
Lecture 1: rectifiable sets. June 24, 2024
(Geometric Measure Theory)

Geometric measure theory is by now a well-developed branch of geometric analysis,

collecting techniques to have a calculus of variations for the area functional, as well as other

important geometric functionals. Today it is also used in many other situations: for instance,

rectifiable sets appear while looking at energy concentration, singular set stratifications,

properties of singular kernels, and so on.

1.1. The quest for compactness. When we look for a minimizer or a critical point of a

functional F : S → R, initially defined on a class S of smooth objects, we often follow a

seemingly roundabout approach. Namely, we first look for such a point in a wider class

W ⊃ S, where the functional F can still be defined in a meaningful way. Only after we

located a critical point p0 ∈ W, using its criticality we can show that actually we have

p0 ∈ S.
For instance, given a smooth domain Ω ⊂ Rn, the set S could be the space of smooth

functions Ω̄ → R, with a given boundary condition u|∂Ω = g, and we could be interested in

minimizing the Dirichlet energy

F (u) :=

∫
Ω
|du|2.

Rather than finding a minimizer in S, we look for it in W := W 1,2(Ω), the Sobolev space

of functions admitting just a weak notion of square-summable differential. Why is it

easier to work on this space? The reason is that it is compact, in a suitable sense: given a

bounded sequence of functions (uk) ⊂ W, we can extract a subsequence converging to a

function u ∈ W (while this does not hold in S: for instance, in dimension one, the functions√
x2 + 2−k are smooth but their natural limit |x| is not).
Thus, in this example, we can consider a sequence such that limk→∞ F (uk) = infS F

and, after extracting a (weak) limit u ∈ W, check that F (u) = infS F = infW F . Hence,

this particular u minimizes F on W; this minimality property is the fact which allows to

conclude that u must in fact be smooth (intuitively, too much irregularity, i.e., oscillation

of u would result in a large Dirichlet energy, contradicting the minimality of u), and so

actually u ∈ S.
Roughly speaking, for us S will consist of the set of compact smooth k-dimensional

submanifolds of a given Euclidean space Rn (or a Riemannian manifold (Mn, g)), whose

boundary ∂S is either empty or assigned. We will often focus on the simpler case Mn = Rn,

since the theory is very similar in a curved ambient (Mn, g).
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The main question that we will deal with is the following: what is an appropriate space

W in this case? As in the previous example, it should be a superset of S and its elements

should correspond to a weak notion of submanifold. Generally speaking, there are three

main approaches:

• we view submanifolds as images of parametrizations;

• we view them as level sets of Rn−k-valued maps;

• we view them in an intrinsic way, merely as subsets of Mn.

Each of these approaches has its own advantages. In the first two, the obvious thing to do

is to enlarge the class of maps (e.g., from smooth ones to Sobolev ones). In this course, we

will mostly focus on the third approach.

In the next two lectures we will see two possible answers to the previous question in the

intrinsic viewpoint: the first one (currents) is designed for minimization, while the second

one (varifolds) is designed to find general critical points.

Currents and varifolds are fundamentally different objects, and indeed their general

definitions look completely different from each other. On the other hand, for simplicity, we

will look only at rectifiable currents and varifolds, with integer multiplicity. In this special

setting, it would seem that they only differ in that currents come with an orientation, while

varifolds do not have one.

Even if we look at rectifiable currents and varifolds, the fundamental difference is the

topology, i.e., the meaning of convergence Σj → Σ, as well as the assumptions guaranteeing

precompactness of a sequence, i.e., the conditions on a sequence (Σj) guaranteeing that a

subsequence Σjℓ → Σ converges to some limit Σ.

Rectifiable currents and varifolds are objects whose backbone is a special type of subset

of Rn, namely a k-rectifiable set. In this lecture, we will focus on the study of such sets.

1.2. Hausdorff measures. Before introducing k-rectifiable sets, it is useful to recall that

there is a very robust definition of k-dimensional area, as well as dimension, of an arbitrary

set. In fact, it is so general that it makes sense in any metric space (X, d).

