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Introduction
These notes are transcript of Dr. Alessandro Pigati’s lectures at SLMath Graduate School in 2024

at St. Mary’s College of California, Moraga, CA. The knowledge of measure theory is assumed

for these lectures.

The lecture notes and problem/supplement sheets written by the lecturer will be available via

the following URL.

https://www.slmath.org/summer-schools/1066#schedule notes

However, I decided to write these notes so that for recording what the actual lectures were in

context and for my understanding on the topics.

- Yongmin Park (University of Oregon)

ii
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1 Day 1: June 24th
Plan for lectures

• Day 1: Rectificable sets

• Day 2: Currents

• Day 3: Varifolds

• Day 4: Diffuse approximation of currents

What is Geometric measure theory (GMT)? The answer is that it is a collection of tools to

do calculus of variations with area. It also actually has more applications beyond that. The usual

framework will be the following. Fix an ambient 𝑛-dimensional Riemannian manifold (𝑀,𝑔), and
let 1 ≤ 𝑘 ≤ 𝑛 − 1. The goal is to find a 𝑘-dimensional submanifiold Σ ⊂ 𝑀 which is a critical

point for the area functional.

There are two issues for this. First, how to describe or think or the space Σ? Three ways can
be possible.

• As a parameterized subset,

• As a level set, or

• as an intrinsic object.

The second issue is to identify the weak notion of submanifold that makes the space Σ compact.

Recall the case of harmonic functions, i.e. soving the boundary-value problem

△𝑢 = 0 on Ω

𝑢 = ℎ on 𝜕Ω,

where Ω is a smooth bounded domain. This can be regarded as a variational problem: if we define

the Dirichlet energy functional

𝐹 (𝑢) B
∫
Ω
|𝑑𝑢 |2,

then △𝑢 = 0 if and only if 𝑢 is a critical point of 𝐹 . In fact, this crticial point 𝑢 becomes a

minimizer in this case.

In this situation, we can consider aminimizing sequence (𝑢 𝑗 ) such that 𝐹 (𝑢 𝑗 ) → inf𝑢 |𝜕Ω=ℎ 𝐹 (𝑢).
We want to set the space of 𝑢 to extract a convergent subsequence of (𝑢 𝑗 ). This can be taken as

the Sobolev space𝑊 1,2
. Then, using the weak convergence, we can obtain a weakly convergent

subsequence of (𝑢 𝑗 ).
From the intrinsic point of view, we can consider two types of such weak notions.

• Currents. This notion is useful for minimization.

• Varifolds. This is useful for general critical points including saddle points.
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Why should we consider saddle or unstable critical points? For example, consider the equator

of the sphere 𝑆2. Then, it is a critical point for the length functional because it is a geodesics.

However, it is unstable since by pushing a part of the equator a bit towards the north, we can

make it shorter.

In practice, we only focus on rectifiable currents and varifolds. Note that the notions of con-

vergence will be different. However, the idea is that they are wrappers whose underlying objest

is a rectifiable set with multiplicity.

Hausdorffmeasure We now want to see a way to measure 𝑘-dimensional area of any set 𝑆 in

a metric space (𝑋,𝑑). First, we consider a resolution 𝛿 > 0, and define the following.

H𝑘
𝛿
(𝑆) B inf

{
𝜔𝑘

∞∑︁
𝑗=1

diam(𝐸 𝑗 )𝑘
����� 𝑆 ⊂

∞⋃
𝑗=1

𝐸 𝑗 with diam(𝐸 𝑗 ) < 𝛿
}
.

Here,𝜔𝑘 = 𝛼𝑘/2𝑘 , where 𝛼𝑘 is the volume of the 𝑘-dimensional unit ball. This is not yet a measure

since it does not see below the resolution 𝛿 > 0.

Definition 1.1. Define
H𝑘 (𝑆) B lim

𝛿→0
H𝑘
𝛿
(𝑆).

This is the 𝑘-dimensional hausdorff measure of 𝑆 . This limit exists since H𝑘 (𝑆) is monotone de-

creasing.

Theorem 1.2. On the 𝜎-algebra of Borel sets,H𝑘 is a measure.

However, However, it is not 𝜎-finite in general. For example, consider H1
on ℝ2

. Intuitively,

ℝ2
cannot be a countable union of 1-dimensional subsets, so it is expected to beH1

on ℝ2
is not

𝜎-finite.

On a Riemannian manifold, we have the following theorem.

Theorem 1.3. Let 𝑋 be a Riemannian manifold with the geodesic distance 𝑑 . Then, for any 𝑘-
dimensional embedded submanifold 𝑆 ,H𝑘 (𝑆) is the usual 𝑘-dimensional are of 𝑆 .

Exercise 1.4. Prove that

H0(𝑆) B
{
#𝑆 if 𝑆 is a finite set

∞ if 𝑆 is an infinite set.

Exercise 1.5. In the definition ofH𝑘
𝛿
, the sets 𝐸 𝑗 can be taken as closed sets. Similarly, those can

be taken as open sets.

Exercise 1.6. Let 𝑋 be a subspace of the metric space 𝑌 with the inherited distance. Suppose

that 𝑆 ⊂ 𝑋 . Show that

H𝑘
𝑋 (𝑆) = H𝑘

𝑌 (𝑆).

Exercise 1.7. Let 𝑓 : 𝑋 → 𝑌 be a Lipschitz map with Lipschitz constant 𝐿. Then,

H𝑘
𝑌 (𝑓 (𝑆) ≤ 𝐿𝑘H𝑘

𝑋 (𝑆).
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Hausdorff dimension Using the Hausdroff measures we can define the notion of dimension

for subsets.

Definition 1.8. Given a metric space (𝑋,𝑑), let 𝑆 ⊂ 𝑋 . Define

H- dim(𝑆) B {𝑘 ∈ [0,∞) |H𝑘 (𝑆) = ∞} = inf{𝑘 ∈ [0,∞) |H𝑘 (𝑆) = 0}.

Exercise 1.9. Show that these two definitions are actually the same.

Therefore, this is the threshold to distinguish the regions of𝑘 such thatH𝑘 (𝑆) = ∞ orH𝑘 (𝑆) =
0.

Exercise 1.10. Find the Hausdorff dimension of the ternary Cantor set C. This must be less than

1! Hint: Try to write

C =
1
3
C ∪

(
1
3
C + 2

3

)
.

Exercise 1.11. Let 𝑓 : 𝑋 → 𝑌 be an 𝛼-Hölder continuous map, where 𝛼 > 0. Then,

H- dim𝑌 (𝑓 (𝑆)) ≤ 𝛼 ·H- dim𝑋 (𝑆)

for any subset 𝑆 of 𝑋 .

Sets and measures Often, it is better to work on measures instead of sets.

Definition 1.12. Let (𝑋,𝑑) be a metric space, and let 𝑆 ⊂ 𝑋 withH𝑘 (𝑆) < ∞ (or 𝜎-finite). Then,

we can define a new measure by

(H𝑘 𝑆) (𝐸) B H𝑘 (𝑆 ∩ 𝐸).

Note that if 𝑆 is a Borel set, then the measureH𝑘 𝑆 is also a Borel measure.

Moreover, for a Borel measurable function 𝑓 : 𝑆 → (0,∞), we can define the measure

𝑓 (H𝑘 𝑆) (or 𝑓 𝑑 (H𝑘 𝑆)).

Basically, we can regard these types of measures as sets. The question is how to detect these

measures.

Definition 1.13. Given nonnegative 𝜎-finite Borel measure 𝜇 on 𝑋 , we define the 𝑘-dimensional
upper density by

Θ∗
𝑘
(𝜇, 𝑥) B lim sup

𝑟→0

𝜇 (𝐵𝑟 (𝑥))
𝜔𝑘𝑟

𝑘
.

Theorem 1.14. A measure 𝜇 can be realized by a set 𝑆 and a function 𝑓 if and only if for 𝜇-almost
all 𝑥 , Θ∗

𝑘
(𝜇, 𝑥) ∈ (0,∞).1

1
Author’s comment: Here, the feature of this density is to extract the growth relative to the 𝑘-dimensional ball.

If it is ∞, then 𝜇 can have some higher-dimensional content, and if it becomes 0, then it may have some lower-

dimensional content. Therefore, the theorem makes sense, i.e. (0,∞) is not a typo. Then, a question: is this related
to the notion of Hausdorff dimension?
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Remark 1.15. Note that Θ∗
𝑘
(𝜇, 𝑥) is not 𝑓 in general. However, these functions are comparable in

some sense, and if 𝑆 is a 𝑘-rectificable set in ℝ𝑛
, which will be defined later, then indeed those

functions are the same.

We only sketch the proof for the the implication (⇐). For this, we need a covering lemma.

Lemma 1.16 (Vitali covering). Suppose that 𝜇 is a finite measure on a metric space (𝑋,𝑑). Given a
(possibly uncountable) collection of open balls (𝐵𝑟 𝑗 (𝑥 𝑗 )) 𝑗∈𝐽 with sup 𝑗 𝑟 𝑗 < ∞, there exists a disjoint
subcollection 𝐽 ′ such that ⋃

𝑗∈𝐽
𝐵𝑟 𝑗 (𝑥 𝑗 ) ⊂

⋃
𝑗∈𝐽 ′

𝐵5𝑟 𝑗 (𝑥 𝑗 ).

