
form

u ∼
∑

r
kπ
αj uj,k(θ), r ↘ 0,

where uj,k(θ) =
∑b k

2
c

l=0 cj,k,l sin( (k−2l)π
αj

θ) for some constants cj,k,l.

Problem 5.5 (Curvilinear polygonal domains). Generalize Lemma 5.2 to curvilinear polyg-
onal domains M⊂ R2. That is, M is a bounded connected subset of R2, and every point
in M is either

• an interior point (with a neighborhood in M that is diffeomorphic to R2),
• a boundary point (with a neighborhood inM that is diffeomorphic to the half space

[0,∞)× R), or
• a vertex (for which there exists a diffeomorphism φ : U ∩M→ {r(cos θ, sin θ) : r ≥

0, 0 ≤ θ ≤ α} which is defined on an open neighborhood U ⊂ R2 of the vertex in
R2, with α denoting the32 interior angle at the vertex).

Problem 5.6 (Dirichlet problem on curvilinear polygonal domains). Generalize Theo-

rem 5.3 to the case of the Laplace equation ∆u = f ∈ Ċ∞(M), u|∂M = 0, when M is a
curvilinear polygonal domain. Hint. The polyhomogeneous expansion near the front face
ffj corresponding to the vertex pj should be expressed in the local coordinates which locally
straighten out M.

32The reader should convince themselves that α is well-defined.
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Problem 5.7 (Dirichlet problem on the stadium). Define the Bunimovich stadium M to
be a rectangle capped by two semidisks. Normalizing one side length to be 2 and the other
a > 0, we may take

M = {(x, y) ∈ R2 : x ≤ −a, (x+ a)2 + y2 ≤ 1}
∪
(
[−a, 0]× [−1, 1]

)
∪ {(x, y) ∈ R2 : x ≥ 0, x2 + y2 ≤ 1}.

Define M to be the lift ofM to the blow-up [R2; {−a, 0}×{−1, 1}] of R2 at the four corners
(which are the only four points in ∂M where M fails to be C∞).

(1) Show that a local coordinate system near the lift of {(0,−1)} is given by

[0,min(a, 2))× [0, π] 3 (r, α) 7→ (0,−1) + (r cos θ(r, α), r sin θ(r, α)),

where

θ(α) := α
(

1− arcsin(r/2)

π

)
.

(2) Compute the expression for −r2∆ in the coordinates (r, α).

(3) Let f ∈ Ċ∞(M). Show that the unique solution u ∈ H1
0 (M◦) of ∆u = f ∈ Ċ∞(M)

is polyhomogeneous on M , and compute the first few terms in the expansion of u.
Hint. One has u(r, α) ∼ ru0(α) + r2(log r)u1(α) + r2u2(α) + . . . , where u1 can be
computed explicitly in terms of u0.

(4) Show that u lies in C1,β(M) for all β < 1, but for some f fails to lie in C2(M).

Problem 5.8 (Explicit verification of the polyhomogeneity of solutions of the wave equation
in n = 3 spatial dimensions). Let F ⊂ C×N0 be an index set with Re z > 1,33 and suppose

〈x〉u1 ∈ AFphg(R3). Let u be the unique solution of �gu = 0 with (u, ∂tu)|t=0 = (0, u1). Let

EI0 = EI− = EI+ = F and EI− = EI + = F ∪ ((N0 + 1)×{0}). Then u is polyhomogeneous
on M with index set EH at the hypersurface H ⊂ M , H ∈ {I−,I −, I0,I +, I+} of M .34

Hint: use the formula

u(t, x) = − 1

2πt

∫
∂Bt(x)

u1(y) dσ(y),

where ∂Bt(x) = {y ∈ R3 : |y − x| = t} is the boundary of the t-ball around x.

Problem 5.9 (Generators of the Poincaré group and scalings). Complete the proof of
Proposition 5.4. Deduce that every element of the Poincaré group extends by continuity
from R4 to diffeomorphisms of M .

6. Singular limits via geometric singular analysis

We consider here only one type of setting to illustrate the basic strategy for studying
singular limits using manifolds with corners and blow-up techniques. The simplest case is
as follows. Let X denote manifold without boundary, and suppose we are given a smooth
family

(0, 1] 3 ε 7→ Pε ∈ Diffm(X)

33Without this assumption, there may be log terms at I±.
34We have not formally defined polyhomogeneity on manifolds with corners. The rough definition is clear:

at each boundary hypersurface H, one has an asymptotic expansion as in (2.7), with ρ a defining function
of H and with E replaced by the index set EH associated with H, where the coefficients u(z,k)(y) themselves
are polyhomogeneous on H, with index set EH′ at the hypersurface H ′ ∩H of H. See [Maz91, Mel96] for
precise definitions.
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of differential operators; if x ∈ Rn are local coordinates near a point in X, this simply
means that Pε =

∑
|α|≤m a(ε, x)∂αx where a ∈ C∞((0, 1] × Rn). We combine all Pε into a

single differential operator on the total space (0, 1]×X,

P̃ ∈ Diffm((0, 1]×X),

which acts on ũ ∈ C∞((0, 1] × X) via (P̃ ũ)(ε, ·) = P (ũ(ε, ·)). Thus, P̃ is a ‘vertical’
differential operator in that it does not involve differentiation in ε.