Given a subset S ⊆ X and a number k ≥ 0 (for this definition, it does not need to be an

integer), we let

Hk
δ (S) :=

ωk

2k
inf

{∑
j

diam(Ej)
k | S ⊆

⋃
j

Ej , diam(Ej) ≤ δ
}
,

where the infimum is taken over all finite or countable covers S ⊆
⋃

j Ej with the constraint

that each set Ej has diameter at most δ, and we define the k-dimensional Hausdorff measure
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of S to be

Hk(S) := lim
δ→0

Hk
δ (S)

(the limit exists since clearly Hk
δ (S) increases as δ decreases). We adopt the usual convention

that 00 = 1, while ωk := 2kπk/2

Γ( k
2
+1)

is a dimensional constant, which agrees with the volume of

the unit k-dimensional ball when k ∈ N.

Remark 1.1. If Ej is a k-dimensional ball in Rk (or in an affine k-plane of Rn), then
ωk

2k
diam(Ej) is precisely its area. This suggests taking the sets Ej to be balls; however, in

general this would give another measure, called spherical Hausdorff measure (although it is

comparable to the previous one and actually matches with it on sufficiently nice sets).

Example 1.2. For k = 0, we have H0(S) = #S if S is finite, while H0(S) = +∞ otherwise.

Example 1.3. If S is an infinite spiral, then we see why we need to consider smaller and

smaller values of δ, and constrain our cover to be made of sets of diameter ≤ δ. Roughly

speaking, δ is the “resolution” that we are using while looking at our set S. For any fixed

δ > 0 the quantity H1
δ(S) is finite in this case, since S is covered by finitely many small

balls, while we get the correct result H1(S) = ∞ (reflecting the fact that S has infinite

length) only once we let δ → 0.

When k ∈ N, one can show the following fact (which is the reason why we have a carefully

chosen normalization constant ωk

2k
).

Proposition 1.4. Assume that (X, d) is the Euclidean space, or a Riemannian manifold

with the induced geodesic distance. If S is a k-dimensional embedded submanifold, then

Hk(S) coincides with the k-dimensional area of S.

In fact, since a submanifold S is almost flat at small scales, the previous proposition

reduces without much effort to the verification that Hk agrees with the Lebesgue measure

on Rk. However, this fact is surprisingly nontrivial. It can be deduced from the isodiametric

inequality, asserting that the round ball BR(0) ⊂ Rk maximizes the Lebesgue measure

among sets of diameter 2R.

Remark 1.5. Strictly speaking, Hk is an outer measure defined on all the subsets of X

(warning: many people write “measure” to mean “outer measure”). It becomes a genuine

measure, satisfying σ-additivity, if we restrict to Borel subsets of X.

Exercise 1.6. In the definition of Hausdorff measure, check that we get the same result if we

require that the sets Ej are closed. Also, check that we can require them to be open (but

not necessarily closed).
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Exercise 1.7. If X ⊆ Y are metric spaces, with dX given by the restriction of dY , then for

any S ⊆ X the quantity Hk(S) is the same if we compute it in X or in Y .

Exercise 1.8. If f : X → Y is an L-Lipschitz map between metric spaces, then Hk(f(S)) ≤
LkHk(S).

Using the Hausdorff measure, we can define a notion of dimension: the Hausorff dimension

of a set S ⊆ X is

H-dimS := sup{k ≥ 0 : Hk(S) < ∞} = inf{k ≥ 0 : Hk(S) = ∞}.

(By convention, the sup is 0 if the first set is empty, while the inf is ∞ if the second set is

empty.) As expected, a nonempty k-dimensional submanifold of Rn or (Mn, g) has Hausdorff

dimension k.

Sometimes, other variants are more appropriate, such as the Minkowski and packing

dimensions (based on different ways to measure the k-dimensional area), although we will

not look at them.

Exercise 1.9. Check that there is a (unique) value kS ∈ [0,∞] such that Hk(S) = ∞ for all

k < kS and Hk(S) = 0 for all k > kS , showing the previous equality in the definition of

Hausdorff dimension.

Exercise 1.10. If f : X → Y is α-Hölder for some α ≥ 0, then H-dim f(S) ≤ αH -dimS.

Exercise 1.11. The Cantor set C ⊂ R has Hausdorff dimension log 2
log 3 .