Sketch of the proof of Theorem. We may assume that 𝜇 (𝑋 ) < ∞. Our candidate for the set 𝑆 is

given by

𝑆 B {𝑥 ∈ 𝑋 |Θ∗
𝑥 (𝜇, 𝑥) ∈ (0,∞)}.

One can show that this set is indeed Borel. We claim that the measure H𝑘 𝑆 is 𝜎-finite and

𝜇 ≪ H𝑘 𝑆 . Then, this absolute continuity gives the function 𝑓 , so we complete the proof.

We decompose the set 𝑆 as follows: given 𝑡 ∈ (0,∞) and 𝛿 > 0, define

𝑆𝑡,𝛿 B {𝑥 ∈ 𝑋 | 𝜇 (𝐵𝑟 (𝑥)) ≥ 𝑡𝜔𝑘𝑟𝑘 for some 𝑟 ∈ (0, 𝛿/10)}.
Then,

𝑆 ⊂
⋃

𝑡∈(0,∞)
𝑆𝑡,𝛿

for all 𝛿 > 0. Now, given 𝑥 ∈ 𝑆𝑡,𝛿 , take 𝑟𝑥 > 0 such that 𝜇 (𝐵𝑟 (𝑥)) ≥ 𝑡𝜔𝑘𝑟
𝑘
. Now, we can apply

the Vitali covering lemma, then we obtain a countable subcollection 𝐵𝑟 𝑗 (𝑥 𝑗 ) satisfying the result
of the lemma. Then, first

𝑆𝑡,𝛿 ⊂
∞⋃
𝑗=1

𝐵5𝑟 𝑗 (𝑥 𝑗 ),

and we estimate

𝜇 (𝑋 ) ≥
∑︁

𝜇 (𝐵𝑟 𝑗 (𝑥 𝑗 ))

≥ 𝑡
∑︁

𝜔𝑘𝑟
𝑘
𝑗

≥ 𝑡

5𝑘
H𝑘
𝛿/5(𝑆𝑡,𝛿 ).

For 𝑡 > 0, define
𝑆𝑡 B {𝑥 ∈ 𝑋 |Θ∗

𝑘
(𝜇, 𝑥) ∈ (0, 𝑡)}.

Then, from the previous estimate, we can show that

H𝑘 (𝑆𝑡 ) ≤
𝜇 (𝑋 )
5𝑘𝑡

.

Letting 𝑡 → ∞, we have that

H𝑘 (𝑆) ≤ 𝜇 (𝑋 )
5𝑘

< ∞.

This argument shows the 𝜎-finiteness. Moreover, by a similar argument, we can show that 𝜇 is

absolutely continuous with respect toH𝑘 𝑆 . □
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Rectifiable sets Let (𝑋,𝑑) be ametric space. Fix𝑘 ⊂ ℤ≥0, and let 𝑆 ⊂ 𝑋 . 𝑆 is called𝑘-rectifiable
if

𝑆 ⊂ 𝐸0 ∪
∞⋃
𝑗=1

𝐸 𝑗 ,

where 𝐸0 is H𝑘
-negligible, and 𝐸 𝑗 ⊂ 𝑓 𝑗 (𝐾 𝑗 ) for some Lipschitz function 𝑓 𝑗 : 𝐾 𝑗 → 𝑋 from a

compact set 𝐾 𝑗 ⊂ ℝ𝑘
.

Remark 1.17. Consider the case when 𝑋 = ℝ𝑛
and 𝑆 is a Borel set. Note that by Kirszbraun

theorem, we may assume that 𝑓 𝑗 is defined on the whole ℝ𝑘
. Moreover, in this case, if 𝑆 is 𝑘-

rectifiable, then

𝑆 = 𝐸′0 ∪
∞⊔
𝑗=1

𝐸′𝑗 ,

where 𝐸′𝑗 ⊂ 𝑀 𝑗 is a compact subset of an embedded 𝑘-dimensional𝐶1
-submanifold𝑀 𝑗 inℝ𝑛

. We

will see the reason below.

𝐸′1

𝐸′2 𝐸′3

𝐸′0

Figure 1: 1-rectifiable set

Example 1.18. Consider Figure 1. This is a 1-rectifiable set contained in ℝ2
.

In the definition of rectifiable sets, why do we consider the images of Lipschitz functions?

Note that by Rademacher’s theorem, a Lipschitz function on a Euclidean space is differentiable

almost everywhere with respect to the Lebesgue measure L. Note that since H𝑘 = L𝑘 , if we
define 𝑆 𝑗 ⊂ ℝ𝑘

as the set of points 𝑥 ∈ ℝ𝑘
such that either

• 𝑓 𝑗 is not differentiable at 𝑥 , or

• 𝑓 𝑗 is differentiable at 𝑥 but not injective at 𝑥 .

Then, the measure of the imageH𝑘 (𝑆 𝑗 ) is 0.2 Thus, we can include the set 𝑓 𝑗 (𝑆 𝑗 ) in 𝐸0. Moreover,

we can cover ℝ𝑘 \ 𝑆 𝑗 with compact sets (𝐾 𝑗𝑙 )∞𝑙=1 such that 𝑑 𝑓 is 𝐶1
on 𝐾 𝑗𝑙 . Then, by Whitney’s

extension theorem, there are open sets 𝑈 𝑗𝑙 ⊃ 𝐾 𝑗𝑙 and functions 𝑓 𝑗𝑙 : 𝑈 𝑗𝑙 → ℝ𝑛
such that 𝑓 𝑗𝑙

extends 𝑓 𝑗 |𝐾 𝑗𝑙
with 𝑑 𝑓 𝑗𝑙 injective at every point.

2
Author’s comment: Why? Especially, for the second condition. Possibly, due to Sard’s theorem?
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Exercise 1.19. Let 𝑆 ⊂ ℝ𝑛
be a 𝑘-rectifiable Borel set, and suppose thatH𝑘 (𝑆) < ∞. Then, there

exists 1 ≤ 𝑙1 < · · · < 𝑙𝑘 ≤ 𝑛 such that the projection

𝜋 = 𝜋𝑙1 ...𝑙𝑘 : ℝ
𝑛 → ℝ𝑘

has the image 𝜋 (𝑆) is not negligible.

Exercise 1.20. Show that there exists a subset 𝑆 ⊂ ℝ𝑛
such that H𝑘 (𝑆) ∈ (0,∞), but it is not

recifiable.

Hint: Consider the quaternary Cantor set C′. Then, consider the set 𝑆 = C′ × C′ ⊂ ℝ2
. You

can show that this set has a nonzero finite H1
measure but it is not 1-rectifiable. You can also

consider the fact that 𝜋𝑥 (𝑆) = 𝜋𝑦 (𝑆) = C′ is negligible.

Rectifiability criteria We now consider criteria of rectifiability. Note that the definition itself

is not useful for this task. The first criterion is the following.

Theorem 1.21 (Besicovitch–Marstrand–Mattila). Let 𝑆 ⊂ ℝ𝑘 be a Borel set withH𝑘 (𝑆) ∈ (0,∞).
Then, 𝑆 is rectifiable if and only if

lim
𝑟→0

𝜇 (𝐵𝑟 (𝑥))
𝑟𝑘

= 1

𝜇-a.e., where 𝜇 = H𝑘 𝑆 .

In general, it is better to work on measures instead of sets.

Definition 1.22. Let 𝜇 be a Borel measure. Then, 𝜇 is said to be 𝑘-rectifiable if we can write

𝑑𝜇 = 𝑓 𝑑 (H𝑘 𝑆)

for some 𝑘-rectifiable set 𝑆 .

Theorem 1.23. Let 𝜇 is a finite measure on ℝ𝑛 . This is 𝑘-rectifiable if the following hold.

• We have
0 < Θ𝑘,∗(𝜇, 𝑥) ≤ Θ∗

𝑘
(𝜇, 𝑥) < ∞

for 𝜇-almost all 𝑥 . Here, Θ𝑘,∗ is the 𝑘-lower density defined by

Θ𝑘,∗(𝜇, 𝑥) B lim inf
𝑟→0

𝜇 (𝐵𝑟 (𝑥))
𝜔𝑘𝑟

𝑘
.

• For 𝜇-almost all 𝑥 , there exists a𝑘-plane 𝑃𝑥 such that any blow-up of 𝜇 at 𝑥 is equal to 𝑐H𝑘 𝑃𝑥
for a constant 𝑐 > 0.

Here, a blow-up3 means a limit of the form

lim
𝑗→∞

(𝛿𝑥,𝑟 𝑗 )∗𝜇
𝑟𝑘
𝑗

,

where
𝛿𝑥,𝑟 (𝑦) =

𝑦 − 𝑥
𝑟

.