We assume that Pε becomes singular as ε↘ 0 only at a distinguished point p ∈ X in the
following precise sense. Define the resolved total space

X̃ :=
[

[0, 1]×X; {(0, p)}
]
, (6.1)

and write

• X◦ ⊂ X̃ for the lift of {0} ×X.

• X̂ ⊂ X̃ for the front face of X̃.

Problem 4.4 gives natural diffeomorphisms X◦ = [X; {p}] and X̂ = TpX. Notice what

happens here: every level set of ε inside the interior X̃◦ = (0, 1)×X is a copy of X; but as

ε ↘ 0, the level sets degenerate, and at ε = 0 the fiber of X̃ over ε = 0 (i.e. the preimage
ε−1(0)) is no longer a smooth manifold, but rather the union of the two manifolds with

boundary X̂ and X◦. See Figure 6.1.

X̃

X̂

X◦

ε = const.

Figure 6.1. Illustration of the resolved total space (6.1), its boundary hy-
persurfaces, and some level sets of ε.

Write ρ◦, ρ̂ ∈ C∞(X̃) for defining functions of X◦, X̂ respectively. (Thus ρ̂ρ◦ is a smooth

positive multiple of ε.) Then we require that P̃ ∈ Diffmb (X̃), or more generally

P̃ ∈ ρ̂−αDiffmb (X̃). (6.2)

Since P̃ does not involve differentiation in ε (which can be formally expressed e.g. as [P̃ , ε] =
0), its behavior at ε = 0 can be captured by two operators

P◦ ∈ ρ̂−αDiffmb (X◦), P̂ ∈ ρα◦Diffmb (X̂). (6.3)

Here, we define P◦u for u ∈ C∞c (X◦) = C∞c (X\{p}) to be equal to (P̃ ũ)|X◦ where ũ ∈ C∞(X̃)

satisfies ũ|X◦ = u; and similarly P̂ u = (εαP̃ ũ)|X̂ for u ∈ C∞c (X̂◦) where ũ ∈ C∞(X̃) satisfies
ũ|X̂ = u.

Example 6.1 (Laplacians with degenerating potentials). Let X = Rn, p = 0. Then X̃ =
[[0, 1] × Rn; {(0, 0)}]; we already studied this manifold (with [0, 1] replaced by [0,∞)) in

Example 4.7, where we saw in particular that X◦ = [Rnx; {0}] and X̂ = Rnx̂ where x̂ = x
ε .

Let W,V ∈ C∞c (Rn) and set Vε(x) = V (xε ). Then

Pε = ∆ +W + ε−2Vε
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fits into the above setting with α = 2. Indeed, when |x| < Rε where R > 0 is twice the

radius of an open ball containing suppV , then local coordinates on X̃ are ε ∈ [0, 1], x̂ = x
ε .

We then compute35

ε2P̃ = ε2(∆ +W + Vε) = −
n∑
j=1

(ε∂xj )
2 + Vε(x) + ε2W (x) = −

n∑
j=1

∂2
x̂j + V (x̂) + ε2W (εx̂).

A neighborhood of the corner of X̃ is [0, 1)r× [0, 2R−1)ρ◦×Sn−1 where r = |x| and ρ◦ = ε
|x| ,

so
P̃ = ∆ +W = r−2

(
−(r∂r − ρ◦∂ρ◦)2 − (r∂r − ρ◦∂ρ◦) + ∆S2 + r2W

)
,

as required. The operators P◦ and P̂ in (6.3) are then

P◦ = ∆x +W (x) ∈ ρ̂−2Diff2
b(X◦), P̂ = ∆x̂ + V (x̂) ∈ ρ2

◦Diff2
b(X̂).

Note that P̃ −P◦ ∈ ρ̂−2ρ◦Diff2
b(X̃) vanishes at X◦ as a b-differential operator, and similarly

ε2P̃ − P̂ ∈ ρ̂ρ2
◦Diff2

b(X̃) vanishes at X̂ as a b-differential operator. In this sense, P◦ and P̂

are accurate models for P̃ in the two asymptotic regimes X◦, X̂.