1.3. Covering theorems and density of measures. Given a Borel set S ⊆ X with

finite or σ-finite Hausdorff measure Hk, we can consider the measure

Hk S

on X, which is then a finite or σ-finite measure on Borel sets. The same holds if we consider

a Borel function f : S → (0,∞) and we let

dµ := f d(Hk S),

i.e., for any Borel set E, we let

µ(E) :=

∫
E∩S

f(x) dHk(x).

It is a very useful fact that measures of this kind can be detected by looking at their

density, provided that they are finite on bounded sets.
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Theorem 1.12. A measure µ on Borel subsets of X, finite on bounded sets, can be written

as above if and only if the upper k-density

Θ∗
k(µ, x) := lim sup

r→0

µ(Br(x))

ωkrk
∈ (0,∞) µ-a.e.

The proof is based on the following tool, called the Vitali covering lemma, which we will

not prove. Given a collection of balls covering a given set, it gives a more efficient (i.e., less

redundant) subcollection.

Lemma 1.13 (Vitali covering lemma). Given a (possibly uncountable) collection of

open balls (Brj (xj))j∈J ⊆ X with supj rj < ∞, we can find a subset J ′ of indices such that

the subcollection (Brj (xj))j∈J ′ consists of disjoint balls and⋃
j∈J

Brj (xj) ⊆
⋃
j∈J ′

B5rj (xj).

The same holds for collections of closed balls.

Remark 1.14. The constant 5 is definitely not sharp: the proof shows that we can replace it

with any constant greater than 3. Also, if we wish to cover only the set of centers, any

constant greater than 2 will be enough (this applies if, for any point x of a set S, we can

find a ball Br(x) with some particular property, and we wish to find a disjoint subcollection

of balls such that the dilated balls still cover S).

Proof of Theorem 1.12. (⇒) Let S0 be the set of points in S where the upper density is 0

and S∞ the set where it is ∞. We need to show that

µ(S0) = µ(S∞) = 0.

To check that µ(S∞) = 0, we note that for any fixed Λ > 0 and any x ∈ S0 there exists

r > 0 such that µ(Br(x)) ≥ Λrk. We can also find such an r ∈ (0, δ) for an arbitrary δ > 0

fixed in advance. Applying Vitali’s covering lemma, we can find a disjoint subcollection

(Brj (xj))j∈J ′ such that the dilated balls B5rj (xj) cover the original union of balls, and in

particular

S ⊆
⋃
j∈J ′

B5rj (xj).

Note that J ′ is at most countable (since µ is σ-finite and µ(Brj (xj)) > 0 for each of these

disjoint balls). Thus,

Hk
10δ(S∞) ≤ ωk

2k

∑
j∈J ′

(5rj)
k ≤ 5kωk

2k
Λ−1

∑
j∈J ′

µ(Brj (xj)) ≤
5kωk

2k
Λ−1µ(X),
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where we used the fact that the balls in the subcollection are disjoint in the last inequality.

If µ(X) < ∞ then we are done by letting Λ → ∞ and δ → 0 (the order does not matter),

deducing Hk(S0) = 0. Otherwise we repeat the argument locally, replacing S0 with a

bounded set S0 ∩BR(x0).

To see that µ(S0) = 0, we can assume without loss of generality that f is bounded and

Hk(S) is finite (as S0 increases when we replace µ with a measure µ′ ≤ µ). Given ε, ρ > 0,

we consider the set

S′
0 := {x ∈ S0 : µ(Br(x)) < εrk for all 0 < r < ρ}.

Given any finite or countable cover of S′
0 by closed sets Ej of diameter < ρ intersecting S′

0,

we can bound

µ(S′
0) ≤

∑
µ(Ej) ≤ ε

∑
diam(Ej)

k.

Taking the infimum over such covers, we get

µ(S′
0) ≤

2kε

ωk
Hk

δ (S
′
0) ≤

2kε

ωk
Hk(S′

0).

Since ρ was arbitrary (and the increasing union of the previous sets as ρ → 0 includes S0),

we deduce

µ(S0) ≤
2kε

ωk
Hk(S0).

Finally, letting ε → 0 we obtain µ(S0) = 0.

(⇐) Consider the Borel set S consisting of points where the upper density is in (0,∞).

By assumption, µ is concentrated on this set. We will show that Hk S is σ-finite and that

µ ≪ Hk S, giving dµ = f d(Hk S) for some f ≥ 0, from which the claim follows (by

possibly replacing S with S \ {f = 0}; actually, one can show that f > 0 Hk-a.e. on S, and

hence this replacement is unnecessary).