3
Author’s note: I feel that the idea of blow-up is to consider a tangent object in a GMT sense.
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Together with the previous criterion
4
, the following are more advanced recifiability criteria.

Theorem 1.24 (Marstrand-Mattila). In the previous theorem, we can allow each plane 𝑃𝑥 to depend
on the sequence (𝑟 𝑗 ).

Theorem 1.25 (Preiss). A measure 𝜇 is 𝑘-rectifiable if and only if for 𝜇-almost all 𝑥 ,

lim
𝑟→0

𝜇 (𝐵𝑟 (𝑥))
𝑟𝑘

∈ (0,∞) .

Idea of the proof of Theorem 1.23. We provide very rough idea for a proof. Given 𝜂 > 0 and for

𝜇-a.e. 𝑥 , we can take 𝜌 (𝜂, 𝑥) > 0 such that

𝑑

(
(𝛿𝑥,𝑟 )∗𝜇
𝑟𝑘

, {measures on 𝑃𝑥 }
)
≤ 𝜂.

Then, for a very small 𝜂0, without loss of generality, we may assume that from measure theory

knowledge
5
, 𝜌 is uniform and 𝑃𝑥 ’s are close to the same plane 𝑃0. Then, for each pair of 𝑥 and 𝑥′,

𝑥′ is closed to 𝑥 + 𝑃0, and actually, 𝑥′ − 𝑥 is almost parallel to 𝑃0. □

4
Author’s comment: I guess the first condition is for a set 𝑆 we should consider, and for the second condition,

basically, that says at almost all points in 𝑆 , the tangent object is well-defined in a GMT sense.

5
I guess from Egorov’s theorem.
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2 Day 2: June 25th
Area and coarea formulas Before introducing the notion of currents, we first see some tools

for rectifiable sets.

Theorem 2.1 (Area formula). Let 𝑓 : ℝ𝑘 → ℝ𝑚 be a locally Lipschitz function. Suppose that
ℎ : ℝ𝑘 → [0,∞) is measurable and that 𝑆 ⊂ ℝ𝑘 is a Borel set. Then,∫

𝑆

ℎ𝐽𝑓𝑑𝑥 =

∫
𝑓 (𝑆)

∑︁
𝑥∈𝑓 −1 (𝑦)

ℎ(𝑥)𝑑H𝑘 (𝑦).

Here, 𝐽𝑓 (𝑥) is the Jacobian of 𝑓 which is defined by

𝐽𝑓 (𝑥) B
√︃
det(𝑑 𝑓 (𝑥)𝑇𝑑 𝑓 (𝑥).

Remark 2.2. Here, clearly 𝑓 (𝑆) is a 𝑘-rectifiable set, and the measurability of the integrand of the

right-hand side is also a part of the statement. Moreover, the Jacobian is well-defined since 𝑓 is

differentiable a.e.

Moreover, the formula is only useful when𝑚 ≥ 𝑘 . Otherwise, the formula becomes just 0 = 0.

Idea of proof. First, one can reduce to the case that ℎ ≡ 1. Moreover, we may assume that 𝑓 is

differentiable everywhere. Now, let 𝑥0 be a point, then

𝑓 (𝑥) = 𝑓 (𝑥0) + 𝑑 𝑓 (𝑥0) (𝑥 − 𝑥0) + 𝑜 ( |𝑥 − 𝑥0 |).

In this regard, somehowwe reduce to the case of linear maps. Therefore, we assume 𝑓 = 𝐿, where

𝐿 : ℝ𝑘 → ℝ𝑚 is a liner map. Note that 𝐿 = 𝑑𝐿, and by the singular value decomposition, we can

write

𝐿 = 𝑅𝐷𝑅′,

where 𝑅 ∈ 𝑆𝑂 (𝑚), 𝑅′ ∈ 𝑆𝑂 (𝑘) and 𝐷 = (𝑑𝑖 𝑗 ) satisfies that 𝑑𝑖 𝑗 = 0 if 𝑖 ≠ 𝑗 . Observe that

H𝑘 (𝐿(𝑆)) = H𝑘 (𝑅𝐷𝑅′(𝑆))
= H𝑘 (𝐷𝑅′(𝑆)
= |det𝐷′|L𝑘 (𝑆),

where

𝐷 =

[
𝐷′

0

]
with 𝐷′

diagonal. Note that

|det𝐷′| =
√︁
det(𝐷𝑇𝐷) =

√
𝐿𝑇𝐿.

Using this idea, we can complete the proof. □

Exercise 2.3. Make this idea into a rigorous proof.

As a dual theorem, the coarea formula is introduced.
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Theorem 2.4 (Coarea formula). Suppose that 𝑙 ≥ 𝑚, and let 𝑓 : ℝ𝑙 → ℝ𝑚 be locally Lipschitz.
Moreover, let ℎ : ℝ𝑙 → [0,∞) be measurable. Then, for a Borel set 𝑆 ⊂ ℝ𝑙 , the set 𝑓 −1(𝑦) is
𝑘-rectifiable for almost all 𝑦, where 𝑘 = 𝑙 −𝑚, and we have the formula∫

𝑆

ℎ𝐽𝑓𝑑𝑥 =

∫
𝑓 (𝑆)

∫
𝑓 −1 (𝑦)

ℎ 𝑑H𝑘𝑑𝑦.

Here, the Jacobian 𝐽𝑓 is defined by

𝐽𝑓 =

√︃
det(𝑑 𝑓 𝑑 𝑓 𝑇 ).

The proof is hard, see [AFP00, pp. 100–108].

Exercise 2.5. Let 𝑆 ⊂ ℝ𝑘
be a Borel set with H𝑘 (𝑆) = L𝑘 (𝑆) ∈ (0,∞). Given 0 < 𝜎 < 𝜏 , show

that there exists 𝑟 ∈ (𝜎, 𝜏) such that

H𝑘−1(𝑆 ∩ 𝜕𝐵𝑟 (0)) ≤
H𝑘 (𝑆)
𝜏 − 𝜎 .

Tangent to a rectifiable set We now consider tangent objects to a rectifiable set. Recall that

for 𝑆 ⊂ ℝ𝑛
Borel, if it is 𝑘-rectifiable, then

𝑆 = 𝐸0 ∪
∞⊔
𝑗=1

𝐸 𝑗 ,

where H𝑘 (𝐸0) = 0 and 𝐸 𝑗 ⊂ 𝑀 𝑗 for some 𝐶1
-manifold𝑀 𝑗 . We define the following.

Definition 2.6. If 𝑥 ∈ 𝐸 𝑗 , then we let

𝑇𝑥𝑆 B 𝑇𝑥𝑀 𝑗 ,

called the tangent space at 𝑥 .

Note that this notion is well-defined only in the following sense. If 𝑆 = 𝐸′0∪
⊔∞
𝑗=1 𝐸

′
𝑗 is another

expression for 𝑆 , then the tangent spaces at 𝑥 will agree for H𝑘
-almost every 𝑥 .

Example 2.7. Let 𝑆 ⊂ ℝ2
given by 𝑆 = {𝑥-axis}∪ {𝑦-axis} = {𝑦 = 0}∪ {𝑥 = 0}. If we decompose

𝑆 as

𝑆 = {𝑦 = 0} ∪ {𝑥 = 0, 𝑦 > 0} ∪ {𝑥 = 0, 𝑦 < 0},
then 𝑇(0,0)𝑆 = {𝑦 = 0}. However, if we decompose

𝑆 = {𝑦 = 0, 𝑥 ≠ 0} ∪ {𝑥 = 0},

then 𝑇(0,0)𝑆 = {𝑥 = 0}.

Remark 2.8. Suppose thatH𝑘 (𝑆) < ∞. Consider the measure 𝜇 = H𝑘 𝑆 . Recall that for 𝜇-a.e. 𝑥 ,

all blow-ups at 𝑥 are multiplies of the same 𝑘-plane, i.e. 𝑐H𝑘 𝑃 . This plane 𝑃 is actually 𝑇𝑥𝑆 for

H𝑘
-a.e. 𝑥 ,

Exercise 2.9. Show the fact in the remark.
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Generalized area and coarea formulas We can generalize the formulas using the notion of

tangent spaces.

Theorem 2.10 (Generalized area formula). Suppose that 𝑓 : ℝ𝑛 → ℝ𝑚 be locally Lipschitz, and
let 𝑆 ⊂ ℝ𝑛 be 𝑘-rectifiable. Then,∫

𝑆

ℎ𝐽 𝑆
𝑓
𝑑H𝑘 =

∫
𝑓 (𝑆)

∑︁
𝑥∈𝑓 −1 (𝑦)

ℎ(𝑥)𝑑H𝑘 (𝑦)

for a measurable function 𝑓 : 𝑆 → [0,∞). Here,

𝐽 𝑆
𝑓
=

√︃
det(𝑑𝑔(𝑥)𝑇𝑑𝑔(𝑥),

where 𝑔 = 𝑓 |𝑇𝑥𝑆 : 𝑇𝑥𝑆 → ℝ𝑛 which is Lipschitz.

Exercise 2.11. State the generalized coarea formula.

Currents We first begin with the general definition.