6.1. q-analysis. It is useful to have more precise description of P̃ than (6.2) which explic-

itly records the fact that P̃ does not involve differentiation in ε:

Definition 6.2 (q-vector fields and q-differential operators). On the manifold X̃ defined

in (6.1), we write Vq(X̃) ⊂ Vb(X̃) for the space of all b-vector fields V on X̃ with V ε = 0.

We write Diffmq (X̃) for locally finite sums of up to m-fold compositions of elements of Vq(X̃).

Thus, P̃ ∈ ρ̂−αDiffmq (X̃). This was implicitly introduced in [HX22] and explicitly in
[Hin21], with earlier variants appearing already in [HMM95]. See Problem 6.1 for some
properties of these spaces of vector fields and differential operators. We shall use in the

sequel that Vq(X̃) is spanned over C∞(X̃) by the vector fields ρ̂W where W ∈ V(X) is

regarded as an ε-independent vector field on (0, 1] × X. Using Vq(X̃), we can define a
corresponding scale of Sobolev spaces:

Definition 6.3 (q-Sobolev spaces). Suppose X is a compact manifold without boundary,

and define X̃ by (6.1); fix boundary defining functions ρ◦, ρ̂ ∈ C∞(X̃) of X◦, X̂. Fix a finite
collection V = {V1, . . . , VN} ⊂ V(X) of vector fields which spans V(X) over C∞(X). Let
s ∈ N0. For ε ∈ (0, 1], we define Hs

q,ε(X) = Hs(X) but with ε-dependent norm

‖u‖2Hs
q,ε(X) :=

∑
|α|≤s

‖ρ̂|α|V αu‖2L2(X).

For weights α◦, α̂ ∈ R, we define Hs,α◦,α̂
q,ε (X) = Hs(X) but with ε-dependent norm

‖u‖
Hs,α◦,α̂

q,ε (X)
:= ‖ρ−α◦◦ ρ̂−α̂u‖Hs

q,ε(X).

These are the natural function spaces on which to study q-differential operators uniformly

as ε↘ 0. Indeed, every P̃ ∈ Diffmq (X̃) defines a uniformly bounded family of maps

Hs
q,ε(X)→ Hs−m

q,ε (X), ε ∈ (0, 1].

35In this region, ε is a smooth positive multiple of a defining function of X̂.
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(See Problem 6.3 for a generalization.) Furthermore, since the two model operators P◦ and

P̂ corresponding to P̃ are b-differential operators, one expects there to be a relationship
between q-Sobolev spaces on X and b-Sobolev spaces on X◦ and X̂. We explain this in the
simplest case in local coordinates and leave the general case to the reader (Problem 6.5).

Thus, suppose u = u(ε, x) is defined for ε > 0 and x ∈ Rn, |x| < 1. Then we can take

ρ̂ = (ε2 + |x|2)1/2 and upon changing variables via x = εx̂ compute

‖u‖2H1
q,ε

= ‖u(ε, ·)‖2L2 + ‖ρ̂∂xu(ε, ·)‖2L2

=

∫
Rn
|u(ε, x)|2 + (ε2 + |x|2)|∂xu(ε, x)|2 dx

= εn
∫
Rn
|u(ε, εx̂)|2 + (1 + |x̂|2)|(∂x̂u)(ε, εx̂)|2 dx̂.

Note that (1 + |x̂|2)1/2∂x̂ is a b-vector field on the radial compactification Rnx̂. Thus, if we
define û(ε, x̂) = u(ε, εx̂) to be the family of functions u(ε, ·) expressed in x̂-coordinates, then

‖u‖2H1
q,ε

= εn‖û(ε, ·)‖2
H1

b(Rnx̂)
. (6.4)

When u is equal to 0 for |x| ≤ Rε for some R > 0, then ε ≤ R−1|x| on suppu, so
|x|2 ≤ ε2 + |x|2 ≤ (1 + R−2)|x|2, and therefore the H1

q,ε and H1
b([Rn; {0}]) norms of u are

comparable:

C(R)−1‖u‖2H1
q,ε
≤
∫
Rn
|u(ε, x)|2 + |x|2|∂xu(ε, x)|2 dx = ‖u(ε, ·)‖2H1

b([Rn;{0}]) ≤ C(R)‖u‖2H1
q,ε
.