We assume for simplicity that µ(X) < ∞ (otherwise we perform the following argument

locally). Given t > 0, let

St := {x ∈ X : Θ∗
k(µ, x) > t}.

The same argument used at the beginning of the proof gives

Hk(St) ≤ 5kt−1µ(X).

Since S ⊆
⋃

t>0 St, we obtain the σ-finiteness of Hk S.

Finally, assume that a Borel set E satisfies Hk(E ∩ S) = 0. We claim that µ(E) = 0. To

check this, we let Et := {x ∈ E ∩ S : Θ∗
k(µ, x) < t}. Again, arguing as above (with ωkt in

place of ε) we obtain

µ(Et) ≤ 2ktHk(Et) = 0,
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and hence µ(E) = µ(E ∩ S) = 0 (as
⋃

t>0Et = E ∩ S). □

A slightly more refined proof gives something more in Rn or in a Riemannian manifold

(Mn, g), as illustrated by the next exercises. This will follow from another powerful covering

lemma.

Lemma 1.15 (Besicovitch covering lemma). Assume that we have a collection F of

open balls and a set S ⊆ Rn such that for all x ∈ S there exists r ≤ R with Br(x) ∈ F , for

some R > 0 independent of x. Then there exist C(n) subcollections Fj ⊆ F , each consisting

of disjoint balls, such that

S ⊆
C(n)⋃
j=1

⋃
B∈Fj

B.

The same statement holds for closed balls. The same holds on a Riemannian manifold

(Mn, g), provided that R is small enough (depending on the particular manifold).

Exercise 1.16. Assume that a collection F of closed balls is a fine cover of a Borel set

S ⊆ Mn, i.e., for every x ∈ S there exists a ball B̄r(x) in the collection with arbitrarily

small r > 0. Deduce from the previous covering lemma that given a (positive) measure µ,

finite on bounded sets, we can find a disjoint subcollection F ′ ⊆ F such that

µ
(
S \

⋃
B∈F ′

B
)
= 0.

Using Vitali, deduce the same on an arbitrary separable metric space assuming that µ is

doubling (so that µ(B5r(x)) ≤ Cµ(Br(x))).

Exercise 1.17. Given a (positive) measure µ on Rn, finite on bounded sets, and a Borel

set T ⊆ Rn, assume that Θ∗
k(µ, x) ≥ t for all x ∈ T and show that µ ≥ tHk T . Similarly,

assuming that Θ∗
k(µ, x) ≤ t for all x ∈ T , show that µ ≤ 2ktHk T .

1.4. Rectifiable sets. Given a metric space (X, d), a set S ⊆ X is k-rectifiable if we can

write

S ⊆ E0 ∪
∞⋃
j=1

Ej , Ej = fj(Aj),

where Hk(E0) = 0 and fj : Aj → M is Lipschitz for some Aj ⊆ Rk. (Some people call sets

as above countably Hk-rectifiable.)

We will restrict to the case of Rn for simplicity, even if all of the results will also hold on

any Riemannian manifold.
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Remark 1.18. In the definition, we could equivalently use C1 functions fj defined on an open

set Uj ⊃ Aj . Essentially, the reason is that we can always extend fj to be defined on Rk and

the differential dfj of a Lipschitz function exists a.e. and is measurable. Thus, we can write

Rk = Aj0 ∪
⋃∞

ℓ=1Ajℓ with Aj0 negligible and Ajℓ compact with dfj |Ajℓ
continuous, hence by

Whitney’s extension theorem we can find a C1 function fjℓ defined in a neighborhood of

Ajℓ such that fjℓ|Ajℓ
= fj |Aj , showing the claim. On the other hand, one can show that C1

cannot be replaced with C2.

Remark 1.19. As we will see later, one can further require that each fj is a C1 embedding.

Hence, in Rn a set is rectifiable if and only if it can be covered with countably many C1

graphs, plus an Hk-negligible set.

Given that rectifiable sets provide a suitable framework for our weak notions of submanifold,

it is important to be able to recognize them among general sets. In order to formulate

criteria to do so, it is again convenient to look at measures instead.