Definition 2.12. Let 𝑀 be a manifold. A 𝑘-dimensional current is an element of the dual space

(Ω𝑘𝑐 (𝑀))∗ of the space Ω𝑘𝑐 (𝑀) of 𝑘-forms with compact support.

Why is this definition natural? Consider an oriented compact 𝑘-dimensional submanifold Σ
in𝑀 . Then, it defines a current ⟦Σ⟧ by the assignment

𝜔 ↦→ ⟨⟦Σ⟧, 𝜔⟩ B
∫
Σ
𝜔.

In fact, this defines the embedding

⟦ · ⟧ : {compact oriented 𝑘-dimensional submanifolds} ↩→ (Ω𝑘𝑐 (𝑀))∗.

Moreover, if Σ has a nonempty boundary, then by Stokes’ theorem,∫
Σ
𝑑𝜂 =

∫
𝜕Σ
𝜂

for 𝜂 ∈ Ω𝑘−1𝑐 (𝑀). In this regard, we define the boundary of a current in the following way.

Definition 2.13. Let𝑇 be a 𝑘-current on𝑀 . We define the (𝑘−1)-current 𝜕𝑇 , called the boundary
of 𝑇 , by

⟨𝜕𝑇 , 𝜂⟩ B ⟨𝑇,𝑑𝜂⟩.

By the Stokes’ theorem, 𝜕⟦Σ⟧ = ⟦𝜕Σ⟧ if Σ is a compact submanifold.

Remark 2.14. One can easily show that 𝜕2𝑇 = 0. Therefore, we can develop a homological theory

for currents. That means, for 𝑘 = 0, . . . , 𝑛, where 𝑛 = dim𝑀 , if 𝐺𝑘 ⊂ {𝑘-currents} such that

𝜕𝐺𝑘 ⊂ 𝐺𝑘−1, we define
𝐻𝑘 B

ker 𝜕𝑘
im 𝜕𝑘+1

Usually, (𝐺𝑘) is taken as integral currents or normal currents, which will be defined below.
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Fact 2.15. For integral currents,
𝐻𝑘 � 𝐻𝑘 (𝑀 ;ℤ),

where the right-hand side is a singular homology group.

Sometimes, (𝑀,𝑔) has some curvature constraints. If 𝐻𝑘 (𝑀,ℤ) ≠ 0, we can minimize area

among 𝑇 such that [𝑇 ] is a generator and often reach a contradiction.

Masses and rectifiable currents

Definition 2.16. Let𝑇 be a 𝑘-current on a Riemannian manifold (𝑀,𝑔). Define themass of𝑇 by

𝕄(𝑇 ) B sup{|⟨𝑇,𝜔⟩| |𝜔 ∈ Ω𝑘𝑐 (𝑀) with |𝑤 | ≤ 1 everywhere}.

Note that we need a Riemannian metric for defining this notion.

Exercise 2.17. Show that if Σ is a compact submanifold of (𝑀,𝑔), then 𝕄(⟦Σ⟧) is the area of

Σ ⊂ 𝑀 .

Remark 2.18. Suppose that 𝑇 has finite mass. Observe that

|⟨𝑇,𝜔⟩| ≤ 𝕄(𝑇 )∥𝜔 ∥𝐶0 .

Therefore,𝑇 is a bounded linear functional on Ω𝑘𝑐 (𝑀), then by the Riesz representation theorem

in measure theory, there exists a unique measure 𝜇 and a unit section 𝜏 : 𝑀 → Λ𝑘𝑇𝑀 , we can

write

⟨𝑇, · ⟩ =
∫
𝑀

⟨ · , 𝜏⟩𝑑𝜇.

In particular, 𝜇 (𝑀) = 𝕄(𝑇 ). We write this measure as |𝑇 |.

For defining rectifiable currents, we consider the following setting. Let 𝑆 be a 𝑘-rectifiable

set, and let 𝜈 : 𝑆 → [0,∞) be measurable. Moreover, given 𝑥 ∈ 𝑆 , take an orientation 𝜏 (𝑥) of𝑇𝑥𝑆 ,
i.e. if 𝑣1, . . . , 𝑣𝑘 is an orthonormal basis of 𝑇𝑥𝑆 , then 𝜏 (𝑥) is either 𝑣1 ∧ · · · ∧ 𝑣𝑘 or −𝑣1 ∧ · · · ∧ 𝑣𝑘 .
Here, 𝜏 can be discontinuous even when 𝑆 is clearly smooth.

Definition 2.19. A 𝑘-current 𝑇 is called 𝑘-rectifiable if there are such 𝜈 and 𝜏 above such that

⟨𝑇,𝜔⟩ =
∫
𝑆

𝜈 (𝑥)⟨𝜔 (𝑥), 𝜏 (𝑥)⟩𝑑H𝑘 (𝑥)

for all 𝜔 . Here, we call 𝜇 the multiplicity of 𝑇 .

Here, if

∫
𝑆
𝜈 < ∞, then𝑇 has finite mass and the measure 𝜇 defined above is actually given by

𝑑𝜇 = 𝜈 𝑑 (H𝑘 𝑆).

11



Normal currents

Definition 2.20. A 𝑘-current is called normal if both 𝑇 and 𝜕𝑇 have finite mass.

There is an interesting theorem by Smirnov.

Fact 2.21 (Smirnov). Every normal 1-current is a superposition of curves.
More explicitly, this means the following. Let 𝑋 be the space of all Lipschitz curves of finite

length, where the domain of each curve is either an interval in ℝ or 𝑆1. Then, 𝑇 is normal if and
only if there exists a finite nonnegative measure 𝜆 on 𝑋 such that

𝑇 =

∫
𝑋

⟦𝛾⟧𝑑𝜆(𝛾).

For this fact, the essential part is the implication (⇒). For the other implication, we can

always define a normal current in that way even for higher-dimensions.

Pushforward The class of currents which we are going to concern is the class of integral

currents. For that, we introduce the notion of pushforward.

Definition 2.22. Let 𝜑 : 𝑀 → 𝑀′
be a proper smooth map of Riemanniam manifolds. Given

𝑘-current 𝑇 on𝑀 , define the pushforward 𝜑∗𝑇 by

⟨𝜑∗𝑇,𝜔⟩ B ⟨𝑇, 𝜑∗𝜔⟩

for 𝜔 ∈ Ω𝑘𝑐 (𝑀′).

Remark 2.23. If𝑇 is a normal current, the pushforward even can be defined even when 𝜑 is only

Lipschitz. In this case, we define

⟨𝜑∗𝑇,𝜔⟩ B lim
𝜖→0

⟨(𝜑𝜖)∗𝑇,𝜔⟩,

where 𝜑𝜖 is a regularization of 𝜑 .

Indeed, without loss of generality, we may assume that𝑇 is compactly supported and that𝑀

and 𝑀′
are ℝ𝑛

. The idea is to construct a homotopy between two different (𝜑𝜖)∗𝑇 so that their

difference is acutally a boundary. To do this, define

Ψ𝛿,𝜖 (𝑡, 𝑥) B (1 − 𝑡)𝜑𝛿 (𝑥) + 𝑡𝜑𝜖 (𝑥)

for 𝜖, 𝛿 > 0. For 𝐼 = [0, 1], define 𝑆𝛿,𝜖 B Ψ∗(⟦𝐼⟧ ×𝑇 ). Then,

𝜕𝑆𝛿,𝜖 = Ψ∗(𝜕(⟦𝐼⟧ ×𝑇 )) = Ψ∗(⟦{1}⟧ ×𝑇 − ⟦{0}⟧ ×𝑇 ) = (𝜑𝜖)∗𝑇 − (𝜑𝛿 )∗𝑇 .

Then, given 𝜔 ,

|⟨(𝜑𝜖)∗𝑇 − (𝜑𝛿 )∗𝑇,𝜔⟩| ≤ |⟨𝑆𝛿,𝜖, 𝑑𝜔⟩|
≤ 𝕄(𝑆𝛿,𝜖)∥𝑑𝜔 ∥0𝐶 .
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Moreover, for a (𝑘 + 1)-form 𝜂 on ℝ𝑡 ×ℝ𝑛
𝑥 with |𝜂 | ≤ 1,

⟨𝑆𝛿,𝜖, 𝜂⟩ = ⟨⟦𝐼⟧ ×𝑇,Ψ∗𝜂⟩
≤ 𝕄(𝑇 ) · ∥𝜕𝑡Ψ∥𝐶0 · ∥𝜕𝑥Ψ∥𝑘𝐶0 · ∥𝜂∥𝐶0 .

The inequality can be obtained by writing

𝜂 = 𝑑𝑡 ∧ 𝛼 + 𝛽,

where 𝛼, 𝛽 are 𝑘-forms on ℝ𝑛
𝑥 . Here,

∥𝜕𝑡𝜓 ∥𝐶0 = ∥𝜑𝜖 − 𝜑𝛿 ∥𝐶0,

and the other terms are finite. Therefore, 𝑆𝛿,𝜖 → 0 as 𝛿, 𝜖 → 0, and consequently, 𝕄(𝑆𝛿,𝜖) → 0.
Therefore, the sequence ((𝜑𝜖)∗𝑇 ) is weak-∗ Cauchy, so the limit ⟨𝜑∗𝑇,𝜔⟩ exists.