(6.5)

The strategy for the uniform analysis of P̃ ∈ Diffmq (X̃) is then to prove uniform estimates
on q-Sobolev spaces in a fashion similar to how the Laplacian on Rn was analyzed in

Theorem 3.1: in the simplest case, one combines elliptic estimates for P̃ on q-Sobolev
spaces with the invertibility of the two model operators P◦ and P̂ on the matching b-
Sobolev spaces to obtain a uniform estimate of the sort

‖u‖
Hs,α◦,α̂

q,ε (X)
≤ C

(
‖Pεu‖Hs−m,α◦,α̂

q,ε (X)
+ ‖u‖

H0,α◦−1,α̂−1
q,ε

)
(cf. the estimate (3.4)). For small ε > 0, this implies the injectivity of Pε ∈ Diffm(X) (the

restriction of P̃ to the ε-level set); see Problem 6.4.36 We will implement this strategy in
the setting of Example 6.1 in §7.1, and in a general relativity context in §7.2.

The perspective explained above can also be used for constructing families of solutions of
(nonlinear) PDEs which become singular in a prescribed fashion; see [Hin22] for an example.

6.2. Problems.

Problem 6.1 (q-vector fields and q-differential operators). Fixing a smooth manifold X

and a point p ∈ X, define X̃ = [[0, 1]×X; {(0, p)}]. Write X◦ and X̂ for the lift of {0}×X
and the front face, respectively, and ρ◦ and ρ̂ ∈ C∞(X̃) for defining functions. Prove the

following statements about Vq(X̃) and Diffmq (X̃).

36If one proves analogous estimates for the adjoint P̃ ∗, one can obtain the surjectivity of Pε for small
ε > 0.
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(1) Vq(X̃) is equal to the C∞(X̃)-span of all vector fields of the form ρ̂W where W ∈
V(X) is regarded as an ε-independent vector field on (0, 1]×X.

(2) Vq(X̃) is a Lie algebra: V,W ∈ Vq(X̃) implies [V,W ] ∈ Vq(X̃).

(3) There are well-defined and surjective restriction maps NX̂ : Vq(X̃) → Vb(X̂) and

NX◦ : Vq(X̃)→ Vb(X◦).

(4) The maps NX̂ , NX◦ extend to surjective algebra homomorphisms Diffq(X̃) →
Diffb(X̂) and Diffq(X̃)→ Diffb(X◦). The operators P◦ and P̂ in (6.3) are equal to

NX◦(P̃ ) and NX̂(P̃ ), respectively.

(5) Let P̃ ∈ Diffmq (X̃). Then NX◦(P̃ ) = 0 if and only if P̃ ∈ ρ◦Diffmq (X̃); and NX̂(P̃ ) =

0 if and only if P̃ ∈ ρ̂Diffmq (X̃). (Thus, NX◦(P̃ ) and NX̂(P̃ ) capture P̃ to leading

order at X◦ and X̂.)

Problem 6.2 (q-Sobolev spaces). Show that the norms on weighted q-Sobolev spaces do
not depend on any choices up to uniform equivalence of norms. That is, if ‖ · ‖ε,1, ‖ · ‖ε,2
are the ε-dependent norms ‖ · ‖

Hs,α◦,α̂
q,ε (X)

defined with respect to two different choices of

ρ◦, ρ̂,V , show that there exists C > 0 so that for all ε ∈ (0, 1] we have ‖u‖ε,1 ≤ C‖u‖ε,2
and ‖u‖ε,2 ≤ C‖u‖ε,1 for all u.

Problem 6.3 (Mapping properties). Let X be compact, and let P̃ ∈ ρ−β◦◦ ρ̂−β̂Diffmq (X̃)

be a weighted q-differential operator. Show that for all s ≥ m and α◦, α̂ ∈ R, P̃ defines a
uniformly bounded family of maps

Hs,α◦,α̂
q,ε (X)→ Hs−m,α◦−β◦,α̂−β̂

q,ε (X).

Problem 6.4 (Smallness). Let X be compact, s ∈ N0, and α◦, α̂ < 0. Suppose εj > 0 and
uj ∈ Hs(X), j ∈ N are sequences with εj ↘ 0 and such that there exists a constant C > 0
so that

‖uj‖Hs
q,ε(X) ≤ C‖uj‖Hs,α◦,α̂

q,ε (X)
.

Show that there exists j0 ∈ N so that uj = 0 for j ≥ j0.

Problem 6.5 (q-Sobolev spaces and their relationships to b-Sobolev spaces). (See [Hin21,
Proposition 2.13].) Let X be a compact n-dimensional manifold without boundary, p ∈ X.
Fix local coordinates x ∈ Rn on X around p, with x = 0 at p. Let s ∈ N0 and α◦, α̂ ∈ R.

Let χ◦, χ̂ ∈ C∞(X̃), with χ◦ = 0 when |x| < cε for some c > 0, and supp χ̂ ⊂ {|x| < C},
C > 0.