A positive Radon measure µ is said to be k-rectifiable if it is of the form

dµ = f d(Hk S)

for some Borel k-rectifiable set S.

Exercise 1.20. If a set S is k-rectifiable and its projection on each of the
(
n
k

)
coordinate

k-planes is negligible, then Hk(S) = 0.

Exercise 1.21. Take a variant of Cantor’s set where we start from [0, 1] and each time, from

each segment, we remove the middle segment of half the width. So from [0, 1] we pass to

[0, 14 ] ∪ [34 , 1], and so on. Calling C the resulting set, check that H1(C × C) ∈ (0,∞) but

C × C is not rectifiable. [Hints: to show a lower bound on H1, project the set on the line

{y = 2x}; to show that it is not rectifiable, check that the projection on the two axes is

negligible.]

We will now state one of the most well-known rectifiability criteria.

Theorem 1.22 (classical rectifiability criterion). A (positive) measure µ, finite on

bounded sets, is rectifiable if and only if

0 < Θ∗,k(µ, x) ≤ Θ∗
k(µ, x) < ∞ for µ-a.e. x

and, for µ-a.e. x, there exists a k-plane Px such that each limit of the form

lim
j→∞

r−k
j (δx,rj )∗µ

is a multiple of Px, i.e., equals cHk Px for a constant c > 0 (depending on the sequence).



9

Here Θ∗,k(µ, x) := lim infr→0
µ(Br(x))
ωkrk

and δx,rj (y) := y−x
rj

is the map making Brj (x)

correspond to B1(0), allowing us to blow-up at the point x. Also, the previous limit is in

the usual weak-∗ topology on measures.

Proof. We will just sketch the proof of the useful implication (⇐). By the previous results,

we already know that dµ = f d(Hk S) for some Borel set S of σ-finite Hk measure.

Let us fix a k-plane P0 and a constant Λ > 0. We consider the set S′ of points x such that

Λ−1 ≤ Θ∗,k(µ, x) ≤ Θ∗
k(µ, x) < ∞

and such that any limit of the form limj→∞ r−k
j (δx,rj )∗µ equals cHk Px, for some plane

Px such that ∥Px − P0∥ ≤ δ; here δ is a small constant depending only on k and n. Clearly,

it suffices to see that S′ is rectifiable, since µ-a.e. point of S belongs to a countable union of

such sets.

Given a radius ρ > 0, we further restrict attention to the set S′′ ⊆ S′ of points x such

that

d
( (δx,r)∗µ

µ(Br(x))
,
Hk Px

ωk

)
≤ δ for all r < ρ.

Here we restrict the two measures on the ball B1(0) and we use a distance d metrizing the

weak-∗ topology on probability measures on B1(0). Since the latter is compact, it is again

easy to see (by a compactness-and-contradiction argument) that S′ is the union of these

sets S′′ as ρ > 0 varies.

The simple geometric observation now is the following: given x, x′ ∈ S′′ with |x− x′| ≤ ρ
2 ,

let

r := 2|x− x′|.

Then δx,r makes x′ correspond to a point y′ at distance 1
2 from the origin. Also,

(δx,r)∗µ
µ(Br(x))

is

close to Hk Px
ωk

, but the image δx,r(Bsr(x
′)) = Bs(y

′) has mass at least c(Λ)sn > 0 with

respect to this rescaled measure, for any s ∈ (0, 14): this holds thanks to the definition of S′,

which ensures that µ(Bsr(x
′)) ≃ (sr)k and µ(Br(x)) ≃ rk.

Thus, y′ must be close to Px, and hence to P0. This tells us that
x−x′

|x−x′| is almost parallel

to P0, concluding the proof that S′′ is rectifiable thanks to the next exercise below. □

Remark 1.23. The previous result is still true if the plane Px is also allowed to depend on

the sequence rj → 0. In this case rectifiability is much harder to prove and the result is due

to Marstrand–Mattila.

Exercise 1.24. Conclude the previous sketch by showing the following fact: if x−x′

|x−x′| is almost

parallel to a fixed k-plane, for all pairs of points in a given set, then this set is included in a

Lipschitz graph.
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The following is a very deep (and very difficult to prove) theorem due to Preiss.