Slicing Let see one more construction we need. Let 𝑇 be a normal 𝑘-current such that 𝜕𝑇 = 0,
and let 𝑓 : 𝑀 → ℝ be Lipschitz. Consider the level set {𝑓 = 𝑡}. We want to make a correct

definition for the slice 𝑇 ∩ {𝑓 = 𝑡}.

Definition 2.24. Given 𝑡 ∈ ℝ, the 𝑡-slice of 𝑇 along 𝑓 is defined by

𝜕(𝟙{𝑓 <𝑡}𝑇 ).

If 𝑇 has nonempty boundary, then the 𝑡-slice is defined by

𝜕(𝟙{𝑓 <𝑡}𝑇 ) − 𝟙{𝑓 <𝑡}𝜕𝑇 .

Remark 2.25. This makes sense for normal current (why?). Moreover, we can consider super-level

sets instead of sub-level sets.

Theorem 2.26. For almost all 𝑡 ∈ ℝ, the 𝑡-slices are still normal currents.

Remark 2.27. We can also define the slices for a Lipschitz function 𝑓 : 𝑀 → ℝ𝑚 . The first way is

to repeat above, or secondly, we can consider the following construction. Given 𝑡0 ∈ ℝ𝑚 , consider

an approximation 𝜒𝜖 of the 𝛿{𝑓 =𝑡0}. Then, consider the current

𝜔 ↦→ ⟨𝑇, 𝑓 ∗(𝜒𝜖𝑑𝑦1 ∧ · · · ∧ 𝑑𝑦𝑚) ∧ 𝜔⟩.

Letting 𝜖 → 0, we get the 𝑡0-slice.

Integral currents Now, we define the notion of integral currents.

Definition 2.28. A 𝑘-current 𝑇 is an integral current if the following hold.

(a) 𝑇 is 𝑘-rectifiable with integer multiplicity a.e.;

(b) 𝜕𝑇 also is rectifiable with integer multiplicity.

13



Theorem 2.29. In fact, the second condition in the definition is redundant.

We want to consider how pushforward behaves with integral currents. Let 𝜑 be smooth and

proper, and let 𝑇 be an integral current coming from a rectifiable set 𝑆 , a multiplicity 𝜈 and

an orientation 𝜏 as a rectifiable current. Then, for 𝑦 ∈ 𝜑 (𝑆), define 𝜏′(𝑦) as 𝜑∗(𝜏 (𝑥)) where
𝑥 ∈ 𝜑−1(𝑦), and let

𝜈′(𝑦) B
∑︁

𝑥∈𝜑−1 (𝑦)
𝜀 (𝜑, 𝑥)𝜈 (𝑥),

where 𝜀 (𝜑, 𝑥) = 1 if 𝑑𝜑 maps 𝜏 (𝑥) to 𝜏′(𝑦), and it is −1 otherwise. Then, 𝜑∗𝑇 is the rectifiable

current defined by 𝜑 (𝑆), 𝜏′ and 𝜈′. Moreover, in fact, for almost every 𝑦, all of 𝜑−1(𝑦) has the
same tangent space. Thus, the previous one is well-defined. Moreover, one can allow 𝜑 to be just

proper and Lipschitz.

For example, consider 𝜑 (𝑥) = |𝑥 | and 𝑇 = ⟦ℝ⟧. Then, one can show that 𝜑∗𝑇 = 0.
Next time, we see that integral currents can form a compact family.
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3 Day 3: June 27th
Compactness of integral currents As we promised, we begin with the compactness of inte-

gral currents. For two integral 𝑘-currents 𝑇 and 𝑇 ′
, we can write

𝑇 −𝑇 ′ = 𝑅 + 𝜕𝑆,

where 𝑅 is an integral 𝑘-current and 𝑆 is an inegral (𝑘 + 1)-current. See Figure 2.

𝑇

𝑇 ′

𝑅𝑅 𝑆

Figure 2: Difference of two integral currents

Then, we define the flat metric

𝑑 (𝑇,𝑇 ′) B inf{𝕄(𝑅) +𝕄(𝑆) | for all such 𝑅 and 𝑆}.

Moreover, later, we need the following construction.

Definition 3.1. Let 𝑇 be a 𝑘-current with 𝑘 ≥ 1. Let 𝜓 (𝑡, 𝑥) B 𝑡𝑥 . Then, define the cone of 𝑇
(with vertex at the origin) given by

cone0(𝑇 ) B 𝜓∗(⟦𝐼⟧ ×𝑇 ),

where 𝐼 = [0, 1].

Exercise 3.2. When 𝑘 ≥ 1, show that 𝜕 cone0(𝑇 ) = 𝑇 . Moreover, show that this is not valid

when 𝑘 = 0.

Why do we need this flat distance? One reason is that if 𝑇𝑘 → 𝑇 in flat metric, then 𝑇𝑘 ⇀ 𝑇 ,

i.e. 𝑇𝑘 converges to 𝑇 weakly so that ⟨𝑇𝑘 , 𝜔⟩ → ⟨𝑇,𝜔⟩ for all 𝜔 . Therefore, by the following

theorem, we obtain the compactness result.

Theorem 3.3. Suppose that 𝐾 ⊂ 𝑀 be compact and 𝐶 > 0. Define the collection of integral 𝑘-
currents

S𝐾,𝐶 B {𝑇 | supp(𝑇 ) ⊂ 𝐾, 𝕄(𝑇 ) +𝕄(𝜕𝑇 ) ≤ 𝐶}.
Then, this family S𝐾,𝐶 is compact in the flat topology.

Proof of Theorem 3.3. Recall that a metric space is compact if and only if it is complete and totally

bounded. For completeness, we first need to argue that if (𝑇𝑗 ) is Cauchy in flat metric, the weak

limit 𝑇 is actually a normal current. We want that this is an integral current, and actually, it is.
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Theorem 3.4. Let (𝑇𝑗 ) be a Cauchy sequence in the flat metric. Then, the weak limit 𝑇 is actually
an integral current.

Historically, the proof of this theorem relied on a very difficult fact. The fact is as follows.

LetH𝑘 (𝐸) < ∞, and assume that there is no rectifiable subset of positiveH𝑘
-measure

in 𝐸. Such a set 𝐸 is said to be purely rectifiable. Then, for almost all 𝑘-planes 𝑃 , the

projection Π𝑃 (𝐸) is negligible.

Nowadays, a modern approach is available using slicing. This fact can be stated as the fol-

lowing.

A normal 𝑘-current is integral if and only if for each plane 𝑃 , slices with respect to

the projection Π𝑃 provide a function of bounded variation with values in 0-currents.

For a reference, refer to [Jer02].

Proof of Theorem 3.3 (continued). Using the previous theorem, the family S = S𝐾,𝐶 is complete.

Now, we need tho show the total boundedness. The idea is to approximate the current𝑇 relative

to the flat metric𝑑 by using a grid which covers the compact set𝐾 . For this, we need the following

theorem.

Theorem3.5 (Polyhedral deformation). Let𝑇 be an integral𝑘-current wiht𝑘 ≥ 1 and supp𝑇 ⊂ 𝐾 ,
where𝐾 is compact. For each 𝜌 > 0, consider the cubical grid which covers𝐾 such that the side length
of each cube is 𝜌 . Then, we can write

𝑇 = 𝑇 ′ + 𝑅 + 𝜕𝑆,

where 𝑇 ′ is supported on 𝑘-skeleton of the grid and has constant integer multiplicity on each face.
Moreover, we have the following estimates:

𝕄(𝑇 ′) ≤ 𝐶 (𝑛)𝕄(𝑇 )
𝕄(𝜕𝑇 ′) ≤ 𝐶 (𝑛)𝕄(𝑇 )
𝕄(𝑆) ≤ 𝐶 (𝑛)𝜌𝕄(𝑇 )
𝕄(𝑅) ≤ 𝐶 (𝑛)𝜌𝕄(𝜕𝑇 ).

Here, if 𝜕𝑇 = 0, then 𝑅 = 0.

Proof of Theorem 3.3 (continued). Note that if we have the theorem, then for sufficiently small 𝜌 ,

by the polyhedral deformation, we can show the total boundedness. This completes the proof. □

Therefore, we discuss the proof of Theorem 3.5.

Proof of Theorem 3.5. We may assume that 𝜌 = 1. In addition, assume that 𝑇 is supported on

𝑙-skeleton of the grid for some 𝑙 > 𝑘 . By induction, if replace 𝑇 with 𝑇 ′
supported on (𝑙 − 1)-

skeleton, then we are done.
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𝑇

𝑥𝑄

Figure 3: Radial projection in a cube

Given an 𝑙-cube 𝑄 , choose the center 𝑥𝑄 in a random way. By the radial projection, define

Π = Π𝑥𝑄 : 𝑄 \ {𝑥𝑄 } → 𝜕𝑄.