(1) Given a function u = u(ε, x), write û = û(ε, x̂) := u(ε, εx̂) for its pullback along
(ε, x̂) 7→ (ε, εx̂). (That is, we are expressing u in terms of the variables x̂ = x

ε .)
Show that

‖χ̂u(ε, ·)‖
Hs,α◦,α̂

q,ε (X)
∼ ε

n
2
−α̂‖χ̂û(ε, ·)‖

Hs,α◦−α̂
b (X̂)

,

in the sense that there exists a constant C, independent of ε, u, so that the left hand
side is bounded by C times the right hand side, and vice versa.

(2) Given u = u(ε, x), show that

‖χ◦u(ε, ·)‖
Hs,α◦,α̂

q,ε (X)
∼ ε−α◦‖χ◦u‖Hs,α̂−α◦

b (X◦)
.
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7. Applications: III

7.1. Laplacians with degenerating potentials. We return to the setting from §1.2 and
Example 6.1.

Theorem 7.1 (Spectrum under singular perturbations). Let (X, g) be a compact 3-dimen-
sional37 Riemannian manifold without boundary, W ∈ C∞(X). Let p ∈ X, and denote
normal coordinates around p by x ∈ R3, |x| < δ. Let V ∈ C∞c (R3). For ε > 0, consider the
operator

Pε := ∆g +W + ε−2V
(x
ε

)
∈ Diff2(X).

Assume that (∆R3 + V )u = 0 and |u(x)| → 0 as |x| → ∞ implies u = 0. Suppose that
λ0 /∈ σ(∆g +W ), i.e. ∆g +W − λ0 : H2(X)→ L2(X) is invertible. Then there exist ε0 > 0
and a neighborhood Λ ⊂ C of λ0 so that

Pε − λ : H2(X)→ L2(X)

is invertible for all ε ∈ (0, ε0) and λ ∈ Λ.

This result says that the limit of σ(Pε) as ε↘ 0 is contained in σ(∆g+W ). The converse
is true as well, but we shall not prove this here. Typically, for any fixed ε > 0, Pε will have
eigenvalues far from σ(∆g+W ); but these eigenvalues are of size & ε−2, i.e. they ‘disappear’
to infinity in the limit ε↘ 0.

Proof of Theorem 7.1. To simplify the notation, we shall only prove the invertibility of
Pε−λ0. (Allowing λ to vary near λ0 merely adds another parameter on which all operators
depend smoothly.) By adding a constant to W , we may moreover assume that λ0 = 0.

As we essentially already saw in Example 6.1, the total family P̃ = (Pε)ε∈(0,1] satisfies

P̃ ∈ ρ̂−2Diff2
q(X̃);

its restriction to X◦ is P◦ = ∆g +W , and the restriction of ε2P̃ to X̂ is P̂ = ∆R3 + V .

• Step 1. Uniform elliptic estimate. Let s ≥ 3 and α̂ ∈ R. We claim that there exists
C > 0 so that

‖u‖
Hs,0,α̂

q,ε (X)
≤ C

(
‖Pεu‖Hs−2,0,α̂−2

q,ε (X)
+ ‖u‖

H2,0,α̂
q,ε (X)

)
. (7.1)

The norm on Pεu is equal to ‖ρ̂2Pεu‖Hs−2,0,α̂
q,ε (X)

. This estimate is insensitive to lower order

terms of Pε; moreover we can reduce to the case α̂ = 0 by considering ρ̂−α̂Pερ̂
α̂ instead of

Pε. Away from X̂, this estimate is then a standard elliptic estimate. Near X̂, note that
−ρ̂2∆ is, to leading order, a positive definite quadratic form in ρ̂∂x. An adaptation of
standard elliptic regularity estimates then shows that u has two more ρ̂∂x-derivatives than
ρ̂2Pεu, which is the content of (7.1).

• Step 2. Inversion of the X◦-normal operator. Let χ◦ ∈ C∞(X̃) be equal to 1 near X◦,
and equal to 0 for |x| < ε. Then for any η > 0

‖u‖
H2,0,α̂

q,ε (X)
≤ ‖χ◦u‖H2,0,α̂

q,ε (X)
+ ‖(1− χ◦)u‖H2,0,α̂

q,ε (X)

≤ Cη
(
‖χ◦u‖H2,α̂

b (X◦)
+ ‖u‖

H2,−η,α̂
q,ε (X)

)
,

(7.2)

37This holds in any dimension n ≥ 3, as the reader is tasked with proving in Problem 7.1.
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since supp(1 − χ◦) ∩ X◦ = ∅, hence the weight in the norm on (1 − χ◦)u can be changed
arbitrarily (and then we drop 1−χ◦, which is a uniformly bounded multiplication operator
on every weighted q-Sobolev space). We now specify that

α̂ ∈
(1

2
,
3

2

)
.