Theorem 1.25 (Preiss rectifiability criterion). A Radon measure µ ≥ 0 is k-rectifiable

if and only if the limit

lim
r→0

µ(Br(x))

rk

exists and belongs to (0,∞) for µ-a.e. x.

Exercise 1.26. Show the implication (⇒).

Remark 1.27. We already know that the assumption in the difficult implication (⇐)

guarantees that the measure has the form dµ = f d(Hk S). If f = 1 and we assume that

the previous limit is equal to 1 a.e., then the rectifiability of S is easier to prove (this was

proved earlier by Besicovitch–Marstrand–Mattila).

As we will see, in many situations, the previous limit exists because µ enjoys a special

monotonicity property, namely the function µ(Br(x))
rk

is increasing in r for any given x.

However, in such situations the same facts leading to this monotonicity can typically be

used to obtain rectifiability in a simpler way.

1.5. Area and coarea formulas. Given a locally Lipschitz map f : Ω → Rn, with Ω ⊆ Rk

open, we have the following formula if f is injective:

Hk(f(S)) =

∫
S
Jf dLk,

where S ⊆ Ω is a Borel set and Jf (x) =
√
det(df(x)Tdf(x)) is often called the Jacobian of

f at x. Recall that locally Lipschitz functions are differentiable a.e., making the right-hand

side well-defined (also, it is part of the statement that f(S) belongs to the Hk-completion

of Borel sets).

While we will not prove this in detail, we can easily get some intuition why this formula

should hold. Near a differentiability point x0, f behaves like the linear map x 7→ Ax, with

A := df(x0). Since we can write A = RDR′, for two linear isometries R ∈ O(n), R′ ∈ O(k)

and a “diagonal” matrix (i.e., rectangular but with dij = 0 if i ̸= j), it is intuitive that the

image of a set E contained in a small neighborhood of x0 has area

Hk(f(E)) ≈ Hk(A(E)) =

k∏
j=1

|djj | · Lk(E)

and we have

Jf (x0)
2 = det(ATA) = det(DTRTRD) = det(DTD) =

k∏
j=1

|djj |2.
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On the other hand, the set N of points where f is not differentiable is negligible, and

hence Hk(N) = Lk(N) = 0, so that also Hk(f(N)) = 0 (since Lipschitz functions map

Hk-negligible sets to Hk-negligible sets). The following is a slightly more general fact.

Theorem 1.28 (area formula). Given f as above, not necessarily injective, and given

h : S → [0,∞) measurable, we have∫
f(S)

( ∑
x∈f−1(y)

h(x)
)
dHk(y) =

∫
S
h(x)Jf (x) dx

(again, the measurability of the integrand in the left-hand side is part of the statement).

Note that the previous result is only interesting when k ≤ n, since otherwise both sides

vanish.

Exercise 1.29. Taking for granted the area formula and Whitney’s extension theorem, give a

rigorous proof of the fact that a k-rectifiable set in Rn is included in a countable union of

C1 graphs, plus an Hk-negligible set.

We also have the following coarea formula, which deals with situations where the dimension

of the domain is larger than the dimension of the codomain.

Theorem 1.30 (coarea formula). Assume that m ≥ n and let k := m − n. Given

f : Ω → Rn locally Lipschitz, with Ω ⊆ Rm open, and given h : S → [0,∞) measurable, the

set f−1(y) is k-rectifiable for a.e. y and∫
f(S)

(∫
f−1(y)

h dHk
)
dy =

∫
S
hJf ,

where now Jf (x) :=
√
det(df(x)df(x)T ).

Although the coarea formula reduces to the area formula when m = n, it is considerably

harder to prove in general, since (after a reduction to the case h ≡ 1) it involves integrating

the Hausdorff measure Hm−n(f−1(y)) over y, whose measurability is not obvious at all.

Ultimately, the proof reduces again to the linear case, although this reduction is really the

difficult part. Moreover, although not necessary to state the formula, the previous statement

also gives the rectifiability of a.e. level set.

Exercise 1.31. Given a Borel set S ⊆ Rm with Lm(S) < ∞ and given 0 < σ < τ < ∞, show

that there exists r ∈ (σ, τ) such that

Hm−1(S ∩ ∂Br(0)) ≤
1

τ − σ
Lm(S).
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Remark 1.32. Similar formulas hold if we replace Euclidean spaces with Riemannian

manifolds M and N . In this case, we need to compute the Jacobian Jf (x) with respect to

(arbitrary) orthonormal bases of TxM and Tf(x)N .