See Figure 3. Note that approximately,

|𝑑Π(𝑥) | � 1
|𝑥 − 𝑥𝑄 |.

Now, take 𝑟 > 0 and consider 𝟙𝑄\𝐵𝑟 (𝑥𝑄 )𝑇 and its pushforward by Π. Then,

𝕄(Π∗(𝟙𝑄\𝐵𝑟 (𝑥𝑄 )𝑇 )) ≲
∫
𝑄\𝐵𝑟 (𝑥𝑄 )

1

|𝑥 − 𝑥𝑄 |𝑘
𝑑 |𝑇 | (𝑥).

Letting 𝑟 → 0, and call the limit Π
𝑥𝑄
∗ 𝑇 . By building a homotopy between Π𝑥𝑄 and the identity,

we obtain

𝑑 |𝑄 (𝑇,Π
𝑥𝑄
∗ 𝑇 ) ≲ lim

𝑟→0

∫
𝑄\𝐵𝑟 (𝑥𝑄 )

1

|𝑥 − 𝑥𝑄 |𝑘
𝑑 |𝑇 | (𝑥).

We can glue all projections Π𝑥𝑄 together to get a map

Π : (𝑙-skeleton) \ {𝑥𝑄 |𝑄 a 𝑙-cube} → ((𝑙 − 1)-skeleton).

Then,𝑇 ′ = Π∗𝑇 , and define 𝑆 to be the pushforward of ⟦𝐼⟧×𝑇 under a homotopy between Π and

the identity. Finally, 𝑅 = 𝑇 −𝑇 ′ − 𝜕𝑆 . See Figure 3 again to understand these constructions.

Now, it remains to show the estimates. Observe that∫
𝑄 ′

∫
𝑄

1

|𝑥 − 𝑥𝑄 |𝑘
𝑑 |𝑇 | (𝑥)𝑑𝑥𝑄 =

∫
𝑄

∫
𝑄 ′

1

|𝑥 − 𝑥𝑄 |𝑘
𝑑𝑥𝑄𝑑 |𝑇 | (𝑋 )

≲ 𝐶𝑙

∫
𝑄

∫ √
𝑛

0
𝑟 𝑙−𝑘−1𝑑𝑟𝑑 |𝑇 | (𝑥).

17



Now, since 𝑙 ≥ 𝑘 , we have

(· · · ) ≤ 𝐶 (𝑙, 𝑛)
∫
𝑄

𝑑 |𝑇 | (𝑥)

= |𝑇 | (𝑄) < ∞.

By this estimate, we can find 𝑥𝑄 so that the estimates hold. This completes the proof. □

As a corollary, we have the following.

Corollary 3.6 (Nonsharp isoperimetric inequality). Suppose that 𝑇 is an integral 𝑘-current with
𝑘 ≥ 1. Suppose also that 𝜕𝑇 = 0. Then, there exists an integral (𝑘 + 1)-current 𝑆 such that 𝜕𝑆 = 𝑇

and
𝕄(𝑆) ≤ 𝐶 (𝑛, 𝑘)𝕄(𝑇 ) 𝑘+1𝑘 .

Idea of Proof. By the theorem, we can write

𝑇 = 𝑇 ′ + 𝜕𝑆.

Then,

𝕄(𝑆) ≤ 𝐶𝜌𝕄(𝑇 )
𝕄(𝑇 ′) ≤ 𝐶𝕄(𝑇 ) .

Note that we also have𝕄(𝑇 ′) ≳ 𝜌𝑘 , and we can choose 𝜌 so that 𝜌 � 𝕄(𝑇 )1/𝑘 . Therefore, by the
second inequality, we have 𝑇 ′ = 0, and moreover,

𝕄(𝑆) ≲ 𝕄(𝑇 )1+1/𝑘 .

This completes the proof. □

Exercise 3.7. For a compact manifold 𝑀 , by an embedding 𝑀 ↩→ ℝ𝑁
with 𝑁 ≫ 1, show that

the previous statement also holds on𝑀 if 𝕄(𝑇 ) is small enough.

Exercise 3.8. Suppose that 𝑇 is an integral 𝑘-current supported on an connected embedded 𝑘-

dimensional manifold in a Euclidean space. Show that 𝑇 has constant multiplicity.

Plateau problem We consider the following variational problem. Let Γ be a 𝑘-dimensional

embedded smooth submanifold without boundary in a Euclidean space.
6
We assume that 𝑘 ≥ 2.

Now, consider the family of integral 𝑘-currents

S B {𝑇 | 𝜕𝑇 = Γ}.

We want to minimize mass in S . That is, we want to find 𝑇 that attains

Λ B inf
𝑇∈S

𝕄(𝑇 ).
6
This is assigning the boundary of solutions. In a compact manifold𝑀 , instead, we can also assign a homology

class in 𝐻𝑘 (𝑀).
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By taking the cone of Γ, the collection S is nonempty. We now can consider a minimizing se-

quence (𝑇𝑗 ) such that𝕄(𝑇𝑗 ) → Λ. The question is whether we can find the limit of (𝑇𝑗 ) possibly
by passing to a subsequence.

Note that by projecting onto a large ball, we may assume that supp(𝑇𝑗 ) ⊂ 𝐾 for a compacf

set 𝐾 . Then, by Theorem 3.3, we can assume that𝑇𝑗 ⇀ 𝑇 . We need the regularity of𝑇 , but this is

actually a hard task. We are going to talk about this more after discussing the notion of varifolds.

Remark 3.9. Note that mass is lower semi-continuous with respect to weak limit of currents. Sup-

pose that 𝑇𝑗 ⇀ 𝑇 and𝕄(𝑇𝑗 ) → Λ. Then, for 𝜔 with |𝜔 | ≤ 1 everywhere,

|⟨𝑇,𝜔⟩| = lim|⟨𝑇𝑗 , 𝜔⟩|
≤ lim𝕄(𝑇𝑗 )
= Λ.

Therefore,

𝕄(𝑇 ) ≤ Λ.

In fact, the equality can be failed as in the following example.

0 1

(a) 𝑘 = 1

0 1

(b) 𝑘 = 2

0 1

(c) 𝑘 = 3

Figure 4: Train of circles

Example 3.10. For each 𝑘 = 1, 2, . . . , consider a train of circles𝑇𝑘 as in Figure 4. Here, the centers
of circles are given by (

2𝑖 + 1

10𝑘
, 1

)
, 𝑖 = 0, . . . ,

10𝑘

2
− 1,
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and the radius of each circle is

𝑟𝑘 =
1

2 · 10𝑘
.

Then, as 1-currents, the total mass is

𝕄(𝑇𝑘) =
10𝑘

2
· 2 1

2 · 10𝑘
· 𝜋 =

𝜋

2
.

Therefore, the mass is constantly 𝜋/2. However, 𝑇𝑘 ⇀ 0 (why?).

Varifolds Suppose that a sequence of 𝑘-rectifiable sets (Σ 𝑗 ), Σ 𝑗 ⊂ 𝑀 , satisfies

0 < 𝑐 < H𝑘 (Σ 𝑗 ) < 𝐶 < ∞

for all 𝑗 . This (Σ 𝑗 ) is almost critical. We want to take the limit 𝑗 → ∞ and obtain a critical point

of area.

A naive idea is the following. Consider the measures 𝜇 𝑗 B H𝑘 Σ 𝑗 . If 𝜇 𝑗 ⇀ 𝜇, then 𝜇 (𝑀) ≥ 𝐶 .
However, typically, we think criticality in the following way.

Given family of diffeomorphisms (Φ𝑡 )𝑡∈ℝ on𝑀 with Φ0 = id𝑀 ,

H𝑘 (Φ𝑡 (Σ)) = H𝑘 (Σ) + 𝑜 (𝑡).

This is always true for measures.

For resolving this issue, we try to remember the direction (without orientation) of a tangent

space like Young measures.
7

Definition 3.11. Let 𝑀 = ℝ𝑛
. A 𝑘-varifold 𝑉 is a positive radon measure on ℝ𝑛 × Gr𝑘 (ℝ𝑛).

Moreover, we can define the measure |𝑉 | on ℝ𝑛
which is the underlying measure of 𝑉 on ℝ𝑛

.

Remark 3.12. Here, Gr𝑘 (ℝ𝑛) is the Grassmannian, i.e. the set of all 𝑘-planes passing through the

origin. It has a distance defined as follows:

𝑑 (𝑃, 𝑃 ′) B ∥Π𝑃 − Π𝑃 ′ ∥,

where the norm can be taken any norms for𝑛-by-𝑛 symmetric matrices. For example, one can use

the operator norm or the Hilbert-Schmidt norm. These norms are all equivalent. In this regard,

we can consider Borel measures on it.

We mainly focus on recifiable varifolds.

Definition 3.13. Let 𝐸 ⊂ ℝ𝑛
be a 𝑘-rectifiable set, and let 𝑓 : 𝐸 → (0,∞) be a multiplicity.