In this case, the arguments of Theorem 5.1 apply and show that

P◦ = ∆g +W : H2,α̂
b (X◦)→ H0,α̂−2

b (X◦) (7.3)

is Fredholm. We claim that it is invertible; this is not automatic since we are considering
this operator on a space of functions which allows for singular behavior at r−1(0) = ∂X◦
(where we write r = |x| as usual). If u ∈ H2,α̂

b (X◦), then by elliptic regularity and Sobolev

embedding u ∈ A−
3
2

+α̂(X◦). Since N(r2P◦, λ) = −λ2−λ+∆S2 (cf. (5.1)) has indicial roots
l,−l− 1 for l ∈ Z, and since −3

2 + α̂ > −1, we conclude that u is polyhomogeneous and in

fact u(r, ω) = u0 + ũ(r, ω) where ũ ∈ A1−ε(X◦) for all ε > 0. Therefore, 0 is a removable
singularity of u, and the continuous extension of u to X is automatically smooth and thus
vanishes since it lies in ker(∆g +W ).

To prove the surjectivity of (7.3), we note that W : H2,α̂
b → H2,α̂

b ↪→ H0,α̂−2
b is compact by

Proposition 2.15, so we can change W to 1 without affecting the index; so P◦ has the same

index as ∆g + 1: H2,α̂
b (X◦)→ H0,α̂−2

b (X◦). This operator is invertible (it is injective due to

α̂ > 1
2 by an integration by parts argument, and the adjoint is injective since −(α̂− 2) > 1

2
also). Thus, (7.3) has index 0 and therefore is invertible.

We can thus estimate

‖χ◦u‖H2,α̂
b (X◦)

≤ C‖P◦(χ◦u)‖
H0,α̂−2

b (X◦)

≤ ‖χ◦Pεu‖H0,0,α̂−2
q,ε (X)

+ ‖[Pε, χ◦]u‖H0,0,α̂−2
q,ε (X)

+ ‖χ◦(Pε − P◦)u‖H0,0,α̂
q,ε (X)

)
≤ C

(
‖χ◦Pεu‖H0,0,α̂−2

q,ε (X)
+ ‖u‖

H1,−η,α̂
q,ε (X)

+ ‖u‖
H2,−1,α̂

q,ε (X)

)
,

where for the second term we use that the coefficients of [P̃ , χ◦] ∈ ρ̂−2Diff1
q(X̃) vanish near

X◦ (so the weight there is arbitrary), and χ◦(P̃ − P◦) ∈ ρ̂−2ρ◦Diff2
q(X̃) since P◦ is the

restriction of P̃ to X◦.

Altogether, we have now improved the estimate (7.1) to the uniform estimate

‖u‖
Hs,0,α̂

q,ε (X)
≤ C

(
‖Pεu‖Hs−2,0,α̂−2

q,ε (X)
+ ‖u‖

H2,−η,α̂
q,ε (X)

)
(7.4)

for any 0 < η ≤ 1. Thus, the weight (−η) in the norm on the error term at X◦ is weaker
than that (0) on the left hand side.

• Step 3. Inversion of the X̂-normal operator. We now take χ̂ ∈ C∞(X̃) to be equal to

1 near X̂, with support in |x| < δ. Write û(ε, x̂) = u(ε, εx̂). Then analogously to (7.2) we
have

‖u‖
H2,−η,α̂

q,ε (X)
≤ C

(
ε
3
2
−α̂‖χ̂û‖

H2,−η−α̂
b (X̂)

+ ‖u‖
H2,−η,α̂−η′

q,ε (X)

)
for any fixed η′ > 0. If we take η > 0 so small that β := −α̂− η ∈ (−3

2 ,−
1
2), we have

‖χ̂û‖
H2,−η−α̂

b (X̂)
≤ C‖P̂ (χ̂û)‖

H0,−η−α̂+2
b (X̂)
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since

P̂ = ∆ + V : H2,β
b (R3)→ H0,β+2

b (R3)

is invertible: this operator is injective since elements of its nullspace lie in A
3
2

+β(R3) by
elliptic regularity, thus decay at infinity and therefore vanish by assumption; and it has
Fredholm index 0 since it is a compact perturbation of ∆.