Remark 1.33. The last theorem is a more robust version of Sard’s theorem: the latter says

that if f is sufficiently regular (C1 is not enough when m > n) then almost every level set is

a smooth submanifold. The last theorem says that, assuming merely f Lipschitz, a.e. level

set is certainly rectifiable (even if perhaps it is not a submanifold).

1.6. Tangent space to a rectifiable set. For many purposes, a rectifiable set is a good

enough surrogate of a smooth submanifold. For instance, we can define the tangent space at

a.e. point, as follows: given a k-rectifiable Borel set S ⊆ Rn, we write it as a disjoint union

S = E0 ∪
∞⋃
j=1

Ej ,

as usual, where Ej is included in a C1 graph Mj for j ≥ 1 and Hk(E0) = 0; in particular,

Mj is a smooth submanifold. If x ∈ Ej for some j ≥ 1, we let

TxS := TxMj .

It can be shown that this is well-defined in the following sense: given another decomposition

S = E′
0 ∪

⋃
j E

′
j , the definition of tangent space TxS given by this new decomposition

matches with the previous one for Hk-a.e. x ∈ S. Ultimately, this boils down to the classical

fact that if f, g : Rk → Rn are two C1 maps then

df(x) = dg(x) a.e. on {x : f(x) = g(x)}.

Example 1.34. If k = 1 and S is the union of the x-axis and the y-axis, we could let

E0 := ∅, E1 := {(s, 0) | s ∈ R}, and E2 := {(0, t) | t ∈ R \ {0}}. With this decomposition,

T0S is the x-axis; on the other hand, with a similar decomposition (with the roles of the

axes interchanged), T0S would be the y-axis.

Remark 1.35. If we replace Rn with a manifold M , the tangent space of a k-rectifiable set S

at a given x ∈ S can be defined by reducing to the Euclidean case; it will be a k-plane in

TxM .

The area and coarea formulas can be generalized by taking S to be a rectifiable set in

their statements (of dimension k and m, respectively). For instance, we have the following.
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Theorem 1.36 (generalized area formula). Given S ⊆ Ω ⊆ Rk′ a k-rectifiable Borel set

and a locally Lipschitz map f : Ω → Rn, we have∫
f(S)

( ∑
x∈f−1(y)

h(x)
)
dHk(y) =

∫
S
h(x)JS

f (x) dHk(x)

for any measurable h : S → [0,∞).

In this situation, writing S = E0∪
⋃

j Ej as above (with Ej ⊆ Mj), the restricted Jacobian

JS
f (x) is defined as the one of the locally Lipschitz map f |Mj : Mj → Rn at x (if x ∈ Mj),

thus computed using an orthonormal basis of TxMj = TxS. Alternatively, one can show

that f |TxS is differentiable at x for Hk-a.e. x ∈ S (viewing TxS as an affine plane through

x) and define JS
f (x) accordingly.

Remark 1.37. For a k-rectifiable measure µ, we have seen that at µ-a.e. x its blow-ups are

all supported on the same k-plane. In fact, this coincides with the tangent space TxS of the

underlying rectifiable set S. Thus, the tangent space has a more satisfactory definition for

rectifiable measures rather than rectifiable sets (since for sets it depends on the specific

decomposition used). Note that if S is k-rectifiable with locally finite Hk measure then

Hk S is a rectifiable measure; hence, in this case we have a better definition of TxS: it is

the support of all blow-ups of Hk S at x (provided these are all supported on the same

k-plane).

Useful references:

• Sections 2.3, 2.8, 2.9 of Ambrosio–Fusco–Pallara, Functions of bounded variation

and free discontinuity problems;

• Chapters 5, 6, 7, 10 of Maggi, Sets of finite perimeter and geometric variational

problems;

• Chapters 1, 3 of Simon, Geometric measure theory ;

• for the more advanced rectifiability results: Chapters 4, 5, 6 of De Lellis, Rectifiable

sets, densities and tangent measures;

• for the area and coarea formulas: Sections 2.10, 2.11, 2.12 of Ambrosio–Fusco–Pallara,

Functions of bounded variation and free discontinuity problems.
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