Define a rectifiable 𝑘-varifold by

𝑉 (𝑥, 𝑃) B 𝑓 H𝑘 𝐸 (𝑥) ⊗ 𝛿𝑇𝑥𝐸 (𝑃).
7
European Mathematical Society, Young measure, Encyclopedia of Mathematics, Springer, 2020, url: http:

//encyclopediaofmath.org/index.php?title=Young measure&oldid=50866
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Therefore, this is a rectifiable measure with fiber information. In fact, we have the following

fact.

Fact 3.14. There is a one-to-one correspondence between 𝑘-rectifiable measures and 𝑘-rectifiable
varifolds.

Example 3.15. Consider Example 3.10 again. Now, we consider the sequence as a sequence (𝑉𝑘)
of 1-varifolds. Then, in fact, 𝑉𝑘 → 𝑉 , where

𝑉 = 𝑐 · (H1 𝐼 ) ⊗ 𝜇,

where 𝐼 = [0, 1], and 𝜇 is the uniform measure on Gr1(ℝ). One can visually understand this in

Figure 4.
8
Note that the limit 𝑉 is not rectifiable.

We now define pushforward for varifolds. Let 𝜙 be a diffeomorphism on ℝ𝑛
. Then, it induces

a diffeomorphism Φ̂ on ℝ𝑛 × Gr𝑘 (ℝ𝑛), where

Φ̂(𝑥, 𝑃) B (𝑥, 𝑑Φ(𝑥) (𝑃)) .

We define the pushforward by

Φ∗𝑉 B Φ̂∗ [𝐽 𝑃Φ (𝑥)𝑉 (𝑥, 𝑃)] .

Exercise 3.16. Suppose that a varifold 𝑉 comes from a submanifold Σ with multiplicity 1. For a
diffeomorphism Φ, consider the pushforward Φ∗𝑉 . Show that Φ∗𝑉 is also a varifold associated to

Φ(Σ).

Stationary varifolds To think of varifolds as critical points for area, we now consider the

notion of stationary varifolds. First, we define the variation of varifolds. Let 𝑋 ∈ 𝐶𝑐 (𝑀,𝑇𝑀) be
a compactly supported vector field, and let (Φ𝑋𝑡 ) be the flow of 𝑋 . Let supp𝑋 ⊂ 𝐾 , where 𝐾 is

compact. Then, define

⟨𝛿𝑉 ,𝑋 ⟩ B 𝑑

𝑑𝑡

����
𝑡=0

��(Φ𝑋𝑡 )∗𝑉 ��(𝐾).
Definition 3.17. We say that a varifold 𝑉 is stationary if ⟨𝛿𝑉 ,𝑋 ⟩ = 0 for all 𝑋 .

Exercise 3.18. Show that the derivative

𝑑

𝑑𝑡

��(Φ𝑋𝑡 )∗𝑉 ��(𝐾)
always exists, and in fact,

𝑑

𝑑𝑡

��(Φ𝑋𝑡 )∗𝑉 ��(𝐾) = ∫
ℝ𝑛×Gr𝑘 (ℝ𝑛)

div𝑃 𝑋 (𝑥)𝑑𝑉 (𝑥, 𝑃).

8
Author’s comment: Try zooming the subfigure of 𝑘 = 3. That is not a line!
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Theorem 3.19 (Allard, Rectifiability Criterion). Let𝑉 be a stationary 𝑘-varifold, and suppose that
Θ∗
𝑘
( |𝑉 |, 𝑥) > 0 for |𝑉 |-a.e. Then, 𝑉 is rectifiable.

Remark 3.20. In fact, for a 𝑘-varifold 𝑉 , the density

Θ𝑘 ( |𝑉 |, 𝑥) = lim
𝑟→0

|𝑉 | (𝐵𝑟 (𝑥))
𝜔𝑘𝑟

𝑘

exists for |𝑉 |-a.e.

Theorem 3.21 (Allard, Compactness). Suppose that (𝑉𝑗 ) be a sequence of stationary varifolds
which are rectifiable with integer multiplicity. Then, passing to a subsequence, 𝑉𝑗 ⇀ 𝑉 , and 𝑉 has
the same properties.

In fact, the assumption on stationary varifolds can be weaken by the following notion.

Definition 3.22. We say that a varifold𝑉 has (locally) bounded first variation if for every compact

set 𝐾 and for every vector field 𝑋 with supp𝑋 ⊂ 𝐾 ,

|⟨𝛿𝑉 ,𝑋 ⟩| ≤ 𝐶 (𝐾)∥𝑋 ∥𝐶0 .

Remark 3.23. Note that in this case, by the Riesz representation theorem, we can write

⟨𝛿𝑉 ,𝑋 ⟩ = −
∫
𝑀

𝑋 · 𝑑𝐻,

where 𝐻 is a vector measure on𝑀 .

Exercise 3.24. Suppose that a varifold 𝑉 arises from a smooth submanifold Σ. Show that

𝑑𝐻 = (mean curvature of Σ) · 𝑑 (H𝑘 Σ).

Remark 3.25. The assumption of Allard’s rectifiability criterion can be weakened as 𝑉 to have

bounded first variation. See [Sim18, Theorem 5.5, p. 246] (or [Sim84]).

Moreover, for Allard’s compactness theorem, instead of stationary varifolds, a sequence of

uniformly bounded first variations will also provides the same result. See [Sim18, Theorem 5.8,

p. 248] (or [Sim84]).
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4 Day 4: June 28th
Some results on varifolds Recall that a 𝑘-varifold on a manifold𝑀 is a Radon measure on the

Grassmannian bundle 𝜋 : 𝐺𝑘 (𝑀) → 𝑀 . Moreover, the underlying measure |𝑉 | on 𝑀 is defined

by 𝜋∗𝑉 . If𝑀 = ℝ𝑛
, the Grassmannian bundle is trivial, so a 𝑘-varifold on ℝ𝑛

is a Radon measrue

on ℝ𝑛 × Gr𝑘 (ℝ𝑛). We also write Gr𝑘 (ℝ𝑛) as Gr𝑛,𝑘 . Note that if

𝜇 = 𝑓 (H𝑘 𝑆)

is a rectifiable measure, then we can consider the varifold

𝑉 (𝑥, 𝑃) = 𝑓 (𝑥) (H𝑘 𝑆) (𝑥) ⊗ 𝛿𝑇𝑥𝑆 (𝑃),

which is called a rectifiable 𝑘-varifold. A motivation of the notion of varifolds is to take account

for the Jacobian factor arising from the tangent space part cosidering the area formula.

Theorem 4.1 (Allard, rectifiability criterion). Let 𝑉 be a 𝑘-varifold with locally bounded first
variation, and suppose that

Θ∗
𝑘
( |𝑉 |, 𝑥) > 0

for |𝑉 |-a.e. 𝑥 . Then, 𝑉 is rectifiable.

Example 4.2. Consider a varifold on ℝ𝑛

𝑉 = (H𝑘 (segment)) ⊗ (uniform measure on Gr𝑛,𝑘).

Then, the first variation is not locally bounded. Therefore, this is not rectifiable.

Figure 5: Bounded first variation without density assumption

Example 4.3. Consider a varifold on ℝ2
defined by

𝑉 = (H2 (square)) ⊗ 𝛿 (𝑥-axis) .

See Figure 5. Then, this is of bounded first variation, but it does not satisfy the positivity of the

density. This is not rectifiable. Here, the idea is that even though the set is 2-dimensional, each

tangent space is 1-dimensional.
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𝑝

Figure 6: For monotonicity formula

For the proof of the theorem, we only consider stationary varifolds. The key idea is the

monotonicity formula. To get some idea, consider a stationary 𝑘-rectifiable set Σ. Now, define

𝑓 (𝑟 ) B H𝑘 (Σ ∩ 𝐵𝑟 (𝑝)) .

Note that Σ is locally area minimizing, and one can show that

H𝑘−1(Σ ∩ 𝜕𝐵𝑟 (𝑝)) ≤ 𝑓 ′(𝑟 ).

This inequality is equivalent to the fact that Σ ⊥ 𝜕𝐵𝑟 (𝑝). Here, we consider the cone joining 𝑝
and the intersection Σ∩𝜕𝐵𝑟 (𝑝) as in Figure 6. Then, the area of the cone isH𝑘−1(Σ∩𝜕𝐵𝑟 (𝑝)) ·𝑟/𝑘 ,
and one can estimate

𝑓 (𝑟 ) ≤ H𝑘−1(Σ ∩ 𝜕𝐵𝑟 (𝑝)) ·
𝑟

𝑘
≤ 𝑓 ′(𝑟 ) 𝑟

𝑘
.

Therefore, we have an differential inequality

𝑓 ′(𝑟 ) 𝑟
𝑘
≥ 𝑓 (𝑟 ).

Using some ODE theory, one can show that 𝑓 (𝑟 )/𝑟𝑘 is increasing.
We want to consider now the varifold case.