Using that χ̂(Pε− ε−2P̂ ) ∈ ρ̂−2ρ̂Diff2
q(X̃), we can thus estimate P̂ (χ̂û) in terms of χ̂Pεu,

analogously to the earlier arguments involving P◦. We finally obtain the improvement

‖u‖
Hs,0,α̂

q,ε (X)
≤ C

(
‖Pεu‖Hs−2,0,α̂−2

q,ε (X)
+ ‖u‖

H2,−η,α̂−1
q,ε (X)

)
(7.5)

of the estimate (7.4). For ε0 > 0, the error term here is small compared to the left hand
side when ε < ε0 and can therefore be dropped; this gives

‖u‖
Hs,0,α̂

q,ε (X)
≤ 2C‖Pεu‖Hs−2,0,α̂−2

q,ε (X)
, ε < ε0,

and therefore the injectivity of Pε on Hs(X). The surjectivity follows from the fact that Pε
has index 0. �

7.2. Quasinormal modes of Schwarzschild–de Sitter black holes in the vanishing
mass limit. We follow here [HX22, Hin21]. Fix the ‘cosmological constant’ Λ > 0. The
metric of a Schwarzschild–de Sitter (SdS) black hole with cosmological constant Λ and mass
m > 0 is then

gm = −µm(r) dt2 +
1

µm(r)
dr2 + r2gS2 , µm(r) := 1− 2m

r
− Λr2

3
.

One requires that µm has two distinct positive roots r+(m) < rC(m), which happens if and
only if 0 < 9Λm2 < 1; the black hole exterior is then the manifold

Mm := Rt ×
(
r+(m), rC(m)

)
× S2.

The set QNM(m) of quasinormal modes (QNMs for short) of such a black hole is the set
of all σ ∈ C so that there exists a mode solution of �gm with frequency σ: this means

�gm
(
e−iσtu(r, ω)

)
= 0, (7.6)

where u is smooth and satisfies for • = +, C the ‘outgoing (boundary) conditions’

u(r, ω) = |r − r•(m)|−iσ/2κ•(m)u•(r, ω), κ•(m) :=
1

2
|µ′m(r•)|,

where u• is smooth down to r = r•. One can show that QNM(m) ⊂ C is a discrete set.

Remark 7.2 (Relevance of QNMs). General solutions of the wave equation �gmu = 0 with
smooth initial data (with appropriate behavior near r = r+(m), rC(m), e.g. vanishing) have
asymptotic expansions as t→∞ of the form

u(t, r, ω) ∼
∑

σ∈QNM(m)

e−iσtuσ(r, ω)

(ignoring the possibility of terms including polynomial factors of t) where uσ is a mode
solution with frequency σ [BH10, Dya12]. This is not a polyhomogeneous expansion: the
set of σ ∈ QNM(m) with Imσ > −C is infinite for all sufficiently large C.
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Theorem 7.3 (Convergence of QNMs in the vanishing mass limit). The set QNM(m)
converges locally uniformly38 to the set39

QNMdS := −iΛ
3
N0. (7.7)

The set QNMdS is the set of quasinormal modes of de Sitter space with cosmological
constant Λ > 0; the metric is

gdS = −µdS(r) dt2 +
1

µdS(r)
dr2 + r2gS2 , µdS(r) = 1− Λr2

3
. (7.8)

The metric studied in §3.3 is locally isometric to the de Sitter metric with cosmological
constant Λ = 3 when n = 3, and the integer exponents in the expansion in Theorem 3.6
correspond (as in Remark 7.2) to the set (7.7) in this case. See [HX21] and [HV18, Ap-
pendix C] for details on this connection. Unlike gm, the metric gdS is singular only at

r = rdS =
√

3/Λ, while gdS is smooth at r = 0 when expressed in Cartesian coordinates
rω.

Proof of Theorem 7.3. The equation for u in (7.6) reads(
−r−2∂rr

2µm(r)∂r + r−2∆S2 −
1

µm(r)
σ2
)
u(r, ω) = 0.

We shall only consider the case that u(r, ω) = v(r)Ylm(ω) where Ylm is a spherical harmonic
of some fixed degree l ∈ N0: one can then replace ∆S2 by l(l+1). In fact, since the analysis
for all values of l is the same, we shall only consider l = 0, i.e. spherically symmetric
u = u(r); this leads to the ODE

Pmu := r−2∂rr
2µm(r)∂ru+

1

µm(r)
σ2u

= r−2∂rr
2
(

1− 2m

r
− Λr2

3

)
∂ru(r) +

(
1− 2m

r
− Λr2

3

)−1
σ2u(r) (7.9)

= 0

on (r+(m), rC(m)). We shall (of course!) analyze the operator Pm as m ↘ 0 by studying

the total family P̃ = (Pm)m∈(0,m0) where 9Λm2
0 < 1.

• Step 1. Resolution of the domain. One can check that r+(m), rC(m) are smooth func-

tions m ∈ [0,m0), and in fact r+(m)
m → 2 and rC(m)→ rdS as m↘ 0. To resolve the regime

where r ' m, we thus work on

X̃ :=
[
[0,m0)m × [0,∞)r; {(0, 0)}

]
, (7.10)

with front face denoted X̂ and the lift of m = 0 denoted X◦. See Figure 7.1.