Proposition 4.4 (Monotonicity formula). Let 𝑉 be a 𝑘-varifold. Then, for 𝑎 < 𝑏, we have

|𝑉 | (𝐵𝑏 (𝑝))
𝑏𝑘

− |𝑉 | (𝐵𝑎 (𝑝))
𝑎𝑘

=

∫
(𝐵𝑏 (𝑝)\𝐵𝑎 (𝑝))×Gr𝑛,𝑘

|∇𝑃⊥𝑟 (𝑥) |2

𝑟 (𝑥)𝑘
𝑑𝑉 (𝑥, 𝑃),

where 𝑟 is the distance from 𝑝 , and ∇𝑃⊥ is the projection of ∇ onto 𝑃⊥.

Proof. We may assume that 𝑝 = 0 ∈ ℝ𝑛
. We want a vector field like

𝑋 (𝑥) B 𝟙𝐵𝑟 (0)𝑥 .

For a smooth one, first, consider a smooth function 0 ≤ 𝜑 ≤ 1 with 𝜑 (𝑡) = 0 for 𝑡 ≥ 1, and define

𝑋 (𝑥) B 𝜑

(
|𝑥 |
𝑟

)
𝑥 .

Then, by some computations for ⟨𝛿𝑉 ,𝑋 ⟩, we obtain the formula. □
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By this formula, we also obtain the following.

Corollary 4.5. The density

Θ𝑘 ( |𝑉 |, 𝑃) = lim
𝑟→0

|𝑉 | (𝐵𝑟 (𝑝))
𝜔𝑘𝑟

𝑘

exists |𝑉 |-a.e.

Proof of theorem. We want to use the first rectifiability criterion for measures. Fix 𝑥0 ∈ ℝ𝑛
, and

define

𝛿𝑥0,𝑠 (𝑦) B
𝑦 − 𝑥0
𝑠

.

Now, let (𝑠 𝑗 ) be a sequence with 𝑠 𝑗 → 0. Then, define

𝑉𝑗 B (𝛿𝑥0,𝑠 𝑗 )∗𝑉 ,

and we want to consider the limit of 𝑉𝑗 . In the definition of varifold pushforward, the Jacobian

factor is 𝑠−𝑘𝑗 , so

|𝑉𝑗 | =
(𝛿𝑥0,𝑠 𝑗 )∗ |𝑉 |

𝑠−𝑘
𝑗

.

Note that this sequence is bounded above by the monotonicity formula with some scaling ar-

gument. Therefore, passing to a subsequence, let 𝑉∞ be the limit (in weak-∗ topology) of that

subsequence. We want to show that 𝑉∞ is associated to a single 𝑘-plane with multiplicity.

Note that since ∫
ℝ𝑛×Gr𝑛,𝑘

div𝑃 (𝑋 ) (𝑥)𝑑𝑉 (𝑥, 𝑃) = 0

for every 𝑋 ∈ 𝐶1
𝑐 , 𝑉∞ is still stationary. Now, we use the monotonicity formula. Define

ℎ(𝑟 ) B |𝑉 | (𝐵𝑟 (𝑥0))
𝑟𝑘

.

We know that

lim
𝑟→0

ℎ(𝑟 ) = 𝜔𝑘Θ𝑘 ( |𝑉 |, 𝑥0).

Meanwhile, for a fixed 𝑟 > 0,

ℎ 𝑗 (𝑟 ) B ℎ(𝑠 𝑗𝑟 )
𝑗→∞
−→ 𝜔𝑘Θ𝑘 ( |𝑉 |, 𝑥0),

but also at the same time,

lim
𝑗→∞

ℎ 𝑗 (𝑟 ) = ℎ∞(𝑟 ) B |𝑉∞ | (𝐵𝑟 (𝑥0))
𝑟𝑘

.

Therefore, ℎ∞(𝑟 ) is actually independent of 𝑟 . Now, if we use the monotonicity formula for 𝑉∞,
then ���∇𝑃⊥𝑑 (𝑥)���2 = 0

for |𝑉∞ |-a.e. 𝑥 . Thus, 𝑥 − 𝑥0 ∈ 𝑃 for |𝑉∞ |-a.e. 𝑥 .
We now want to choose 𝑥0 in a clever way so that our conclusion holds. In fact, generic 𝑥0

will satisfy. In this regard, we remark the following.
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• Like Lebesgue points, we can take 𝑥0 as an approximate continuity point of Θ𝑘 ( |𝑉 |, ·) with
some additional uniformity for the limit of density around 𝑥0. Therefore, |𝑉∞ | has constant
density, and

Θ𝑘 ( |𝑉∞ |, 𝑥) = Θ𝑘 ( |𝑉 |, 𝑥) > 0

for |𝑉∞ |-a.e. 𝑥 .

• Therefore, |𝑉∞ | is rectifiable. That means, we can write

|𝑉∞ | = Θ𝑘 ( |𝑉 |, 𝑥0) · (H𝑘 𝑆),

where 𝑆 is a rectifiable set.

• In general, we can write

𝑉∞(𝑥, 𝑃) = |𝑉∞ | (𝑥) ⊗ 𝜆𝑥 (𝑃),

where 𝜆𝑥 is a probability measure on Gr𝑛,𝑘 . Thus, take 𝑥0 also to be an approximate conti-

nuity point for 𝜆𝑥 . Then,

𝑉∞ = Θ𝑘 ( |𝑉 |, 𝑥0) · (H𝑘 𝑆) ⊗ 𝜆,

and 𝜆 is independent of 𝑥 , i.e. we can freeze the Gr𝑛,𝑘 part.

Now, take distributional supports ofH𝑘 𝑆 and 𝜆, namely, 𝑆 and𝑇 . Then, since𝑉∞ is not trivial,

𝑆 is also not trivial.

Without loss of generality, assume 𝑥0 = 0. Then, 𝑥 ∈ 𝑃 for 𝑉∞-.a.e (𝑥, 𝑃). Therefore, for all
𝑥 ∈ 𝑆 and 𝑃 ∈ 𝑇 , 𝑥 ∈ 𝑃 . Now, fix any 𝑃 in 𝑇 , then 𝑆 ⊂ 𝑃 . In fact, 𝑆 ⊂ 𝑆 ⊂ 𝑃 . It follows that 𝑇

is a singleton set. Indeed, otherwise, for 𝑃 and 𝑃 in 𝑇 , 𝑆 ⊂ 𝑃 ∩ 𝑃 , but then H𝑘 (𝑆) = 0. This is a
contradiction. Hence, 𝜆 = 𝛿

𝑃
.

Moreover, the area ratio is constant, i.e.

|𝑉∞ | (𝐵𝑟 (0))
𝑟𝑘

is constant. This means that 𝑆 = 𝑃 . This proves the assertion. □

Compactness of stationary integral varifolds Now, we see Allard’s compactness result.

Theorem 4.6. Let (𝑉𝑗 ) be a sequence of stationary 𝑘-rectifiable varifolds with integer multiplicity.
Suppose that 𝑉𝑗 ⇀ 𝑉 . Then, 𝑉 has the same properties.

Note that a rectifiable varifold with integer multiplicity is called an integral varifold.

Exercise 4.7. Let 𝑉 be a stationary integral 𝑘-varifold. Show that

Θ𝑘 ( |𝑉 |, 𝑥) ≥ 1

for 𝑥 in the distributional support of |𝑉 |.
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𝑃

𝑉𝑗

𝑝

Figure 7: Convergence of (𝑉𝑗 )

Remark 4.8. One can show that for a stationary 𝑘-varifold, the density Θ𝑘 ( |𝑉 |, 𝑥) is upper semi-

continuous. Indeed, consider two lines intersecting at a point 𝑝 . Then, at 𝑝 , Θ𝑘 ( |𝑉 |) is 2, but at
other points on each line, Θ𝑘 ( |𝑉 |) is 1.

Idea of Proof. In this proof, we use the notation supp for distributional supports. Note that by

the upper semicontinuity of the density, the limit 𝑉 satisfies Θ𝑘 ( |𝑉 |, 𝑥) ≥ 1 for 𝑥 ∈ supp( |𝑉 |).
Therefore, by a rectifiability criterion, 𝑉 is rectifiable. Moreover, at |𝑉 |-a.e. point, the blow-up
is 𝑐 ¤𝑃 , where 𝑃 is a 𝑘-lane. In fact, by a diagonal arguments, without loss of generality, one can

show that𝑉 = 𝑐 · 𝑃 . Here, the integral multiplicity is obtained by the monotonicity formula, and

moreover, the tangent plane to each 𝑗 is very close to the same plane 𝑃 . Now, consider a small

cylinder of radius 𝑟 over a point 𝑝 as in Figure 7. Here, because𝑉𝑗 is almost parallel to 𝑃 , we have
that

|𝑉𝑗 | (cylinder) � 𝜔𝑘𝑟𝑘 · (multiplicity near 𝑝).
In this way, we can show that 𝑉 is a stationary integral 𝑘-varifold. □

Author’s comment For the remaining part of the lecture, Dr. Pigati discussed the areamininiz-

ing problem with Allen-Cahn energy. Possibly, I will update this in these notes after his official

lecture notes become available through SLMath webpage. Moreover, we have not discussed the

regulrity results much, and for those, one can refer to [Sim18] or [Sim84].
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