Thus, the closures of {(m, r+(m)) : 0 < m < m0} and {(m, rC(m)) : 0 < m < m0} (the

dashed lines in Figure 7.1) are smooth submanifolds of X̃ which are transversal to X̂ =
[0,∞]r̂ (where r̂ = r

m) and X◦ = [0,∞), respectively.

38The convergence is in fact uniform in half spaces, as shown in [Hin21].
39By this we mean that for every bounded open subset U ⊂ C with ∂U∩QNMdS = ∅, the set QNM(m)∩U

converges to QNMdS ∩ U in the Hausdorff distance sense. More simply put: for every σ0 ∈ QNMdS there
exists a sequence σj ∈ QNM(mj), mj ↘ 0, with σj → σ0; and conversely if σj ∈ QNM(mj) is a convergent
sequence and mj ↘ 0, then limσj ∈ QNMdS.
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m

r

r+(m) rC(m)

X◦

X̂
r̂ = r

m
ρ◦ = m

r
ρ̂ = r

Figure 7.1. The resolved space (7.10), some local coordinates, and
its boundary hypersurfaces. The red curves are the subspaces {m} ×
(r+(m), rC(m)) for three different values of m.

• Step 2. Structure of P̃ . We claim that P̃ ∈ r−2Diff2
q (where it is defined). Since on the

interval (r+(m), rC(m)), we have m . r . 1, we can use r as a defining function of X̂, and

then q-vector fields are locally spanned over C∞(X̃) by r∂r. Note then that

µm(r) = 1− 2m

r
− Λr2

3

is a smooth function of (m, r) when r ≥ r0 > 0, while near X̂ we can use the coordinates

ρ̂ = r and ρ◦ = m
r in which µm = 1− 2ρ◦ − Λρ̂2

3 is smooth as well. In view of (7.9), we thus

indeed see that (r2Pm)m∈(0,m0) is an element of Diff2
q.

The models of P̃ are obtained by taking m↘ 0 for fixed r > 0 (giving P◦) or by rescaling

by m2 and letting m↘ 0 for fixed r̂ = r
m (giving P̂ ), so

P◦ = r−2∂rr
2
(

1− Λr2

3

)
∂r +

(
1− Λr2

3

)−1
σ2,

P̂ = r̂−2∂r̂r̂
2
(

1− 2

r̂

)
∂r̂.

But P◦ is precisely the expression for the de Sitter wave operator �gdS applied to a function

of the form e−iσtu(r), as can be easily checked using (7.8); and P̂ is the expression for the
wave operator for a Schwarzschild black hole of mass 1 applied to a function of r only (no
time dependence).40

• Step 3. Strategy for the rest of the proof. Having found the correct setup for the uni-
form analysis of Pm as m ↘ 0, the remainder of the proof is rather similar to that of

Theorem 7.1.41 Besides estimates for solutions ũ of the equation P̃ ũ = f̃ on weighted

q-Sobolev spaces which only use the principal symbol of P̃ , one needs to invert the model

40This is analogous to the situation encountered in §7.1 where the spectral parameter λ does not affect

the X̂-model operator since this model operator is obtained by first multiplying by ε2, here m2, before taking
the limit ε↘ 0 or m↘ 0.

41We ignore here the question of how to deal with the singularity of the coefficients of Pm at r+(m) and
rC(m); these turn out to removable if one expresses the SdS metric in better coordinates.
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operators P◦ and P̂ on appropriate function spaces; in the rough discussion below, we ig-
nore the issues at rC(m) and r+(m), and instead focus on the b-behavior at r = 0 in X◦
and r̂ =∞ in X̂, respectively.

The inversion of P◦ has two facets. The first one is that P◦ is defined on [0, rdS), or if
one puts back the spherical dependence on [0, rdS)× S2, i.e. the blow-up of the rdS-ball in
R3 at 0. Thus, one needs to show that the possibly singular behavior of elements of kerP◦
at r = 0 is actually a removable singularity (cf. Step 2 in the proof of Theorem 7.1). The

second one is that P◦ is invertible only if σ /∈ QNMdS. The invertibility of P̂ on a b-Sobolev

space on X̂ with appropriate weights at ∂X̂ is not difficult to show.

Combining the three ingredients implies the injectivity of Pm for all small m > 0 and
thus shows that σ /∈ QNM(m) when σ /∈ QNMdS and m > 0 is small. The full result is
proved in [HX22] (for fixed spherical harmonics) and in [Hin21] (without this restriction,
and globally for σ in any half space Imσ > −C). �

7.3. Problems.

Problem 7.1 (Spectrum under singular perturbations: higher dimensions). Prove Theo-
rem 7.1 when X has dimension n ≥ 3.
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